Microcystin Sampling and Analysis Presented by Rhonda Morris

Cyanobacteria

- Bacteria that photosynthesize like algae
 - Commonly called blue-green algae
- Multiply rapidly to form blooms in late summer and early fall under optimal conditions
 - Adequate amounts of phosphorus, nitrogen, and organic matter
 - Temperatures between 5 30°C
 - pH between 6 9

Cyanotoxins

- Some genera of cyanobacteria are able to produce toxins that may be harmful to humans, domestic animals, and wildlife
- Most toxins are stored within cells and are only released into water when cell membranes rupture (cell lysis) or upon cell death
- Once released, toxins can be stable in water for several weeks
- Toxins may be present in water even if cyanobacteria are not visible

Cyanotoxins

- Routes of human exposure
 - Drinking contaminated water
 - Inhalation and dermal contact during bathing, showering, and recreational use
 - Ingesting contaminated food

Cyanotoxins

Different classes of cyanotoxins

- Dermatotoxins
- Hepatotoxins
- Neurotoxins
- Type and toxicity of cyanotoxins produced are dependent on the types of cyanobacteria present and can vary over time or over distances within the same body of water

Cyanotoxin	Туре	Symptoms	Cyanobacteria
Lyngbyatoxin	Dermatotoxin	Skin redness	Lynbya
		Skin burning	
		Skin itching	
		Skin blistering	
		Abdominal pain	Anabaena
Cylindrospermopsin	Hepatotoxin	Vomiting	Aphanizomenon Cylindrospermopsis
Cymarospermopsm	Ticpatotoxiii	Diarrhea	Lyngbya
		Liver inflammation	Umezakia
		& hemorrhage	Anabaena
Microcystin	Henstotovin	Acute pneumonia	Anabaenopsis Microcystis
wherocystin	Hepatotoxin	Acute dermatitis	Nostoc
		Kidney damage	Oscillatoria

Cyanotoxin	Туре	Symptoms	Cyanobacteria
Anatoxin-a	Neurotoxin	Tingling sensation Burning sensation	Anabaena Aphanizomenon Oscillatoria
Anatoxin-a (s)	Neurotoxin	Numbness	Anabaena
Saxitoxin	Neurotoxin	Drowsiness Incoherent speech Respiratory paralysis leading to death	Anabaena Aphanizomenon Cylindrospermopsis Lyngbya Oscillatoria

- Most common cyanotoxin found in surface waters worldwide
- Over 90 different congeners
 - Microcystin-LR one of the most toxic and widely studied

- Harmful algal blooms have been increasing in severity and frequency in recent years raising concerns over drinking water safety
- EPA health advisory levels for total microcystins
 - 0.3 µg/L for children < 6 years old and susceptible groups (pregnant & nursing women, the elderly, and those who are immune-compromised or receiving dialysis treatment)
 - 1.6 µg/L for children > 6 years old to adults

- Increased microcystin monitoring
 - HAB Rule Senate Bill 1/OAC 3745.50
 - Monitoring requirements for total microcystins
 - UCMR4
 - Monitoring requirements for total microcystins, 6 individual congeners of microcystin, nodularians, anatoxin-a, and cylindrospermopsin

- Sample bottles must be glass or PETG
- Samples must be quenched with sodium thiosulfate to remove any residual chlorine
- Samples must be placed on ice immediately after collection and during shipment

- Avoid direct contact with the sample
 - Wear gloves and safety glasses
 - Wash hands after sample collection or handling
- Collect at least 100 mL of sample
- Clean any sampling equipment with DI water in between sampling locations and when finished

- The COC must include the following information in order for results to be reported to OEPA on time
 - PWS name and ID #
 - Facility State Code (STUID #)
 - Sample point ID
 - Sample collection date and time
 - Sample type (routine, resample, or repeat)

Central Office 50 W Town St Columbus Ohio 43215 (614) 644-2752 FAX (614) 644-2909

PUBLIC WATER SYSTEM INFORMATION:

PWS ID:	OH
PWS Name:	
Facility Code:	
Facility Name	;
Address:	
City, State, Zij	p:
County:	
• • • • • • •	

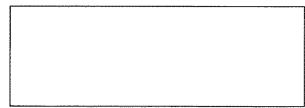
LABORATORY INFORMATION:

Reporting Lab Name:
Reporting Lab Certification No.:
Lab Receipt Date:

Data Quality Results:

Analysis:		Accepted
-----------	--	----------

Reject	ted
--------	-----


- --Invalid Sampling Point --Broken
- --Exceeds Holding Time --Chlorine Present --Frozen Sample \square
- --Excessive Head Space --Lab Accident
 - --Leaked in Transit \square
- --Insufficient Sample Information
- --Invalid Sampling Protocol

CHEMICAL SAMPLE SUBMISSION REPORT (SSR)

SAMPLE INFORMATION:

Lab Sample Number:
Sample Monitoring Point
Sample Type: Routine (compliance) Special (non-compliance)
Sample Collection Date: Sample Collection Time:
Street Address and Tap Location:
Lead/Copper Location Type <u>:</u> -At SourceFlushed -First DrawLead Service Line

Comments

Sample Results:

Analyte	Analyte Code	Method Code	Results Sign	Results Value	Results Units	Analytical Lab ID#	Analyst #	Analysis Date	QC Date
Microcystin Total		701.0							

Division of Drinking and Ground Waters

Central Office 50 W Town St Columbus Ohio 43215 (614) 644-2752 FAX (614) 644-2909

PUBLIC WATER SYSTEM INFORMATION:

PWS ID:	OH
PWS Name:	
Facility Code:	
Facility Name:	·····
Address:	
City, State, Zij	»:
County:	

LABORATORY INFORMATION:

Reporting Lab Name:______ Reporting Lab Certification No.:_____ Reporting Lab Name:___ Lab Receipt Date:

Data Quality Results:

Analysis: 📋	Accepted	L]	Rejected
Invalid Sa	ampling Point	□I	Broken

- -Invalid Sampling Point --Exceeds Holding Time .
- --Excessive Head Space --Frozen Sample --Leaked in Transit

--Chlorine Present

- --Lab Accident
 - --Insufficient Sample Information
- --Invalid Sampling Protocol

CHEMICAL SAMPLE SUBMISSION REPORT (SSR)

SAMPLE INFORMATION:

Lab Sample Number:
Sample Monitoring Point
Sample Type:
(Routine (compliance)
Special (non-compliance)
Sample Collection Date:
Sample Collection Time:
Street Address and Tap Location:
Lord/Conner Location Type:
Lead/Copper Location Type:
☐ -First Draw ☐Lead Service Line
Comments
Comments
Resample
nesample

For compliance samples, either check that it is a routine sample or indicate that it is a repeat or resample

Sample Results:

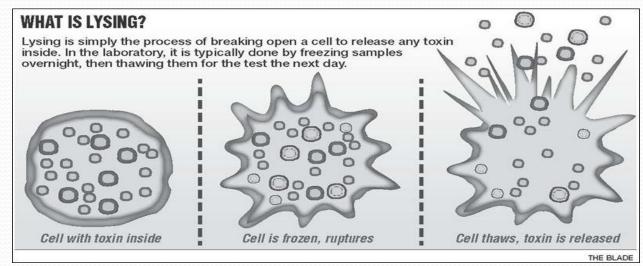
Analyte	Analyte Code	Method Code	Results Sign	Results Value	Results Units	Analytical Lab ID#	Analyst #	Analysis Date	QC Date
Microcystin Total		701.0							

Sample Receipt

- Upon receipt at the laboratory, the following checks will be performed:
 - Temperature must be o-4°C
 - Ice solid ice must still be present or ice packs must still be frozen
 - pH must be 5-11
 - Residual chlorine must be <0.1 mg/L

Sample Receipt

 Sample temperature may be above 4°C only if samples were collected the same day they are received and if ice is present in the cooler


Sample Receipt

- If sample pH is not 5-11, it can be adjusted upon receipt by adding HCl or NaOH
- If sample residual Cl2 is >0.1 mg/L, it can be adjusted upon receipt by adding additional sodium thiosulfate
 - Beginning June 1, 2016, any sample with residual Cl2 >0.1 mg/L will be considered invalid and will require resampling

Sample Analysis

Sample Analysis

- Microcystins can be measured as free or total
 - Free = extracellular
 - Total = intracellular + extracellular
- For total microcystins, cells must be lysed prior to analysis

www.toledoblade.com

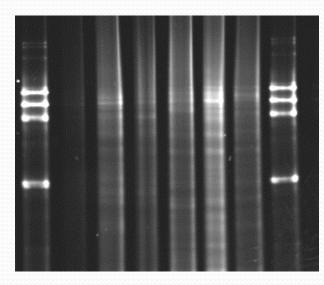
Analytical Methods

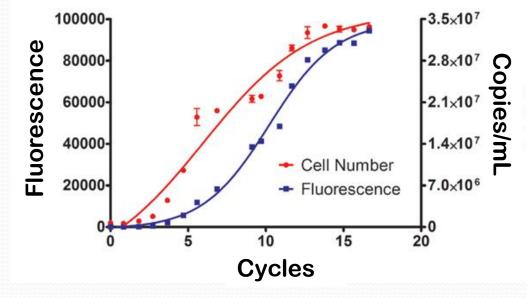
- Quantitative Polymerase Chain Reaction (qPCR)
- Enzyme-Linked Immunosorbent Assays (ELISA)
- Liquid Chromatography with Tandem Mass Spectrophotometry (LC-MS/MS)

qPCR

- Currently no EPA certification program in place
 - All compliance samples must be analyzed by OEPA Division of Environmental Services
- Identifies and quantifies the genes responsible for microcystin production
 - Results reported in number of gene copies per volume of sample (copies/mL)
- Assumes a correlation between number of gene copies and concentration of microcystins

qPCR – Sample Prep


- Cells lysed by adding microbeads to the sample and placing it in a vortex mixer
- Sample centrifuged to remove any particulates
- DNA extracted from the sample
- Reference cultures used to generate standard curves and act as controls


qPCR - Analysis

- Certain genetic sequences are specific to different toxic cyanobacteria
- Those sequences are amplified to be better identified and quantitated
 - Heat is applied separating DNA into 2 separate strands
 - Enzyme is added which builds a copy of the strands using the original strand as a template
- Amplification process is repeated multiple times

qPCR - Analysis

- Copies are measured after each round of amplification using a fluorescent signal
 - Fluorescence is positively correlated to the number of gene copies present

qPCR

Pros

- More sensitive and accurate than identifying and counting cells by microscope
- Able to detect and quantify multiple toxic genotypes
- Able to detect the presence of toxic cyanobacteria even if toxins are absent

Cons

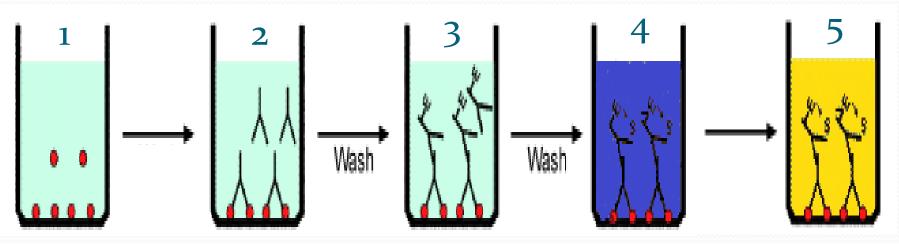
 Cannot determine if toxins are present or quantitate the amount of toxins present

ELISA

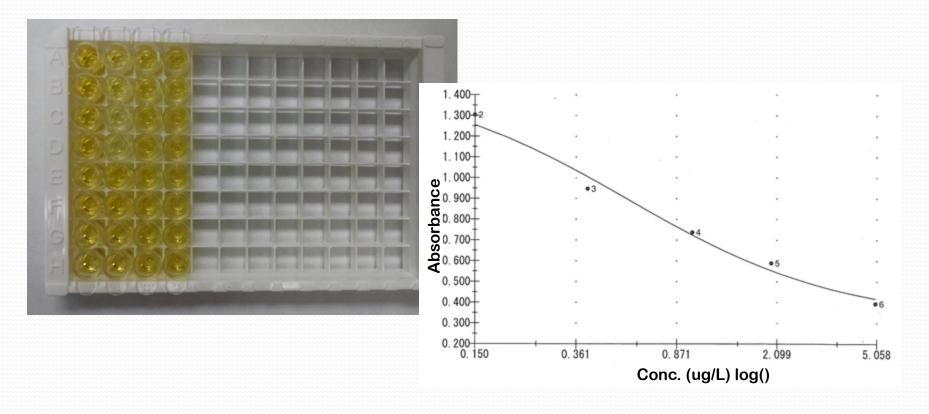
- Ohio EPA Total (Extracellular and Intracellular) Microcystins – ADDA by ELISA Analytical Methodology
- Laboratory approval possible with certification beginning in 2017
- Determines the total concentration of microcystins present
 - Reported as µg/L

ELISA – Sample Prep

- Samples must be stored at o-4°C and must be analyzed within 5 days of collection
- Cells lysed with 3 separate freeze/thaw cycles
- Lysed sample is filtered to remove particulates


ELISA – Sample Analysis

- Microtiter plate wells coated with antigens that only recognize and bind to the specific cyanotoxins being analyzed
 - Abraxis Microcystin–ADDA kit required for analyzing total microcystins
- Detection level of 0.15 μg/L


ELISA – Sample Analysis

- 1. Known standards/samples added with antibody solution to each antigen-coated well
- 2. Toxin and antibodies compete to bind with the antigens
- 3. Enzyme conjugate added which only binds to the antibodies
- 4. Substrate added which reacts with the enzyme and turns blue
- 5. Stop solution added to stop color development and turns blue color to yellow
- 6. Plate is read to determine the absorbance of each well

ELISA – Sample Analysis

• Final color intensity is inversely related to the concentration of total microcystins

ELISA

Pros

- Able to quantify all microcystin congeners
- Relatively inexpensive and easy to use
- Rapid analysis

Cons

- Kits are specific to the type of toxin being analyzed
- Highly sensitive to human error
- Cannot distinguish between different congeners

ELISA

• Cyanotoxin Automated Assay System (CASS)

LC-MS/MS

- EPA Method 544
- Not currently an accepted method for analyzing compliance samples for total microcystins
 - Commonly used to confirm detections from ELISA method
 - Required method for UCMR4
- Detection levels down to 0.0012 to 0.0046 µg/L

LC-MS/MS – Sample Collection

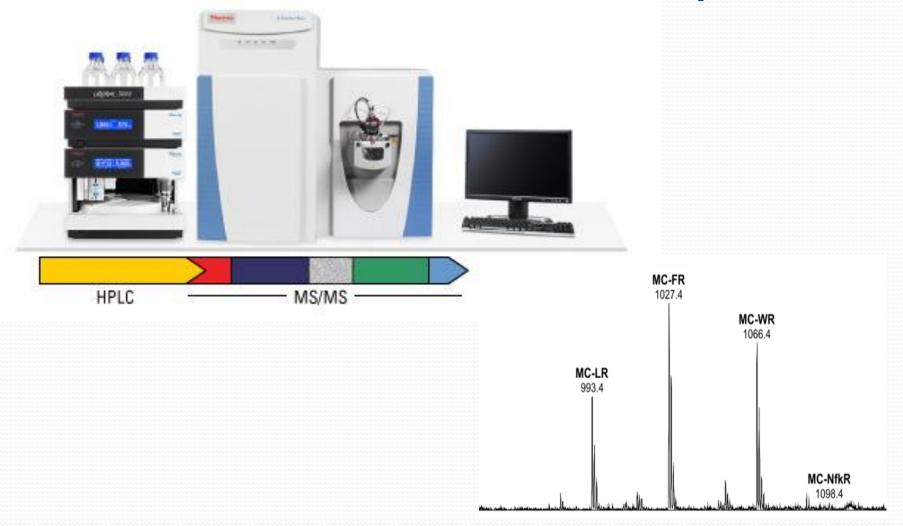
- 500 mL amber glass bottles with teflon-lined caps
- Preservation
 - Trizma buffering reagent agent
 - 2-Chloroacetamide antimicrobial
 - Ascorbic acid dechlorinating agent
 - Ethylenediaminetetraacetic acid trisodium salt inhibits binding of targets to metal
- Samples must be chilled during shipment and must be ≤ 10°C at time of receipt

LC-MS/MS – Sample Prep

- Samples must be stored at ≤ 6°C until extraction and at ≤ -4°C once extracted
- Samples must be extracted within 28 days of collection and analyzed within 28 days after extraction

LC-MS/MS – Sample Prep

• Sample filtered


- Filtrate contains extracellular microcystins
- Intracellular microcystins extracted off the filter and added back to the filtrate
- Sample extracted using solid phase extraction

LC-MS/MS – Sample Analysis

Liquid Chromatography

- Different toxins are separated out along a column based on how well they "stick" to the column
- Mass Spectrophotometry
 - Ions move off the column into the mass detector which separates all ions that have different masses
 - Ions are then fragmented and separated out with the second mass detector

LC-MS/MS – Sample Analysis

LC-MS/MS

Pros

- Low detection levels
- Able to quantify multiple congeners of different cyanotoxins simultaneously
- Minimal matrix interference

Cons

- Requires advanced instrumentation
- Standards only available for a limited number of known congeners

Method Summary

Method	Measures	Units	Approval	Lab Approval
qPCR	Toxin-producing genes	copies/mL	HAB Rule	No
ELISA	Toxins	µg/L	HAB Rule UCMR4	Yes
LC-MS/MS	Toxins	µg/L	UCMR4	Yes

