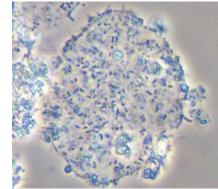
Microscopy of Activated Sludge

Presented By:

Schelby Gabel, Life Sciences Department Manager of Alloway

Activated Sludge Introduction

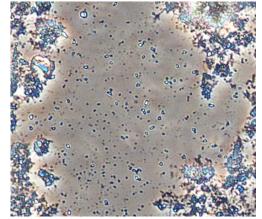
Eikelboom, D.H. (2000). *Process Control of Activated Sludge Plants by Microscopic Investigation.* London, UK: IWA Publishing.



Activated Sludge

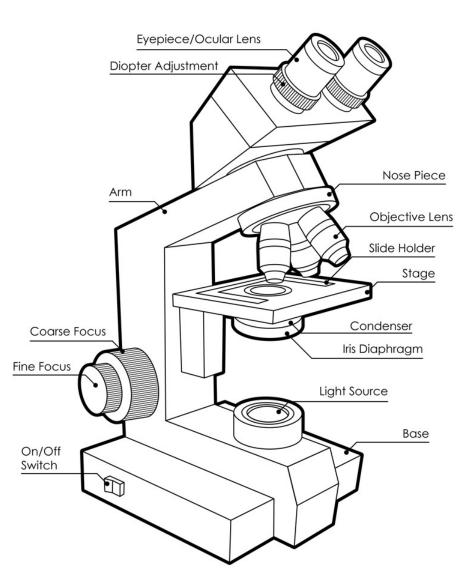
- The activated sludge process is used to treat wastewater.
- It consists of flocs made up of organic/inorganic material and microorganisms.
- Microorganisms, such as bacteria, protozoans, and metazoans, consume and remove the waste from the wastewater.

https://www.watertechonline.com/wastewater/article/15550311/aerated-activated-sludge-basics



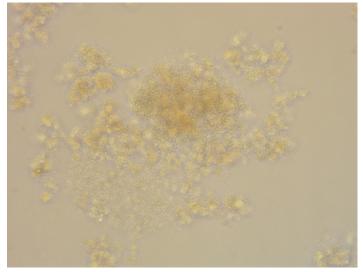
Activated Sludge Biomass

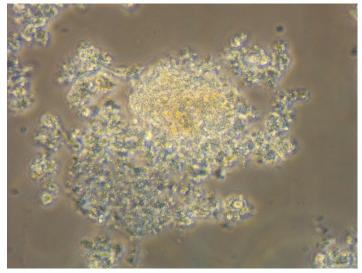
- The composition of a floc's biomass can indicate issues with WWTP operations
 - Filamentous bacteria cause sludge bulking and foaming
 - Spirils indicate lack of oxygen
 - Excess free-living cells do not settle in the final clarifier, negatively impacting final effluent quality
- Microscopic investigation helps identify issues caused by biomass composition


Microscope Basics

Eikelboom, D.H. (2000). *Process Control of Activated Sludge Plants by Microscopic Investigation.* London, UK: IWA Publishing.

Parts of a Microscope


https://line.17qq.com/articles/cwessaahx.html


Microscope Use

- Activated sludge has low contrast
 - Light microscopes with phase contrast should be used to distinguish small differences in the floc

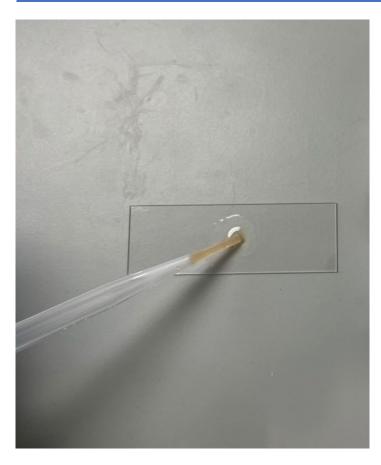
Bright Light

Phase Contrast

Microscope Schematics

Magnification is two-fold

- The eyepiece
 - Usually 10x, but can be 6x, 15x, or 20x
- The objective (lens)
 - Usually 3 or 4 objectives at 10x, 20x, 40x, and 100x
- Eyepiece x Objective = Total magnification
- High magnifications (e.g. 100x objective) require immersion oil to be used between the objective lens and cover slip


Total Magnification: 10x * 20x = **200x**

Slide Preparation – Wet Mount

- Place a drop of the sludge on a glass side, then cover with a cover slip.
- Try to avoid trapping air bubbles under the slip.

Slide Preparation – Fixed Smear

- Place a small drop on the slide.
- Spread drop over the surface of the slide.
- Let slide air dry.

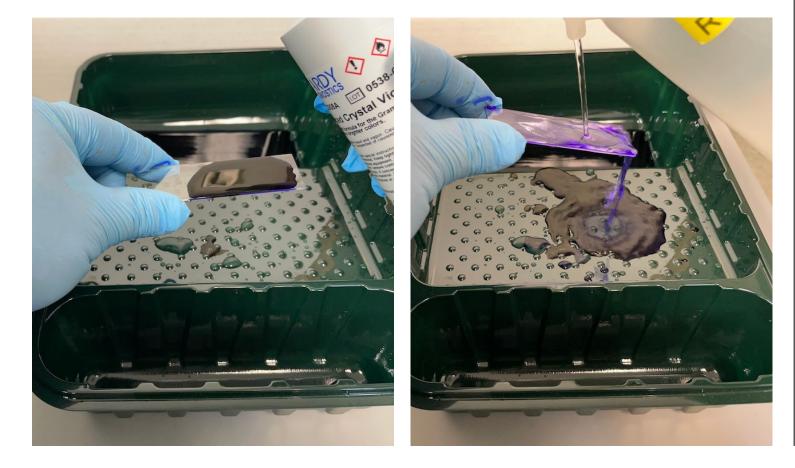
Staining Procedures

Eikelboom, D.H. (2000). *Process Control of Activated Sludge Plants by Microscopic Investigation*. London, UK: IWA Publishing.

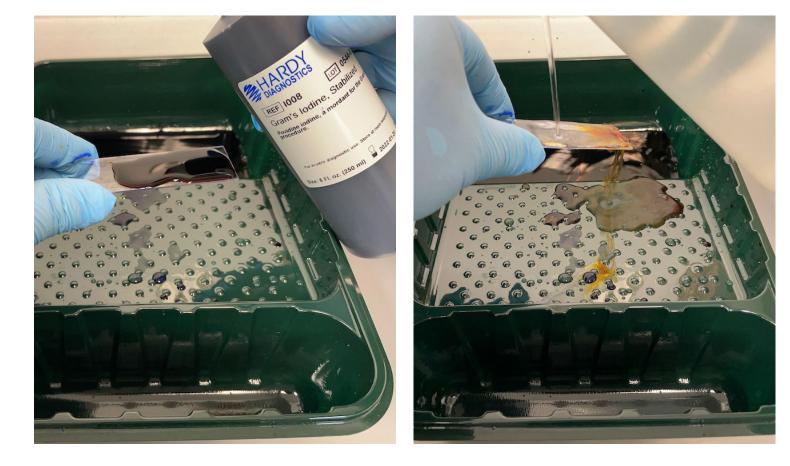
Water Environment Federation (2001). *Wastewater Biology: The Microlife.* Alexandria, VA: Water Environment Federation.

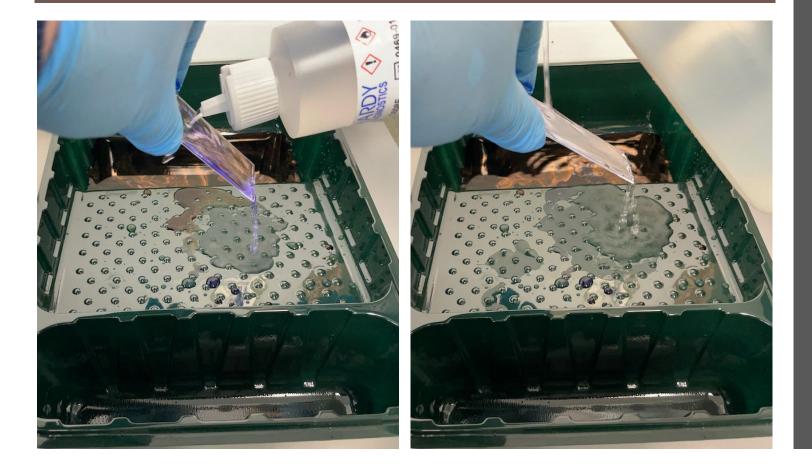
Van Dommelen, J. (2019). *Staining Techniques: Revealing the Hidden*. 2019 Troubleshooting Activated Sludge. OWEA Advanced Activated Sludge Workshop.

Staining Procedures

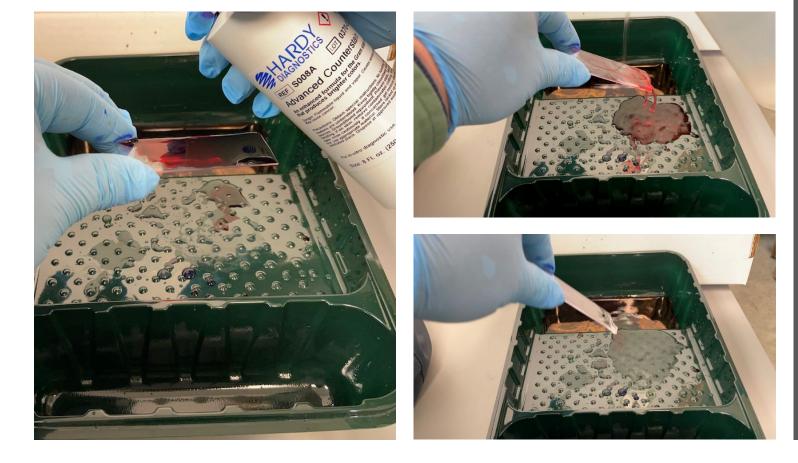

- Two staining procedures aid in the identification of filamentous bacteria:
 - Gram staining
 - Neisser staining
- India ink reverse staining:
 - Allows plants to identify if their activated sludge contains excess extracellular polymeric substances (EPS)
 - Large amounts of EPS can produce non-filamentous viscous bulking, reduced ability to flow, and can cause solids dewatering issues

Gram Staining


- Prepare a fixed smear slide
- The following are needed:
 - Crystal Violet Solution
 - Iodine Solution
 - Decolorizing Solution
 - Safranin Solution (counterstain)

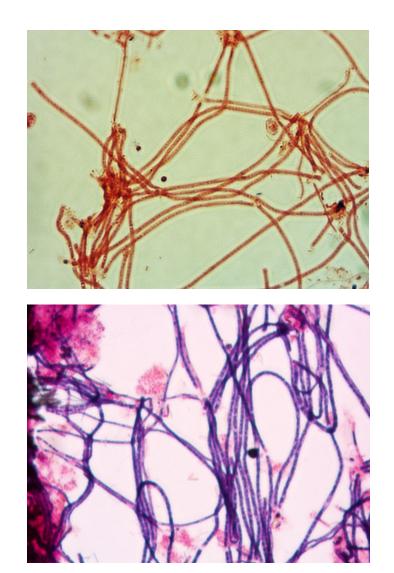

• Crystal Violet

- Flood slide for 1 minute
- Rinse with DI water



• Iodine Solution

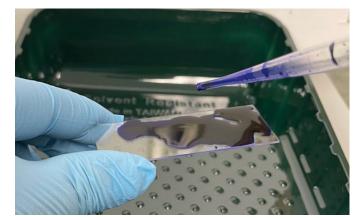
- Flood slide for 1 minute
- Rinse with DI water



- Decolorizing Solution
 - Hold slide at 45
 degrees
 - Apply dropwise until blue color stops rinsing off
 - Blast with DI water to stop reaction
 - Blot dry with paper towel

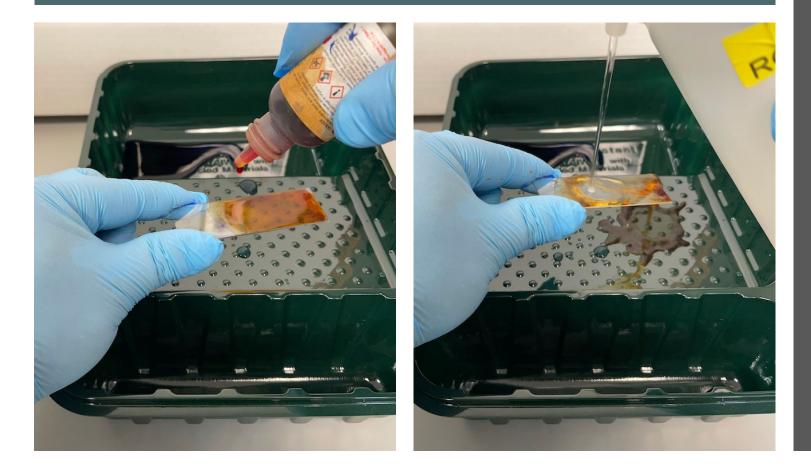
- Safranin Solution
 - Flood slide for 1 minute
 - Rinse with DI water
 - Let air dry

- View slide at 1000x (using oil immersion) under bright light
- Gram negative
 - Stains red
 - Bacteria release the absorbed blue dye during step 3 (decolorizing)
- Gram positive
 - Stains blue
 - Bacteria do not release the blue dye during step 3 (decolorizing)


Neisser Staining


- Prepare a fixed smear slide
- The following are needed:
 - Methylene blue solution
 - Crystal violet solution
 - Bismark brown solution

Neisser Staining – Step 1



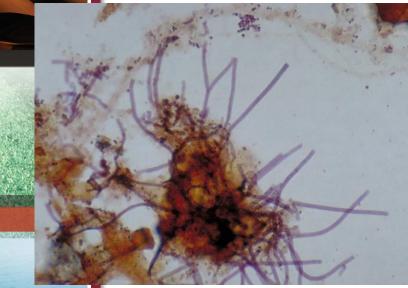
- Mix 2 parts Methylene Blue and 1 part Crystal Violet in a small container
- Flood slide for 30 seconds
- Rinse with DI water

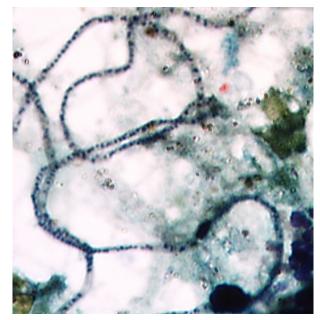
Neisser Staining – Step 2

- Bismark Brown
 Solution:
 - Flood slide for 1 minute
 - Rinse with DI water
 - Blot dry (do not rub)

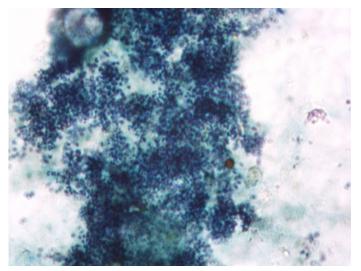
Neisser Staining – Step 3

- View slide at 1000x (using immersion oil) under bright light
- Neisser negative
 - Slightly brown or yellow
- Neisser positive
 - Indicates presence of polyphosphates stored in cells
 - 3 types:
 - 1. Completely gray-violet
 - 2. Blue-black colored globules
 - 3. Colonies of blue-black cells




Neisser Staining – Neisser Positive

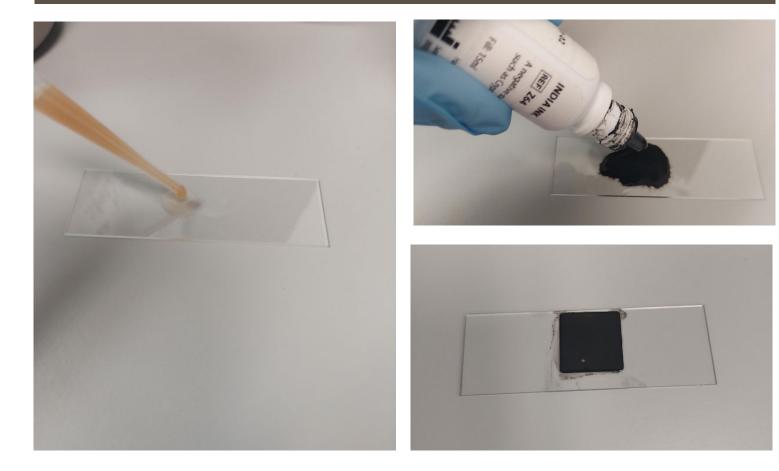
Gray-violet



https://www.asissludge.com/NeisGram.htm

Blue-black colored globules

Colonies of blue-black cells

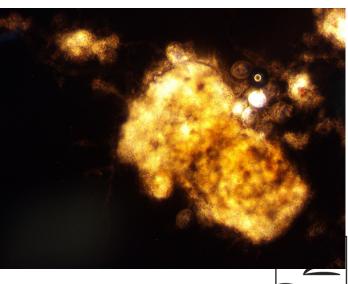


India Ink Reverse Staining

- Prepare a wet mount slide
- The following is needed:
 - India Ink

India Ink Reverse Staining – Step 1

- Mix 1 drop of activated sludge and 1 drop of India ink on slide
- Place cover slip on slide


India Ink Reverse Staining – Step 2

- Observe under phase contrast
- In normal sludge, the ink should penetrate the flocs almost completely, though may leave some clear centers
- In sludge with excess EPS, the ink does not penetrate the floc

Less EPS

https://www.biologicalwasteexpert.com/blo g/india-ink-test-an-easy-way-to-monitorfloc-extracellular-polymers

More EPS

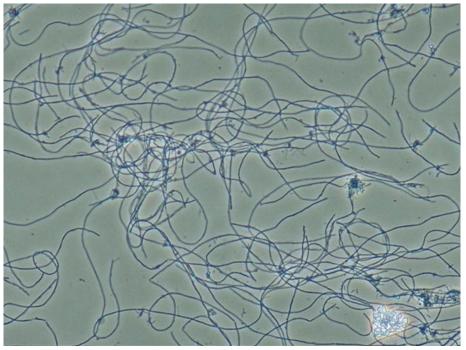
Filamentous Microorganism Identification

Eikelboom, D.H. (2000). *Process Control of Activated Sludge Plants by Microscopic Investigation*. London, UK: IWA Publishing.

Water Environment Federation (2001). *Wastewater Biology: The Microlife.* Alexandria, VA: Water Environment Federation.

Filamentous Organisms

- Filaments are normal occurrences in activated sludge and contribute to the treatment process
- Filaments can be bacteria, fungi, and algae
- Filaments form when:
 - The cells do not detach from each other after cell division, or
 - Detachment is impossible due to the presence of a sheath



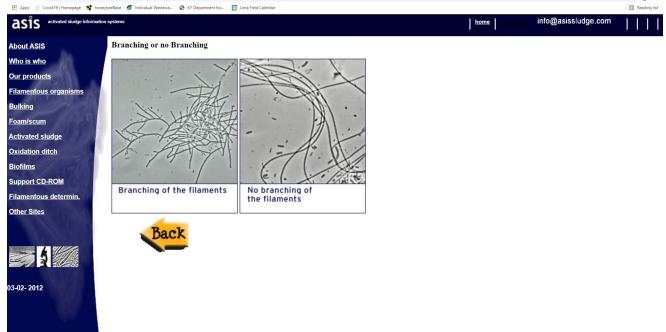
Filamentous Organisms

• Excess filaments can cause:

- Bulking
- Deterioration of settling and dewatering properties of the sludge, and
- Scum formation
- Identification of filamentous organisms can aid in troubleshooting and resolving process conditions
- Methods to control sludge issues can be dependent upon which filamentous species is present in the sludge
 - E.g. the presence of *Microthrix parvicella*, a filament that causes bulking and scum formation, can often be controlled by dosing with Aluminum salts

https://www.asissludge.com/Scripts/F22211210.htm

Filamentous Identification


- 11 Characteristics are used to identify filamentous microorganisms
 - 1. Mobility
 - 2. Branching
 - 3. Filament Shape
 - 4. Attached growth
 - 5. Filament diameter
 - 6. Septa or transverse walls
 - 7. Cell shape
 - 8. Sheath
 - 9. Granules
 - 10. Gram staining results
 - 11. Neisser staining results

Filamentous Identification

- There are several tables and flow charts that can be used to aid in filamentous identification
 - The next 3 slides are tables and flow charts discussed in the book *Process Control of Activated Sludge Plants by Microscopic Investigation* (Eikelboom, 2000).
- <u>https://www.asissludge.com/</u> also provides a free interactive identification key

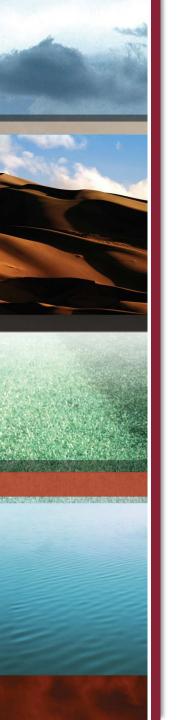
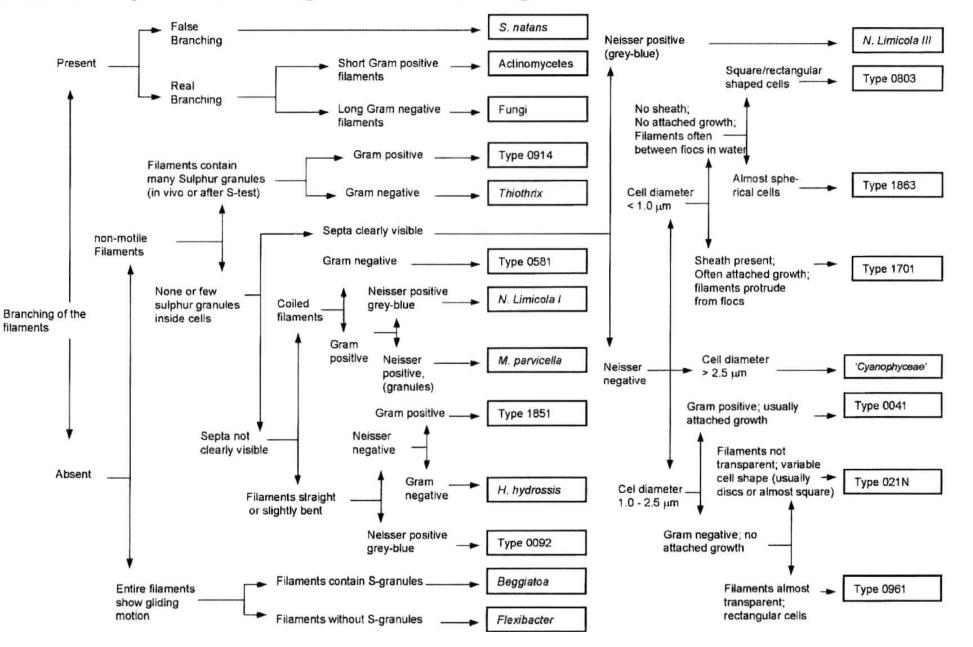
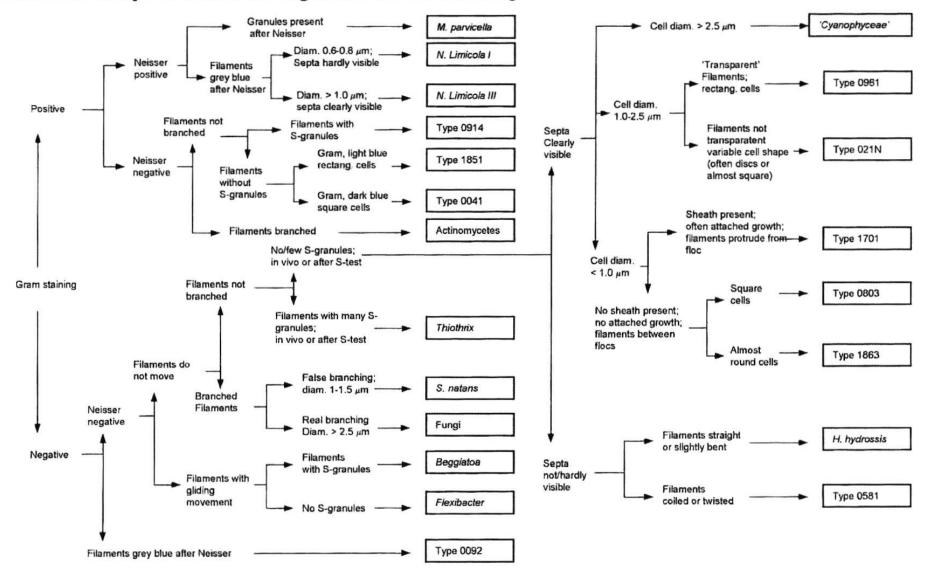


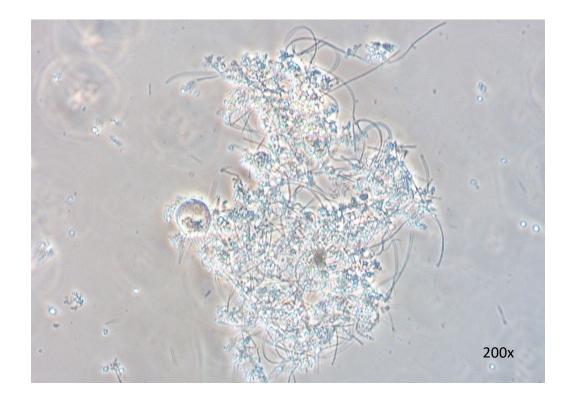
Table 1 Characteristics of the filamentous micro-organisms included in the identification key


		Phase contrast microscopy														Bright-field Microscopy			
			Filament shape						diameter cells					S-granules in cells		Gram stain		Neisser stain	
		Motion																	
	Branching		straight or somewhat bent	Coiled or twisted	Filament length < 200 μm	Attached growth	Sheath present	Septa clearly visible	< 1.0 µm	1.0-2.5 µm	>2.5 µm	Cell shape square or rectangular	Cell shape round, disc or rod	In vivo	After Sulphur test	Positive	Negative	Positive	Negative
Actinomycetes	+			+	+				+			æ	œ			+		±	+
Beggiatoa		+	+		±				+	+	+	8	œ	+			+		+
Cyanophyceae			+				±	+			+	+	+			+	+		+
H.hydrossis	1		+		+		+		+			æ	8				+		+
Flexibacter		+	+		+			±	+			00	æ				+		+
M.parvicella				+	+				+			00	8			+		+6)	
N.limicola I				+	±			±	+				+			+		+7)	
N.limicola III				+	±			+	+	+		1	+			+	9)	+7)	9)
Fungi	+		+					+		+	+	+				4)	4)		+
S. natans	+ 1)		+			±	+	+		+			+				+		+
Thiotrix	2)		+		±		±	+3)	+	+		+3)	+3)	±	+		+		+
Туре 0041			+		±	+	+	+	+	+		+				+			+
Туре 0092			+		+				+			8	00				+	+7)	
Type 021N			+		±			+	±	+		+	+		± ⁸⁾		+		+
Туре 0581				+	+				+			8	8				+		+
Туре 0803			+		+			+	+			+				±	+		+
Type 0914			+		+			+3)	+			+3)		+		+			+
Type 0961			+					+		+		+					+		+
Туре 1701			+		+	+	+	+	+				+				+		+
Type 1851	1		+		±	+	+		+	1		00	8					+5)	+
Туре 1863	1		T	+	+	T		+	+			1	+				+		+

 \pm = sometimes; ∞ = cell shape can not be discerned with phase contrast ;1) False branching ; 2) Sometimes rosettes; 3) Cells can be discerned after S-globules are dissolved ; 4) Fungi can not be stained with this method ; 5) light blue ; 6) granules ; 7) filaments stain grey blue ; 8) small granules ; 9) Gram and Neisser negative species exist too.

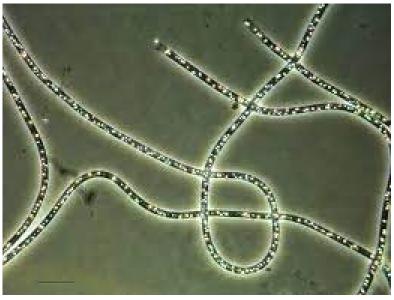


Identification key 1 of filamentous organisms in activated sludge


Identification key 2 of filamentous organisms in activated sludge

Case Study

- A local industrial plant's activated sludge had issues with bulking and settling
- The sludge also contained a lot of filaments
- The 11 filamentous characteristics were examined to identify the most prominent filament in the sludge



Identification 1 - Mobility

- Some filaments have a "gliding movement", resembling how a worm moves itself
- Filamentous bacteria *Beggiatoa* and *Flexibacter* are known to do this

Beggiatoa leptomitoformis

https://www.microbiologyresearch.org/docserver/fulltext/ijsem/67/2/197_ijsem001584 .pdf?expires=1618867469&id=id&accname=guest&checksum=9ADA4A3E92CFD4A2CC7E C94A863AA794

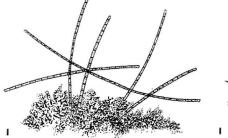
- Case Study:
 - Did the filaments move?
 - No

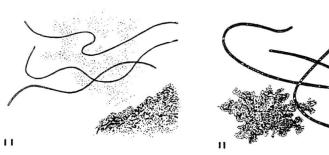
Identification 2 – Branching

- Real branching: the side shoot sprouts from the main branch and grows in 2 directions
 - Actinomycetes and fungi

- False branching: a sheathed filament has free-living cells (swarming cells) that attach to the sheath and develop into side shoots through cell division
 - Sphaerotilus natans and Type 1701

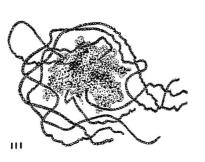
- Case Study:
 - Did the filaments branch?
 - No





Identification 3 – Filament Shape

- Three groups of shape:
 - Straight
 - Bowed/bent
 - Twisted/coiled
- Straight filaments can still be somewhat bent, especially if they are long



- Case Study:
 - What shape are the filaments?
 - Straight/bent

111


Figure 40 Shape of the filaments I: straight filaments II: bent filaments III: twisted filaments.

Identification 4 – Attached Growth

 Attached growth – Cells or particles of floc attached to the filament's sheath

- Case Study:
 - *Is there attached growth?*
 - No

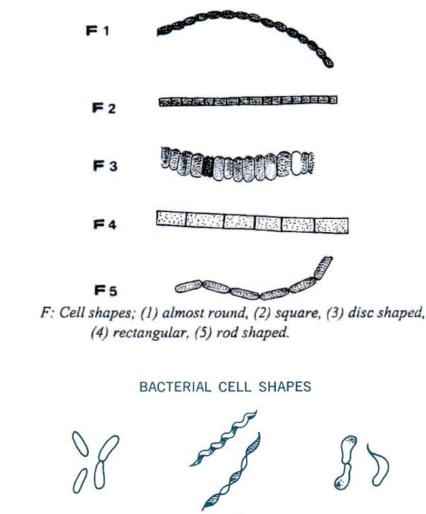
Identification 5 – Filament diameter

- To measure, must have:
 - Micrometer in one of the oculars
 - Microscope camera connected to a computer program
 - AmScope
 - 25um
- Three groups:
 - Diameter < 1 µm
 - Diameter 1 2.5 μm
 - Diameter > 2.5 µm
- For some filaments, diameter can decrease towards the tip of the filament
 - Type 021N and *Thiothrix*

- Case Study:
 - What is the diameter?
 1 2.5 µm

Identification 6 – Septa or Transverse Walls

- Transverse walls or septa
 - Walls between the consecutive cells of the filament
- Two distinctions:
 - Clearly visible
 - Poorly visible/invisible


- Case Study:
 - Are septa visible?
 - Yes

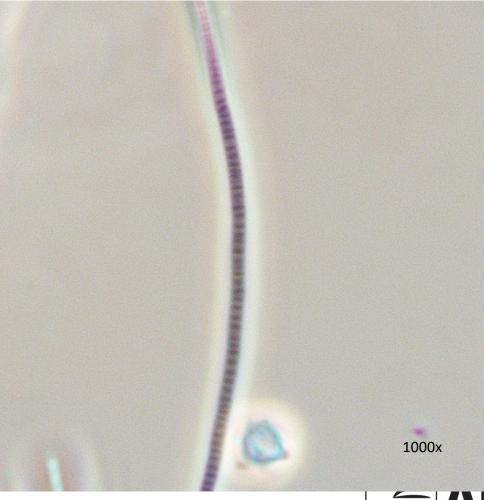
Identification 7 – Cell Shape

- Cell shape distinctions:
 - Spherical or coccus
 - Approximately round
 - Baccilus
 - Rod shaped
 - Square
 - Disc shaped
 - Rectangular
 - Spiral shaped
 - The length of the cells are much greater than cell diameter
 - Spirils and Spirochaetes
 - Vibrio shaped
 - Cells are somewhat bowed

Round or Cocci

a

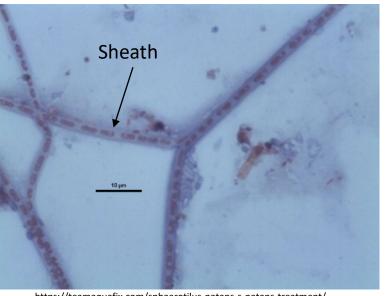
Rod or Baccilli Spiral or Spirilli


Comma or Vibrios

https://emilybiologyinteractivenotebook.wordpress.com/2012/08/05/entry-8-cell-tissue-organ-system-organism/

Identification 7 – Cell Shape

- Case Study:
 - What is the cell shape?
 - Disc shaped/square

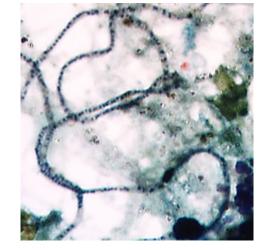


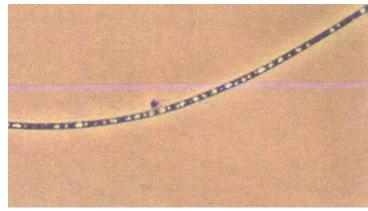
Identification 8 - Sheath

- Some filamentous species are surrounded by a transparent cover (sheath)
 - Difficult to see with a light microscope
 - Can sometime tell after gram staining
 - A lot of attached growth can indicate sheath presence

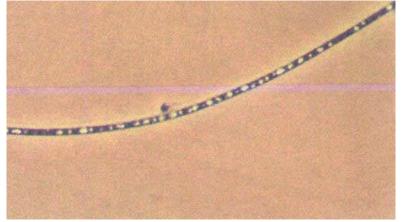
https://teamaquafix.com/sphaerotilus-natans-s-natans-treatment/

- Case Study:
 - Is sheath present?
 - Unable to determine


Identification 9 - Granules


- Granules globules of storage material in the cells
 - Polyphosphate granules
 - Visible via Neisser staining
 - Sulfur granules
 - Other storage materials

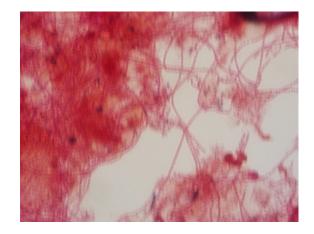
- Granules present?
 - No



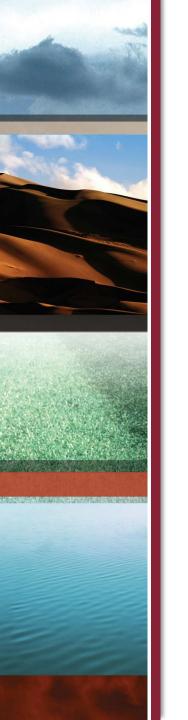
Jenkens, D., Richard, M.G. and Daigger, G.T. (2004). *Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems.* 3rd ed.. Boca Raton, FL: CRC Press LLC.

Sulfur Storage Test

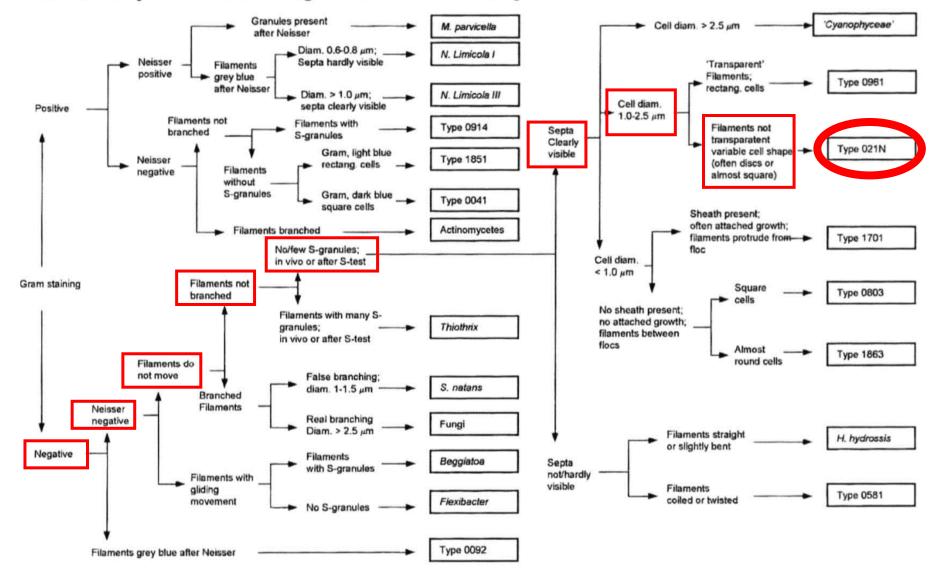
- Make solution:
 - 0.1 g Sodium Sulfide (Na₂S·9H₂O)
 - 100 mL Distilled water
- Procedure:
 - Mix one drop of sludge with one drop of sodium sulfide solution on a slide
 - Let stand to open air for 10 20 minutes
 - Place coverslip on slide
 - Examine under 1000x (oil immersion) with phase contrast
 - If positive, granules will be highly refractive and yellow-colored



Jenkens, D., Richard, M.G. and Daigger, G.T. (2004). *Manual on the Causes and Control of Activated Sludge* Bulking, Foaming, and Other Solids Separation Problems. 3rd ed.. Boca Raton, FL: CRC Press LLC.


Identification 10 & 11 – Gram & Neisser Staining Results

- Case Study:
 - Gram stain?
 - Negative
 - Neisser stain?
 - Negative



Identification key 2 of filamentous organisms in activated sludge

Identification: Type 021N

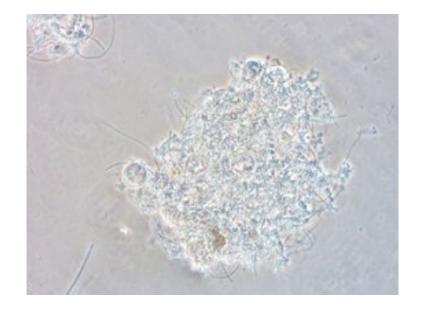
- The sludge predominately contained Type 021N filaments
 - Related to *Thiothrix*
 - Common in activated sludge
 - Fast growing, aerobic species
 - Growth: stimulated by unbalanced influent nutrient composition (lacking N, P, etc.) and low oxygen concentrations in aeration tank
 - Causes bulking
 - Control strategies:
 - Good housekeeping
 - Remove deficiencies: O2 > 2 mg/L and BOD:N:P = 100:5:1
 - Do a two step configuration:
 - Aerobic/aerobic or anaerobic/aerobic
 - Removes easily degradable influent fraction before it enters aeration tank
 - Control symptoms
 - Apply physical and chemical methods used to destroy filaments or improve settling velocity of floc by increasing weight

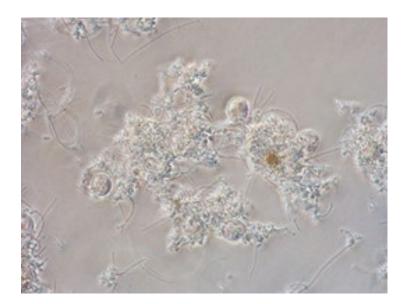
https://www.asissludge.com/pdf/Thiothrix21n.pdf

Activated Sludge Evaluation

Eikelboom, D.H. (2000). *Process Control of Activated Sludge Plants by Microscopic Investigation.* London, UK: IWA Publishing.

Activated Sludge Evaluation

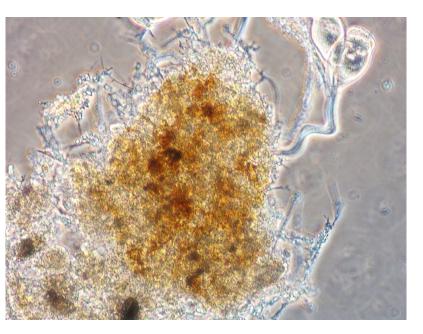

- To evaluate the condition of a plant's activated sludge, factors other than filament identification are considered
 - Floc Shape
 - Floc Structure
 - Floc Strength
 - Floc Size
 - Floc Diversity
 - Free-living cells
 - Spirochaetes/Spirils
 - Filament Index
 - Protozoa and Metazoa

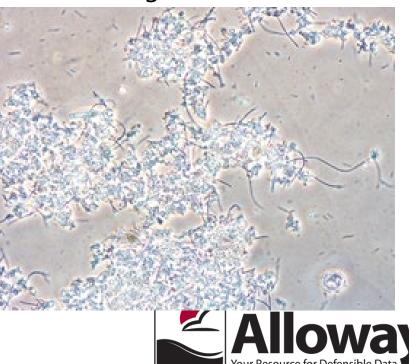


Floc Shape

- Floc shape is characterized as:
 - Round

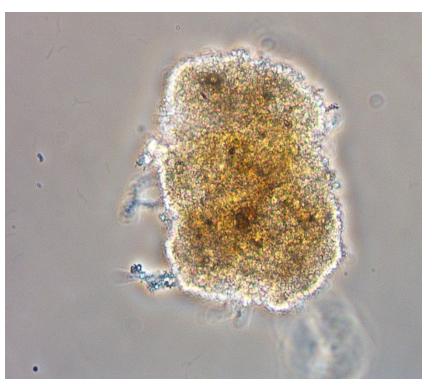
- Irregularly shaped
 - Can reduce settling velocity

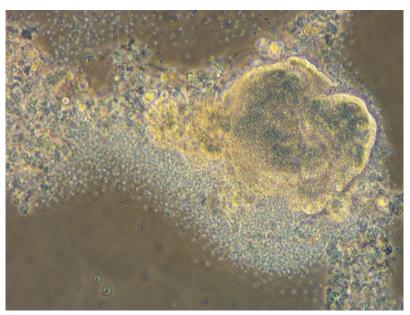




Floc Structure

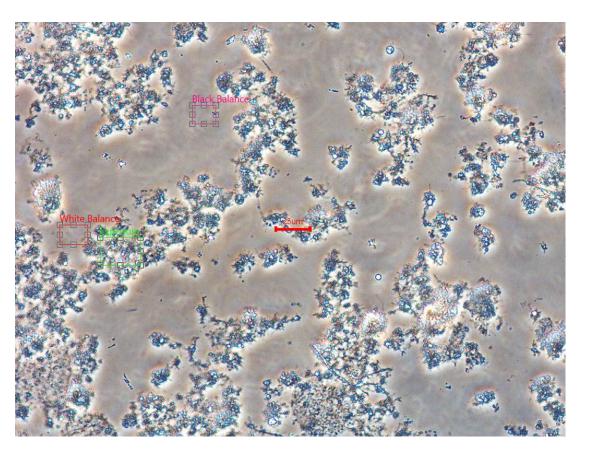
- Compact flocs
 - Bacteria are stacked close to one another
 - Floc is mostly brown
 - Settles faster


- Open flocs
 - Water can flow through the floc particles
 - Slow setting



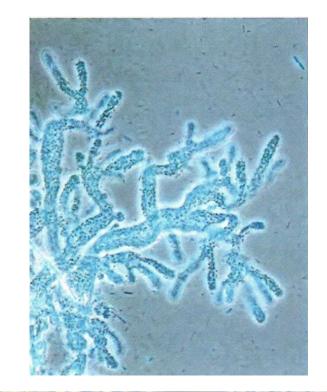
Floc Strength

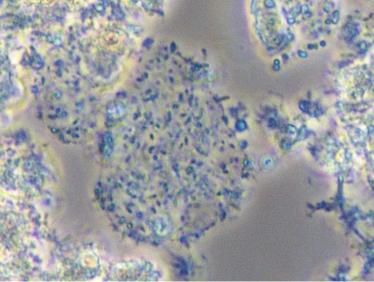
- Firm
 - The floc and surrounding liquid are separated
 - Low loaded influent



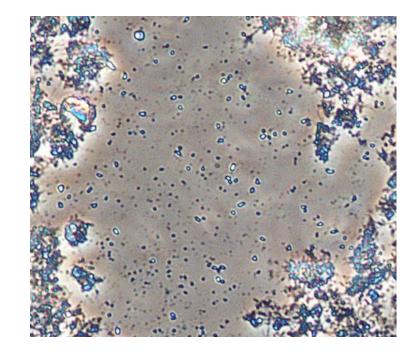
- Weak
 - Little definition from surrounding liquid
 - Free cells at edges of floc
 - High loaded influent
 - Flocs can be easily damaged

Floc Size


- Three size classes:
 - Small flocs
 - Diameter < 25 µm
 - Medium flocs
 - Diameter 25-250 µm
 - Large flocs
 - Diameter > 250 µm
- Large flocs settle more quickly
- A high percentage of small flocs (>25%) can result in sludge being discharged with the effluent
 - Can be caused by:
 - Highly turbulent diffusion
 - Low sludge load
 - Aluminum salts
 - Toxicity

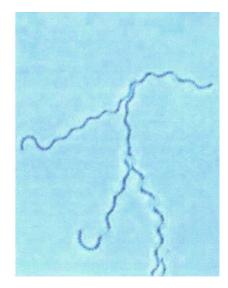


Floc Diversity


- Low diversity of microorganisms
 - Can make a plant more vulnerable in the event of a plant upset
 - Occurs in high loaded treatment plants fed with an unbalanced influent
- Higher diversity allows other microorganisms to perform functions primarily performed by bacteria that may have died during a plant upset
- Monocolonies
 - Conglomerates of one type of bacteria held together by a slime matrix
 - Some monocolonies are indicative of nutrient shortages and high sludge loads
 - Zoogloea colonies
 - Monocolonies with a thick slime matrix

Free-Living Cells

- Cells that are not bound to the floc
- Do not settle in the final clarifier
 - Excess free-living cells can affect final effluent quality
- Indicative of high loading levels or low oxygen levels



Spirochaetes/Spirils

Spirils

- One coil with bowed cells
- Corkscrew-like movements
- Spirochaetes
 - Two coils one short and one long
 - "Wriggle" movements
- Both indicate lack of oxygen in the plant

The Filament Index

- A measure of the filamentous organisms in activated sludge
- Scale of 0 5 (0 being absent and 5 being very prevalent)
- Compare the sludge to the series of reference photos
- Filament Index (FI) of 1 to 2:
 - Effect on settling velocity is slight
- FI of 3
 - Settling properties noticeably deteriorate
- Sludge bulking often occurs at higher FI

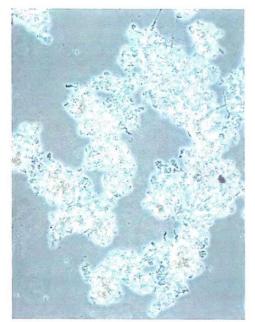
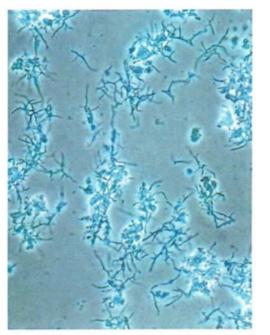



Figure 29 FI = 0 (150 x).

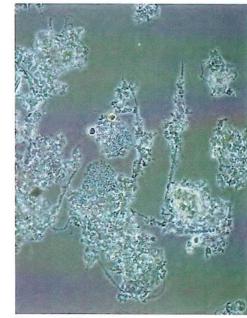


Figure 30 FI = 1 (150 x).

Figure 35 FI =4; robust filaments (150 x).



Figure 31 FI = 2; robust filaments (150 x).

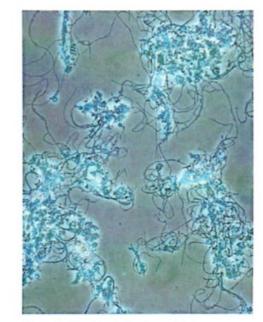


Figure 36 FI = 4; thin filaments (300×).

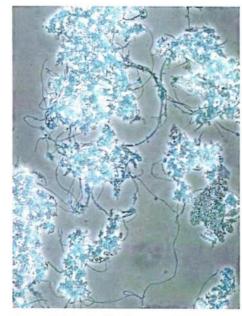


Figure 32 FI = 2; thin filaments (300 x).

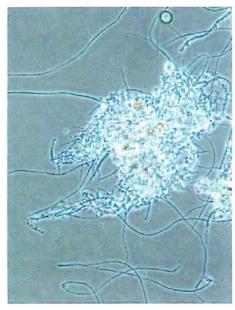


Figure 33 FI = 3; robust filaments (150 x).

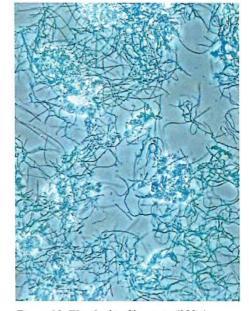
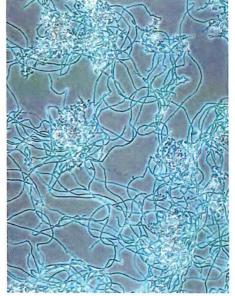


Figure 38 FI = 5; thin filaments (300 x).



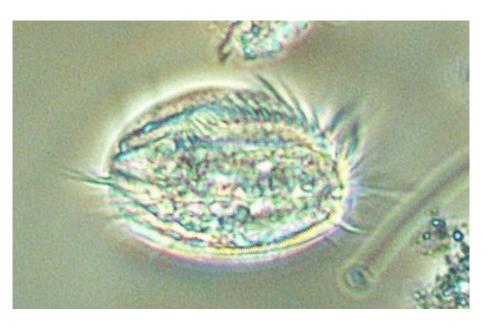
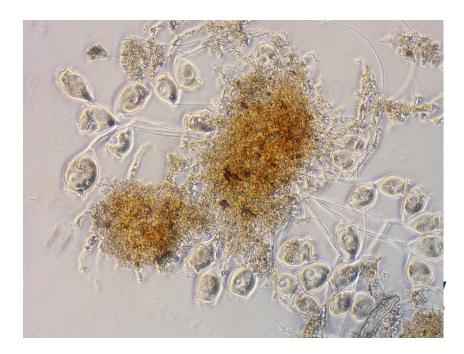

Figure 37 FI =5; robust filaments (150×).

Figure 34 FI = 3; thin filaments (300×).



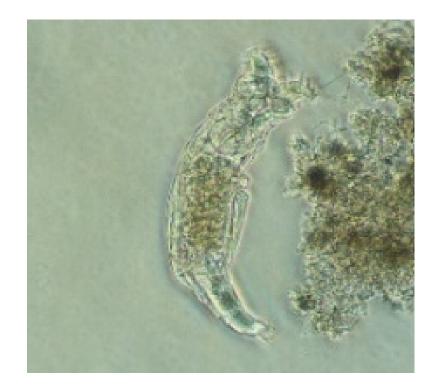
Protozoans

- Free swimming ciliates
 - Move freely within the sludge
 - Have vibrating hairs (cilia)
 - Population size correlates to sludge load

- Stalked Ciliates
 - Positioned on a stem
 - Have vibrating hairs (cilia)
 - Population size correlates to sludge load

Protozoans

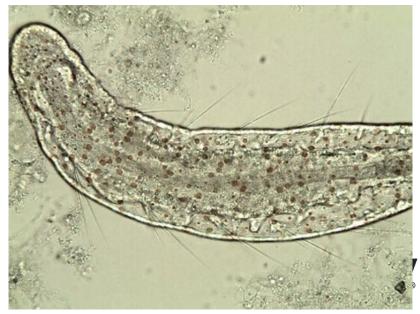
- Flagellates
 - Possess one or more flagella
 - Indicates high sludge loads
 - Rapid movements
 - Smaller than ciliates



- Amoeba
 - Constantly changing shape (flexible cell membrane)
 - Move very slowly with pseudopodia
 - Indicates high sludge loads and oxygen shortages

Metazoans

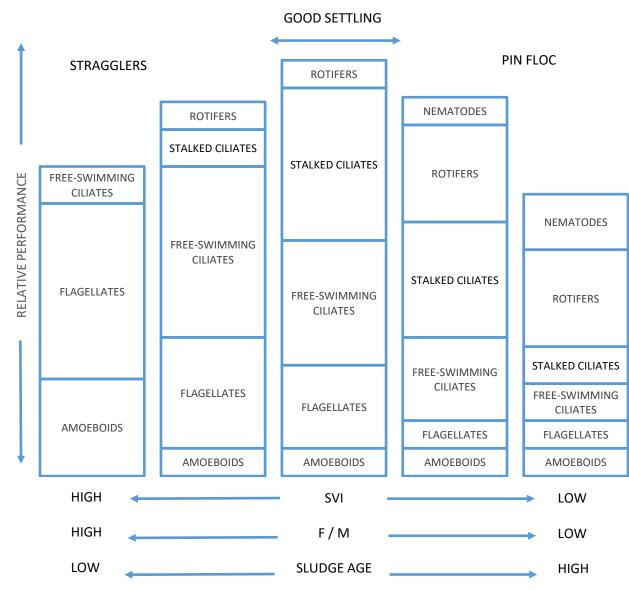
- Rotifers
 - Elongated with branched tail
 - Uses it to move
 - Attaches itself to the substrate, stretches its body, then releases its tail
 - Have cilia on their head
 - Creates a current to bring particles to their mouth
 - Their "jaws" allow them to break particles filtered from the water
 - Indicates low sludge loads



Metazoans

- Nematodes
 - Elongated, cylindrical, and flexible bodies
 - Regularly observed in low sludge loads

- Worms
 - Largest organisms that can be observed during microscopic exam
 - Indicates old sludge


https://www.environmentalleverage.com/Flash%20wastewater%20training/Worms/slides,

Sludge Quality Characterization

- First, rate the presence of the following on a scale of 0-3 (0 = absent, 3 = very prevalent)
 - Free-living cells
 - Spirils/spirochaetes
 - Ciliates
 - Flagellates
 - Amoebas
- Then, compare results of examination to the table
- If one criteria is moderate and the rest are good, the sludge is considered "good"
- If 2-3 criteria are moderate, then the sludge is considered "moderate"
- If most criteria are considered moderate or there is one criteria that is poor, then the sludge is considered "poor"

	Good	Moderate	Poor
Filament Index	< 3	3 – 4	4 – 5
Free-living cells	0-1	2 – 3	3
Spirils	0	1	≥ 2
Ciliates	> 1	< 1	0
Flagellates / Amoeba	0	1 – 2	≥ 3
% Flocs > 25 μm	> 80 to 90	> 50 to 70	≤ 50
Floc structure	Compact	Open	-
Floc strength	Robust	Weak	-
Floc shape	Rounded	Irregular	-

Resources

- The following resources aid in the microscopic examination process and also provide insight on operation controls and troubleshooting
 - Eikelboom, D.H. (2000). Process Control of • Activated Sludge Plants by Microscopic Investigation. London, UK: IWA Publishing.
 - Water Environment Federation (2001). Wastewater Biology: The Microlife. Alexandria, VA: Water Environment Federation.
 - Jenkens, D., Richard, M.G. and Daigger, G.T. • (2004). Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems. 3rd ed. Boca Raton, FL: CRC Press LLC.

Water Environmen

ederation

Thank you!

Schelby Gabel schelby.gabel@alloway.com Phone: 419-223-1362

