

Operate With Efficiency & Confidence.

Technology & Asset Management What's in it for me?

Presenter: Forrest Cooper

American Civil Engineer's Report Card

INFRASTRUCTURE GRADES FOR 2013

Why is Technology Important?

- Throughout time civilizations have created tools to make their jobs easier and accomplish amazing tasks.
- Can technology now give us a "mechanical advantage"?

The Velocity of Technology

- Moore's Law Computer processing speed doubles every 18 months.
- 80% of the world's population owns a mobile phone.
- 90% of adults have their phone within arms reach at all times.

What is the Internet of Things?

- The Internet of Things is a network of sensors and data collection instruments that are connected to the Internet.
- Data from these devices is collected and streamed directly to the cloud.
- Monitoring temperature, vibration, humidity/moisture etc.
- Specify peramaters in your cmms to automatically alert you to issues.
- Result = A new era of 'truly' predictive maintenance

Where do we start?

Baseline Defined:

- 1. A minimum starting point used for comparisons.
- 2. (in baseball, football, etc.) the line marking the end of the field of play.

How Do We Get a Baseline?

- Condition of our facilities and grounds.
- Inventory, condition, and life expectancy of our assets.
- Risk value associated with losing a system or asset.
- Effectiveness and productivity of our corrective work order process.
- Effectiveness and productivity of our PM process.

What Does Success Look Like?

- Gathering a baseline understanding of Conditions, Needs, Deferred Maintenance, Life Cycle, and needed staffing resources for RM & PM.
- Is our **Planned Maintenance** program effective?
- Risk Assessment Are we serious about Life Safety?
- Risk Assessment Are we in a **Run-To-Fail** mentality?

RISK MANAGER

Prioritize

- Based on what we know from assessment.
- Placing a value on needs (Repair vs. Replace, sustainability projects).
- Placing a value on the risk of inaction (Emergency repair costs, workers comp, liability, lost productivity)
- Implementing a scoring system to establish a high-to-low priority for projects.

Plan & Execute

• Plan

- Timeline
- **Execute** (this is where most begin to struggle)

Maintain!

- The most challenging part of the A.P.P.E.M model, and the point where most long-term plans fail.
- Maintaining RM & PM while balancing capital projects.
- Documentation (aka Data) needed to continually re-assess moving forward.

Why Does Maintain Fail?

- Maintain means more than maintenance.
- Capital planning & risk management require Data.
- Data requires documentation.
- Documentation requires accuracy.
- Accuracy requires ease of use.

Documentation

- Documentation is not fun...but it is necessary.
- For centuries only few have chosen to document critical data due to complexity.
- Leverage technology to make documentation simple.

What Does Documentation Get Me?

- Data
- Compliance
- Safety
- Risk Mitigation
- Justification of Needs

What Is Data?

I'm Confused....What is Data?

da•ta /ˈdadə,ˈdādə/

noun

facts and statistics collected together for reference or analysis. synonyms: facts, figures, statistics, details, particulars, specifics; More

COMPUTING

the quantities, characters, or symbols on which operations are performed by a computer, being stored and transmitted in the form of electrical signals and recorded on magnetic, optical, or mechanical recording media.

PHILOSOPHY

things known or assumed as facts, making the basis of reasoning or calculation.

Dashboard: Work Summary

Dashboard: Equipment Stats

Key Performance Indicators (KPIs)

What Does Data Look Like?

Equipment Expenditures Summary

Dudeville

All Dates Selected

Classification: *WASTEWATER

Type: GRINDER

	Maintenance Costs							Preventive Maintenance Costs					
Item Number Description		Labor Hrs	Labor Costs	Material Costs	Sales Tax	Total Costs	% Cost	Labor Hrs	Labor Costs	Material Costs	Sales Tax	Total Costs	% Cost
SG-MM001 Sewage Grinder		0	\$0.00	\$0.00	\$0.00	\$0.00	0%	8	\$189.73	\$0.00	\$0.00	\$189.73	100.00%
	GRINDER Total	s 0	\$0.00	\$0.00	\$0.00	\$0.00	0%	8	\$189.73	\$0.00	\$0.00	\$189.73	100.00%

Type: PUMP MOTOR

	Maintenance Costs							Preventive Maintenance Costs						
Item Number Description	Labor Hrs	Labor Costs	Material Costs	Sales Tax	Total Costs	% Cost	Labor Hrs	Labor Costs	Material Costs	Sales Tax	Total Costs	% Cost		
DWP-546717 DRY WELL RETENTION BASIN	9.2399 FLUSHING P	\$248.45 UMP	\$72.00	\$0.00	\$320.45	100.00%	0	\$0.00	\$0.00	\$0.00	\$0.00	0%		
DWPM-89795 DRY WELL PUMP MOTOR	1	\$25.00	\$50.00	\$0.00	\$75.00	100.00%	0	\$0.00	\$0.00	\$0.00	\$0.00	0%		
PM-WEM58489 WEMCO Pump Motor	3.0099	\$84.05	\$15.00	\$0.00	\$99.05	55.71%	2.75	\$78.75	\$0.00	\$0.00	\$78.75	44.29%		
PUMP MOTOR	Totals13.249	\$357.50	\$137.00	\$0.00	\$494.50	86.26%	2.75	\$78.75	\$0.00	\$0.00	\$78.75	13.74%		

Type: PUMPS

	Maintenance Costs						Preventive Maintenance Costs						
Item Number Description	Labor Hrs	Labor Costs	Material Costs	Sales Tax	Total Costs	% Cost	Labor Hrs	Labor Costs	Material Costs	Sales Tax	Total Costs	% Cost	
DWP-235J4 DRY WELL PUMP	0.25	\$4.54	\$48.95	\$0.00	\$53.49	100.00%	0	\$0.00	\$0.00	\$0.00	\$0.00	0%	
GP-1354 GRIT PUMP #1	0	\$0.00	\$0.00	\$0.00	\$0.00	0%	0.4199	\$12.60	\$0.00	\$0.00	\$12.60	<mark>99.99%</mark>	

Data Driven Decisions-Equipment

Cost Impact of Consistent Preventative Maintenance

Lower cost per work order with the average cost per work order

Rate of Emergency Work

Rate of Emergencies Average for Group	Rate of Emergencies for PM Masters	Reduction in Emergencies PM Master Group
1.89%	0.67%	64.5% 🖊
1 out of 53 work orders	1 out of 147 work orders	In emergency work orders

Jones Lang LaSalle PM ROI Study

Developed a Financial Model

Equipment	EUL (Years)	EUL Degradation	PM Cost	RM Cost	Energy Efficiency Degradation	Replacement Cost
Air compressor	20	20%	\$472	\$236	35%	\$4,700/HP
Air handler	20	20%	\$501	\$193	50%	\$1/cfm
Boilers	30	20%	\$691	\$2,121	7%	\$20/MBH
Centrifugal chillers	23	36%	\$5,500	0	23%	\$1,000/ton
Reciprocating chillers	20	36%	\$4,400	0	23%	\$1,000/ton
Cooling towers	20	20%	\$300	0	35%(chiller efficiency)	\$90/ton
Condensers (air cooled)	20	20%	\$204	\$188	30%	\$290/ton
DX units	15	50%	\$200	\$1,600	20%	\$1,200/ton
Early-warning fire detection (EWFD) systems	15	20%	\$534	0	N/A	\$150/detector
Centrifugal pumps	20	20%	\$102	\$891	N/A	\$2,110/hp
Fire pumps	20	20%	\$1,650	\$891	N/A	\$40,000
Switchgear	30	10%	\$27	\$21	N/A	\$11,000
Parking lots	100	90%	\$0.07/sf	0	N/A	\$2.46/sf
Roofs	20	25%	\$0.12/sf	0	N/A	\$10/sf
Weatherproofing	75	50%	\$0.33/sf	0	N/A	\$18/sf

DUDE SOLUTIONS SchoolDude | FacilityDude | TheWorxHub

10 Year Old Compressor 25 Year Outlook

7HP Compressor \$472/yr PM Maintenance \$944 AVG/Major Failure \$32,900 Replacement Cost

With a PM Program

- 20 year lifespan
- Repair every 4 years
- \$472/yr in PM work
- Replaced in year 10
- After 25 years = \$50,600

Without a PM Program

- 16 year lifespan
- Repair every 3 years
- \$0/yr in PM work
- Replaced in years 6 and 20
- After 25 years = \$73,650

545% ROI in a PM Program

At the portfolio level, the analysis indicated an NPV of \$2B over a 25-year period for a \$39M/year (\$0.33/sf) PM program. That represents an ROI of 545%. The bulk of the return comes from increasing the useful life of equipment. Energy savings account for approximately 7% of the return.

Accurate projections of replacement and extended asset life LOWER THE OVERALL COST OF OWNERSHIP

The Good News

- Technology CAN help.
- Deferred maintenance backlogs CAN be shrunk.
- Trust and transparency CAN be achieved.
- Planned Maintenance Works!
- A.P.P.E.M Works!

Capital Planning & Risk Management

With accurate documentation & data, telling the story to justify budget and staffing needs will allow the odds to be in your favor.

Thank You!!

	4		Work environment	data Ispatia GS	
Maintenance	Energy	Facility Usage	Safety	GIS	Technology
MaintenanceEDGE	Energy Manager	Facility Schedule	Safety Center	ConnectGIS	HelpDesk
InventoryEDGE	manager	Ouncould		Mobile311	Insight
Capital Forecast					MDM

