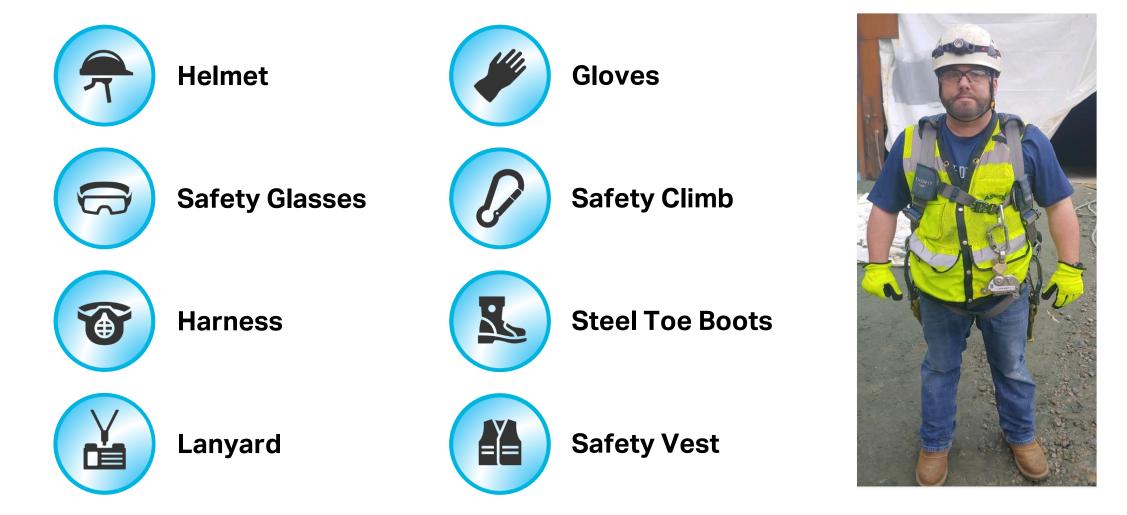
Managing and Maintaining Your Elevated Water Storage Assets New Tank Design and Construction and Existing Tank Condition Assessment

Presented By: AECOM | Nathan Ward

AECOM

Agenda

- Introduction
- Safety Moment
- New Tank Design and Construction
- Tank Coating Systems
- Existing Tank Condition Assessment
- Wrap-up and Questions


Nathan Ward, PE, NACE CIP Level 1

Tank Design Tank Construction Existing Tank Assessment Existing Tank Rehabilitation

New Tank Design And Construction

Safety Moment – Personal Protective Equipment (PPE)

New Tank Design and Construction | What Tank Style?

FOUR MAJOR STYLES OF ELEVATED TANKS

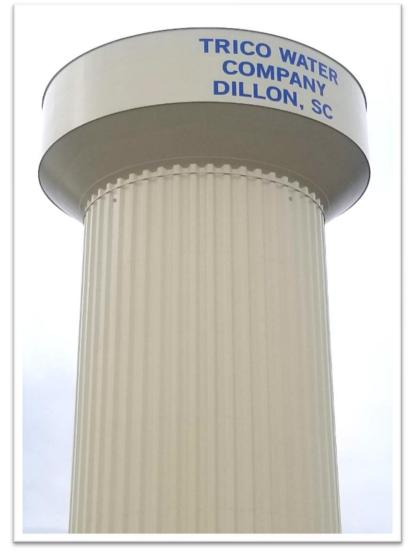
MAJOR TANK MANUFACTURERS:

Caldwell

Landmark

Phoenix

AECOM

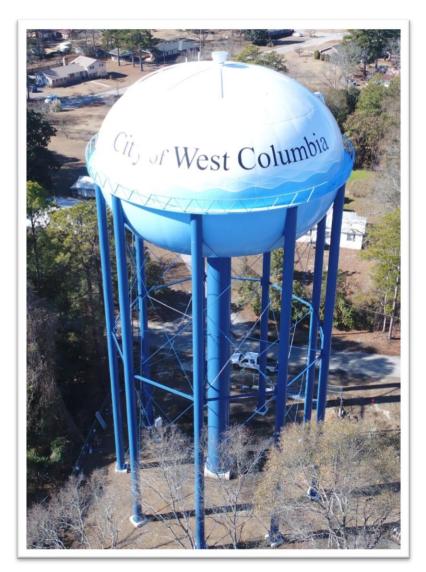

New Tank Design and Construction What Tank Style | Fluted Column Tank

+ PROS

- Electrical components can be stored in the interior base of the tank
- Piping, control valves and/or booster pumps can be located in the interior base of the tank
- Safety: Interior ladders and controlled access
- Steel shaft can be painted to match tank
- More rigid than composite tanks (beneficial in seismic zones)
- Easier design for a multi-use facility (i.e. large diameter steel shaft)
- Can **co-locate an alternate use** in interior of base of tank

- CONS

 More steel structure to paint
 more maintenance costs

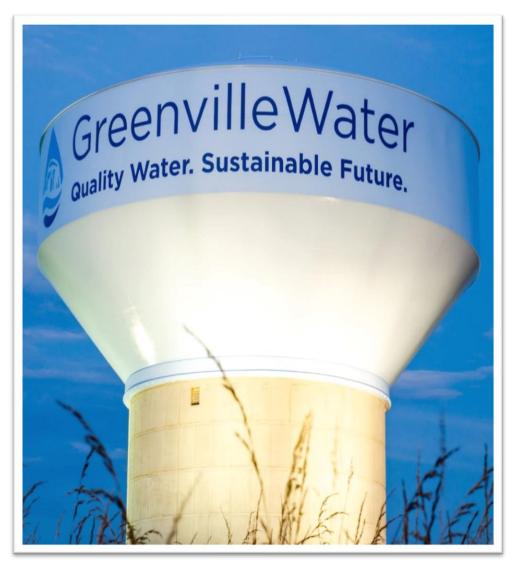

New Tank Design and Construction What Tank Style | Multi-Column Tank

+ PROS

- Cost competitive in smaller sizes (< 0.75 MG)
- "Classic" style
- Can be preferred for areas of high wind and/or seismic activity

- CONS

- Typically **more expensive** in larger sizes (> 1.0 MG).
- Not all manufacturers will build in the larger sizes (> 2.0 MG).
- More maintenance costs (more steel = more paint).
- More difficult maintenance (i.e. sandblasting and painting steel (rods, brackets, struts, etc.)
- Electrical components remain outside
- Exterior ladders and access

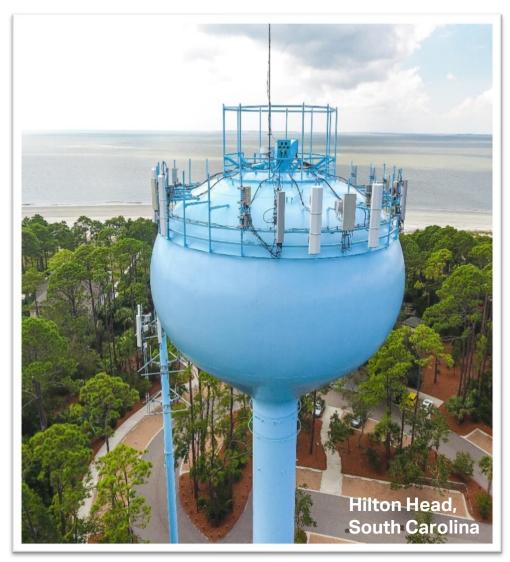

New Tank Design and Construction What Tank Style | Composite Tank

+ PROS

- Less steel structure to paint = less maintenance costs
- Approximately 15-20%
 maintenance savings
- Larger sizes (> 1.0 MG) are typically more cost competitive
- Electrical components can be stored in the interior base of the tank.
- Piping, control valves and/or booster pumps can be located in the interior base of the tank
- **Safety:** Interior ladders and controlled access.
- Can **co-locate an alternate use** in interior of base of tank.

- CONS

- "Newest" tank style (First composite tanks were built in the late 70's).
- Potential long term concrete issues?


New Tank Design and Construction What Tank Style | Single Pedestal Spheroid Tank

+ PROS

- **"Best looking" tank** (in many minds)
- Electrical components can be stored in the interior base of the tank
- Piping, control valves and/or booster pumps can be located in the interior base of the tank
- **Safety** Interior ladders and controlled access
- Smallest footprint of the 4 tank styles

- CONS

- Typically the most expensive in all sizes compared to other tank styles
- Most manufacturers will not build in the larger sizes (> 2.0 MG)

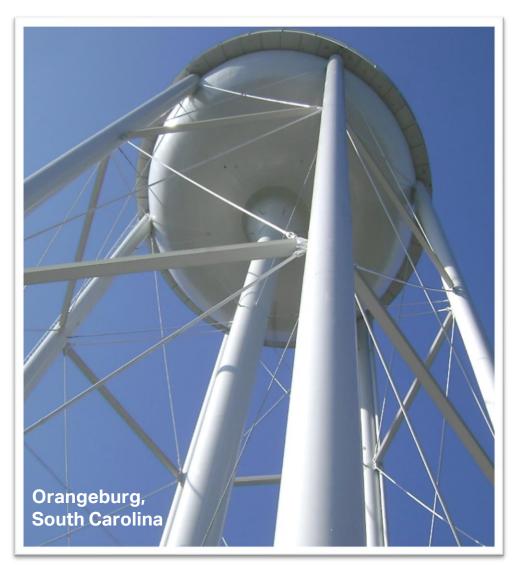
New Tank Design and Construction Cost Comparison

Tank Style	Base Estimate (1.5 MG, 195 FT to OVF)	Base Estimate (2.0 MG, 155 FT to OVF)	Base Estimate (3.0 MG, 165 FT to OVF)
Multi-Column	\$3,800,000	\$4,800,000	\$5,500,000
Single Pedestal Spheroid Tank	\$4,800,000	\$5,500,000	\$6,900,000
Fluted Column Tank	\$3,900,000	\$4,400,000	\$5,900,000
Composite Tank	\$3,300,000	\$3,900,000	\$4,950,000

How to Approach the Detailed Design? Important Design Considerations | Site

Picking the Site!

- Site location (site elevation, parcel size, zoning, FAA, etc.)
- Site layout (constructability, access, etc.)
- Stormwater
- Overflow/drain discharge location
- Transmission main connection
- Neighbor concerns (NIMBY)
- Public meetings


Hydraulic Modeling

- Tank height and size
- Water age/tank turnover
- Sizing the piping to the tank

Geotech Work

- Can the **soils handle the loads** of the tank?
- Foundation design requirements

Survey and Title Search

Important Design Considerations | Site

- Zoning and setback requirements
- Topographic/grading considerations
- Stormwater runoff
- Tank Draining
- Erosion control
- DOT encroachment permits
- Stormwater permits
- Landscaping requirements

Important Design Considerations | Site

Foundation Design

Concrete spread footing

Piles (steel or auger cast piles)

Important Design Considerations | Water

Control Valves

Important Design Considerations | Water

Tank Mixing

Important Design Considerations | Water

Separate Inlet/Outlet Pipes

Planning for Future Pumps

Important Design Considerations | Specifications

- **Design parameters** (snow loads, wind loads, earthquake, etc.)
- AWWA D100, "Welded Carbon Steel Tanks for Water Storage"
- Minimum steel thickness (i.e. 1/4")
- Corrosion allowance (1/16")
- Seal welding
- Factory site visit
- Dissimilar metals
- X-ray testing
- Weld smoothness Condition "D" (ground smooth and blended) of NACE Standard RP0178.
- NACE Inspectors

Important Design Considerations | Antennas

Important Design Considerations | Miscellaneous

Important Design Considerations | Alternative Use?

Important Design Considerations | Artwork and Logos

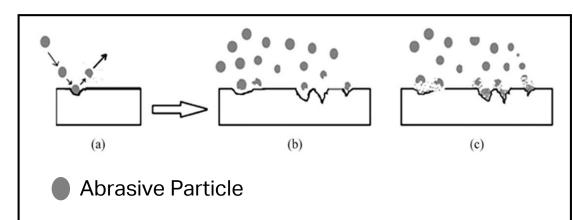
Nathan Ward, PE, NACE CIP Level 1

Tank Design Tank Construction Existing Tank Assessment Existing Tank Rehabilitation

Tank Coating Systems

Important Design Considerations | Coating Systems

NSF 600 Requirements


- Effective 1/1/2023
- Not Retroactive
- Tank interior coating specifications will need to be modified for new tank projects


		Previous Criteria			New NS	F 61/600 Cr	iteria
Substance	CASRN	MCL/MAC or TAC (mg/L)	SPAC (mg/L)	STEL (mg/L)	MCL/MAC or TAC (mg/L)	SPAC (mg/L)	STEL (mg/L)
Xylenes	all isomers	10	1		0.09 (total)	0.009 (total)	
Ethylbenzene	100-41-4	0.7	0.07		0.14	0.014	
Toluene	108-88-3	1	0.1		0.06	0.006	

Source: Tnemec

Important Design Considerations | Surface Prep

R is the maximum 'peak-valley' roughness of the steel surface

Figure 10 Influence of surface roughness

on effectiveness of coating

R = distance of maximum peak to deepest valley

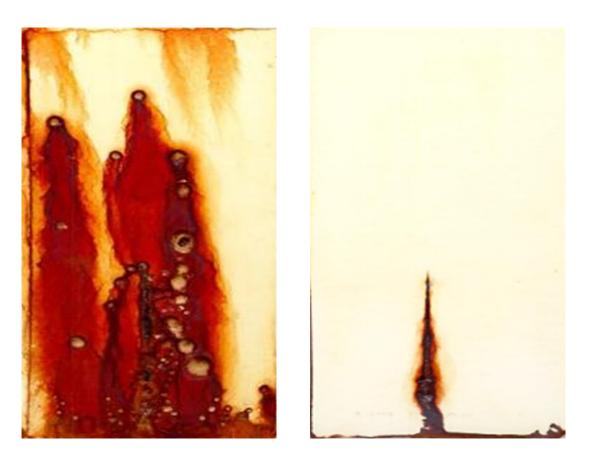
 $Ra = \frac{I(a)}{n}$ = average distance of central line

Ra is the average roughness

Central line

Coating System for Tanks - Examples of Poor Surface Prep

Coating System for Tanks - Results of Poor Surface Prep


Important Design Considerations | Interior Coating Selection

Interior System	Life Cycle	Examples	Cons	Pros
Ероху	3-5 years	 Tnemec - N140 SW - 646 	 Impossible to cover steel adequately in one coat. Worst cost for life cycle year. No warranty Not recommended by any paint manufacture for immersion. No cathodic protection 	 Low Cost Some barrier protection
Ероху/Ероху	8-10 years	Tnemec – N140SW - 646	 No cathodic protection 1-3 year contractor warranty Cost 	Barrier protectionCost for life cycle year
Ероху/Ероху/ Ероху	10-12 years	 Tnemec – N140 SW - 646 	 No cathodic protection 1-3 year contractor warranty Cost 	Barrier protectionCost for life Cycle yearMedium cost
Zinc/Epoxy/Epoxy	18-20 years	 Tnemec –91h20(zinc) Tnemec –94h20(zinc) Tnemec – N140 SW- Corothane 1 (zinc) SW- 646 	• Cost	 Cathodic protection Longest life cycle Cost for life cycle year 15 year warranty from some paint manufactures Some examples of 20+ years

Important Design Considerations | Interior Coating Selection

Testing Standard:

- Salt Fog (ASTM B117)
- Results after 8,000 hrs.
- Same barrier protection provided by epoxy
- Different protection provided by primer

Epoxy (3 coats)

Zinc-Rich Primer (1 coat) Epoxy (2 coats)

Important Design Considerations | Exterior Coating Selection

Exterior Top Coat Type	Life Cycle	Examples	Cons	Pros
Alkyd	3-5 Years	Tnemec - 82hs SW - B54	 Short life cycle Must recoat with Alkyd Prone to "Checking" Fast to fade Fast to chalk Cost for Lifecycle year 	 Low cost per gallon Multiple color options Easy application – One part system
Acrylic	5-7 Years	Tnemec - 1028,1029 SW - Sher-cryl	Short life cycleFast to fadeFast to chalk	 Low cost per gallon Dry fall capable Multiple color options Easy application – One part system
Polyurethane	7-10 Years	Tnemec - 72, 73,740,1074 SW - 218	 Medium Life Cycle Chalk in 5-7 years Fade in 5-7 years Medium cost per gallon More difficult to apply – two part system 	 Extended Life Cycle Cost for Lifecycle year Multiple color options
Aluminum	15+ Years	Induron- aluminum	 Fade in 3-5 years Limited color options Most difficult to apply 	Cost per gallonCost for Lifecycle year
Fluoropolymers	18-20 Years	Tnemec - 700 SW - Flourkem HS	 High Cost per gallon More difficult to apply – two part system. 	 Best cost for lifecycle year Multiple color options Longest life cycle Chalk in 18-20 years Fade in 15-20 years 15 year color and gloss warranty

Polyurethane Fluoropolymer

Testing Standard: QUV (ASTM D 4587)

10,000 hrs. QUV-A Exposure

Important Design Considerations | Coating Selection

Stripe Coats (Interior and Exterior)

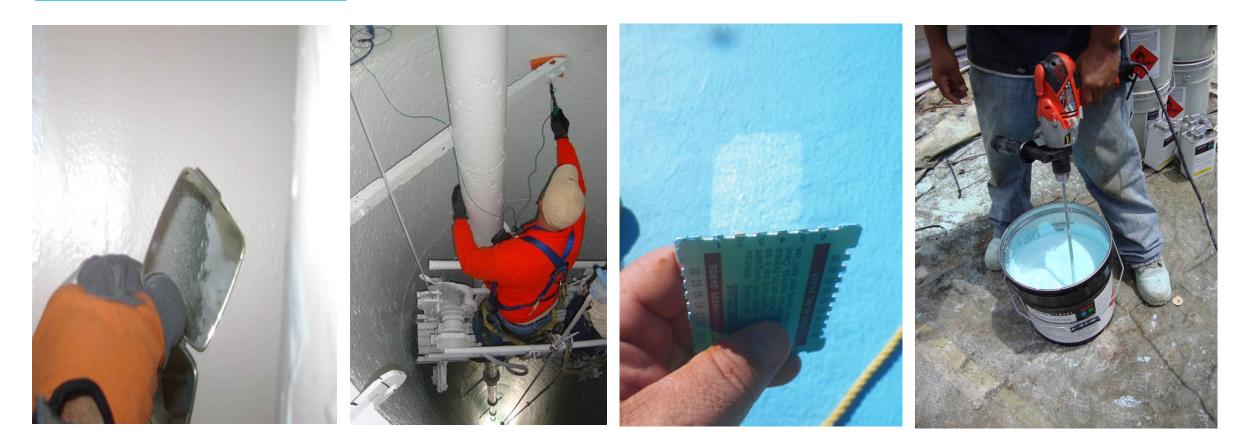
- Build paint thickness (mils) on weld seams, sharp edges, ladders, brackets, pits, etc. (typical areas to show corrosion first)
- Apply by **brush/roller ONLY**

What is National Association of Corrosion Engineers (NACE)?

 Global leader in developing corrosion prevention and control standards, certification and education

Why is NACE important?

- Industry leading technical education for coating and corrosion expertise
- Credibility


What Can NACE do for your Tanks?

• Extend coating lifecycles with advanced assessment and inspection knowledge

Hold Point Inspections

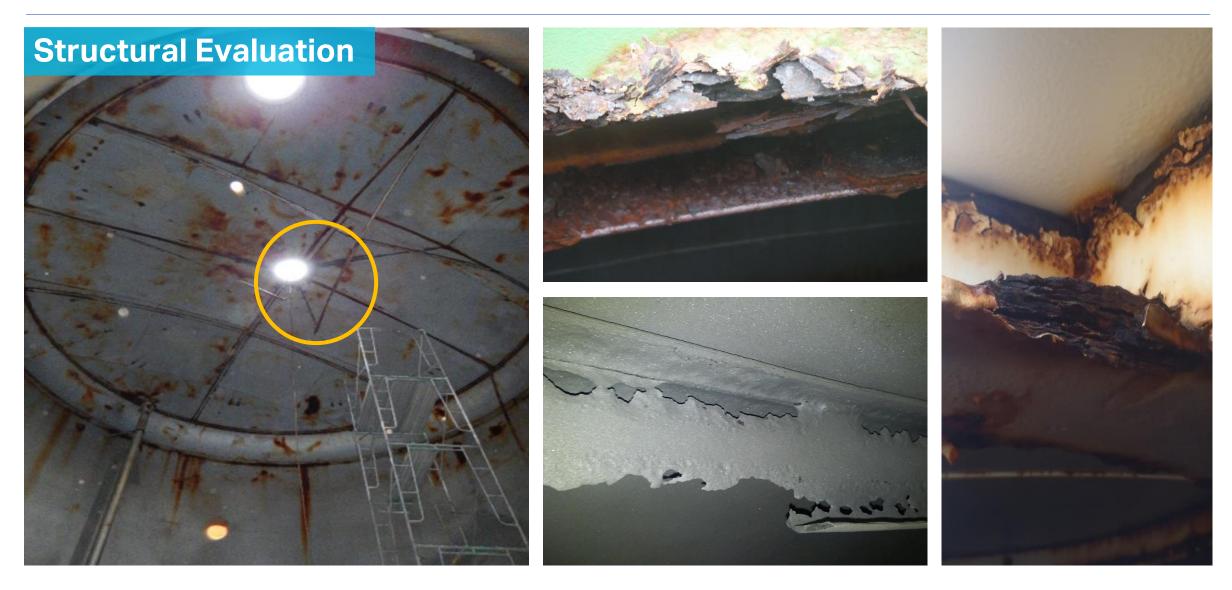
Surface Prep

Weather Conditions

Nathan Ward, PE, NACE CIP Level 1

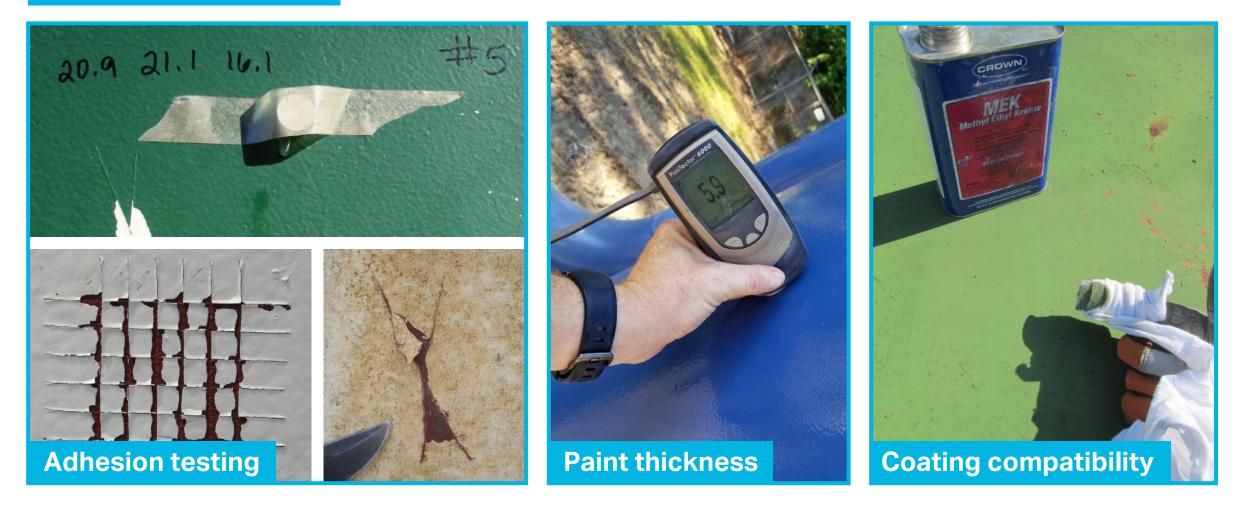
Tank Design Tank Construction Existing Tank Assessment Existing Tank Rehabilitation

Existing Tank Condition Assessment

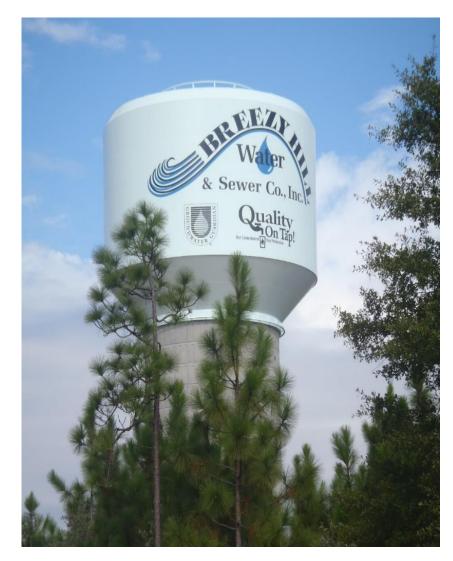

- Why inspect your tanks?
- Evaluation tank appurtenances (vents, overflows, access hatches, ladders, etc.)
- Structural evaluation
- Coating evaluation
- Upgrades
- Complete detailed inspection report
- Use inspection report to develop detailed specifications for the rehabilitation of the tank



Evaluation of tank appurtenances (vents, overflows, hatches, ladders, etc.)



Coating Evaluation



Complete a detailed inspection report of findings

- Repairs needed
- Coating requirements
- Cost estimate
- Prioritize needed repairs and upgrades

Use report to plan for future maintenance and repairs and to prepare detailed project specifications

Important Design Consideration – An Experienced Design Team!

- Local and national experience
- Engineering team with decades of successful tank design, construction and tank rehab experience
- Local <u>NACE Certified</u> <u>Inspectors</u>
- As the old proverb says "The devil is in the details!"

Thank You!

Nathan Ward, PE

Project Manager, Water D +1-803-740-2045 nathan.ward@aecom.com