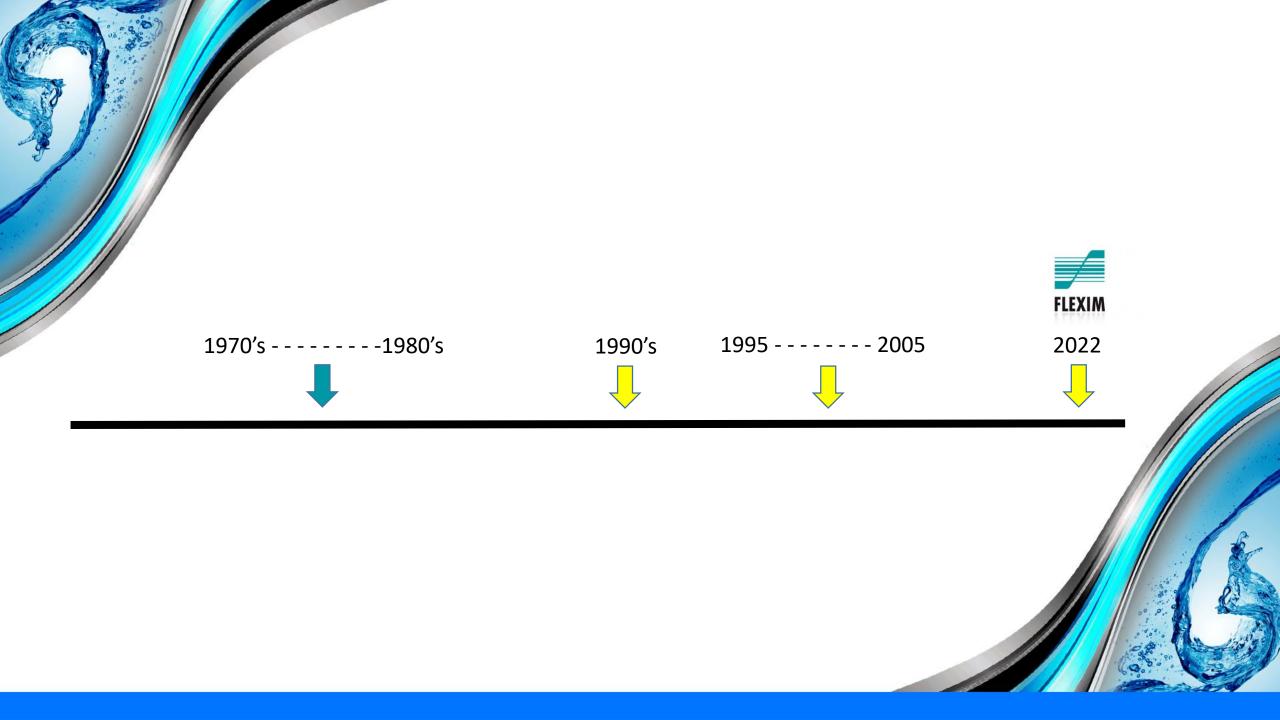

Recent Advancements in Ultrasonic Transit-Time Clamp On Metering

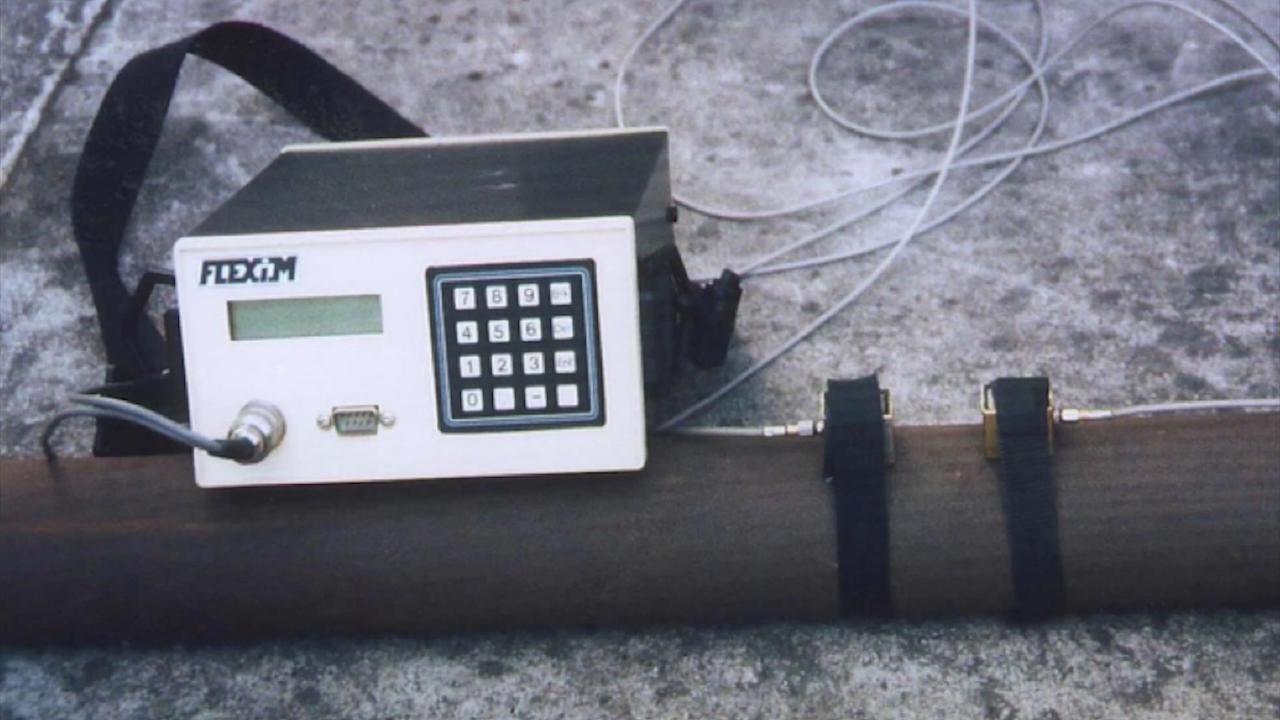
Brad Papa

Chaltron Systems, Inc.

- Providing measurement instrumentation and data collection since 1984
- State of the art solutions for the Industrial, Municipal and Commercial Energy Management Markets
- Sales Professionals come from strong technical backgrounds and are committed to building lasting relationships with our customers

The focus of this presentation is to provide Superintendents, Operators, Engineering Firms, and Maintenance Personnel with an overview of modern day ultrasonic flow metering technology advancements and field applications.

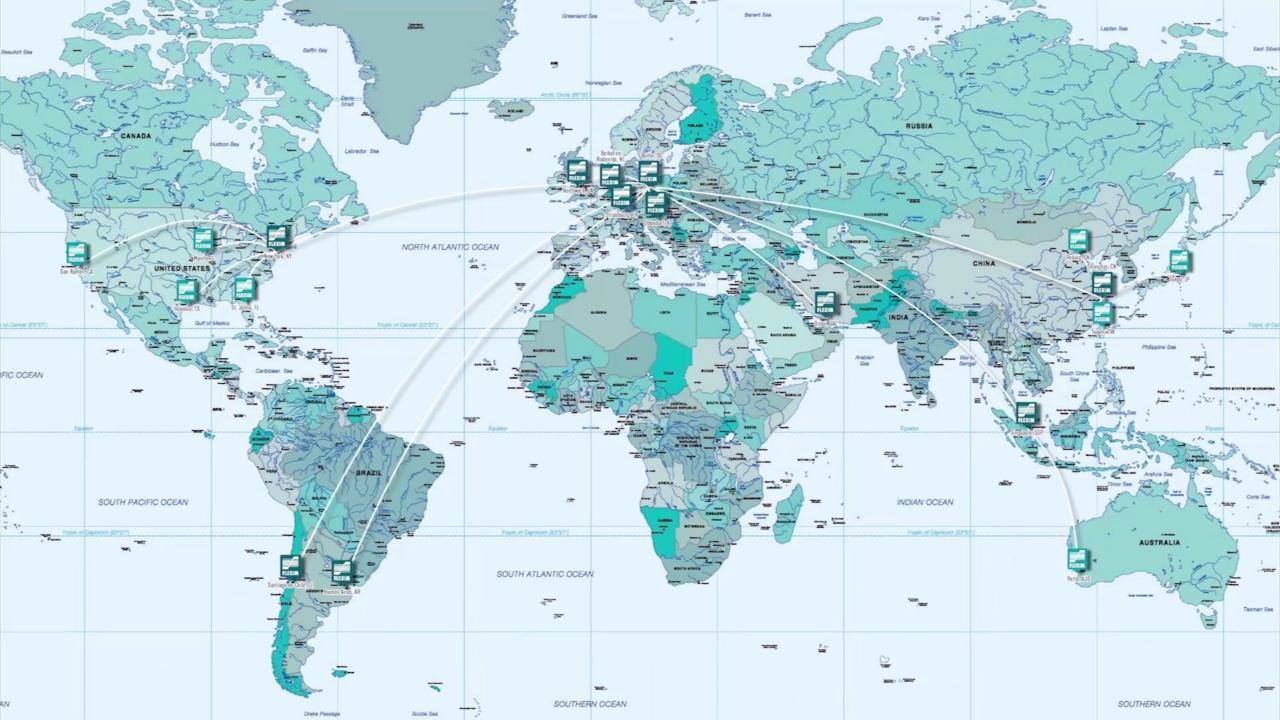

3 Key Discussion Points of this Presentation

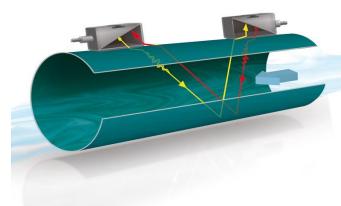

1. Technology / Innovation

2. Targeting Water Loss

3. Local Applications

TECHNOLOGY & Innoution

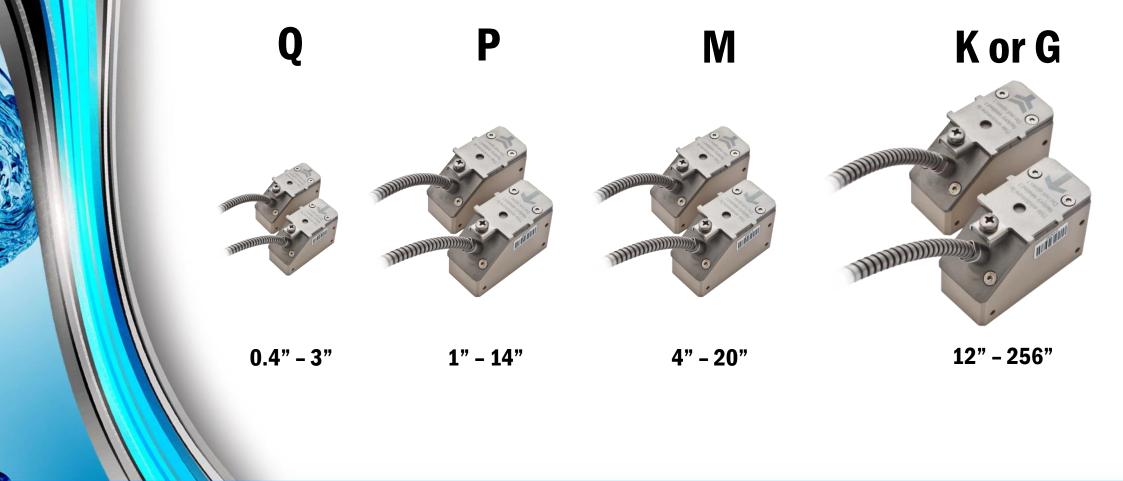



Doppler Measurement

- Johann Christian Doppler 19th Century Austrian Physicist
- High frequency sound penetrates pipe wall and reflects off of solids or bubbles in the fluid (required)
- If fluid is in motion, the echoes return at an altered frequency proportionate to flow velocity
- Frequency shift is measured to calculate flow

Transit Time Measurement

- Two Ultrasonic Transducers alternatively emit and receive signals protruding into the pipe
- The Signal going with the flow travels the distance faster than the signal against the current
- This time difference is measured and allows for the calculation of the flow velocity and the volume flow rates



 $Q = A \cdot k_{Re} \cdot V_{L}$ wil $V_{L} = \frac{\Delta t}{2t_{R}}$ $= Q = A \cdot k_{Re} \cdot \frac{\Delta t}{2t_{R}}$ wit $k_{Re} = f(l_{e})$ wil $k_{e} = \frac{V_{R} \cdot d_{i}}{\gamma}$

 $\begin{array}{c} \overleftarrow{} & \overleftarrow{} \\ \overrightarrow{} \\ \overrightarrow{}$

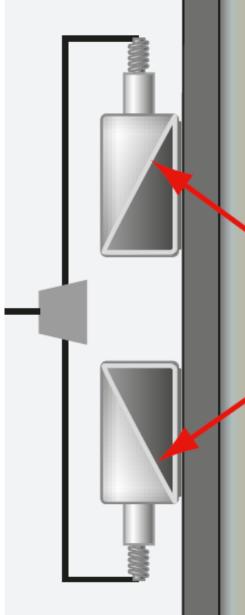
Transducers – Line sizing

Programming Parameters

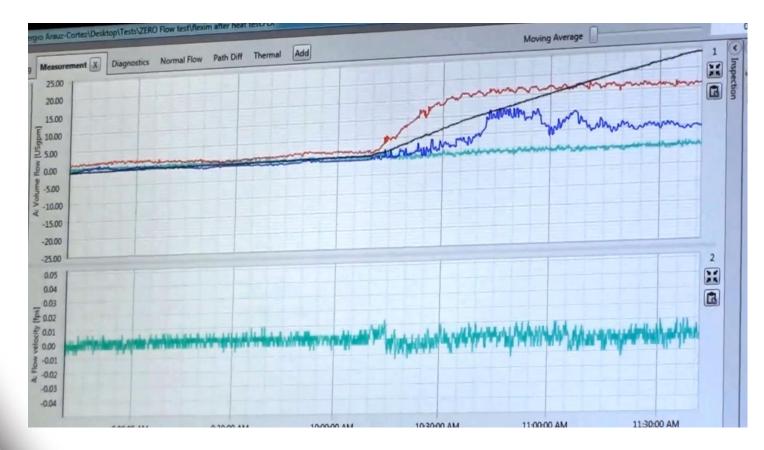
- Outer Diameter of Pipe
- Wall Thickness
- Pipe Material
- Lining (no/yes, type/size)
- Medium (Water)
- Temperature
- Sound Path (2/reflect mode)
- Meter provides transducer separation distance

Same Process for Permanent or Portable

Portable



OTHER.


nonimphili (171100

Transducers – Temp Compensation

- Embedded RTD's
- Eliminates Needed Adjustments
- Eliminates Meter Drift

Flexim Eliminates "Drift" During Temperature Changes

Transducers – Coupling

- Rubber Coupling Pad
- No Re-greasing of Sensors
- Truly Permanent
- Maintenance Free

Transducers – Construction

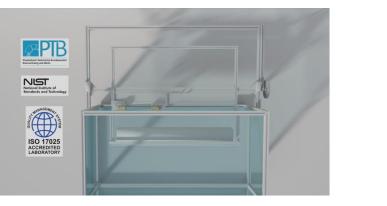
- Sealed Potted Cable Connections
- Stainless Steel Armored Cables
- Eliminates Corrosion or Failure
- IP68 Available for Full Submersion

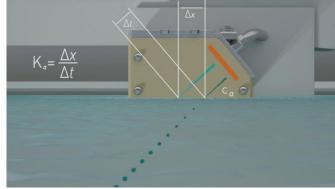
Transducers – Mounting

- Rugged Permalok Mounting Track
- Protects Sensor
- Eliminates Movement

*Average Competitor Meter

MAGA


TECHNOLOGY & Innoution


New Aperture Calibration

Acoustic Calibration Factor

- Transducers Positioned at Surface of Water Basin with Reflector
- Measured Independently (without influence) from Pipe and Flow Profile Uncertainties

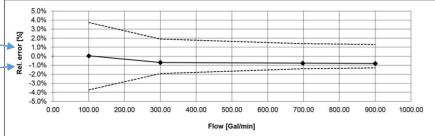
Aperture Calibration Technology

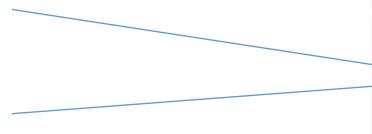
- Patented Technology
- More Accurate than Conventional Wet Flow Calibration
- Independent from Pipe Geometry, Flow Profile, and Time Measurement
- One Transducer at Fixed Position, Second Transducer Displaceable

Aperture Calibration Technology

- Animated Video
- Illustrating Wet Flow Calibration
 Process
- Illustrating New Aperture Calibration Process

Traditional Calibration Certificate

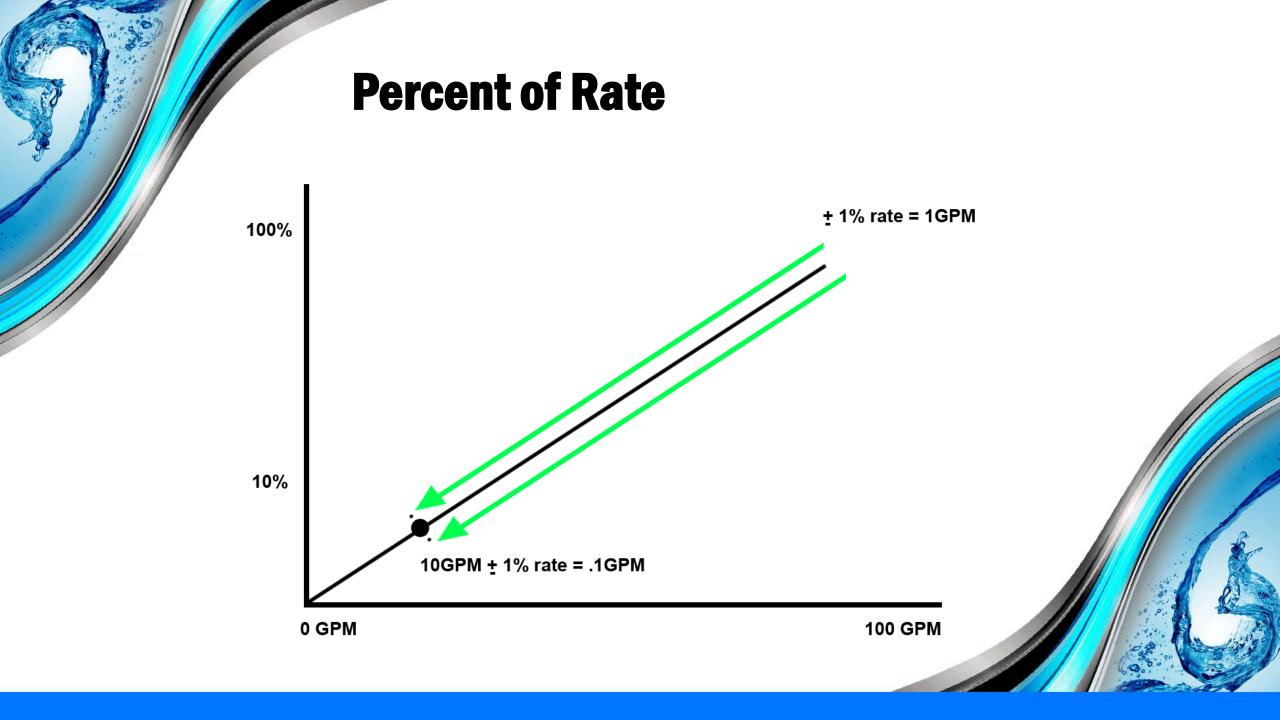


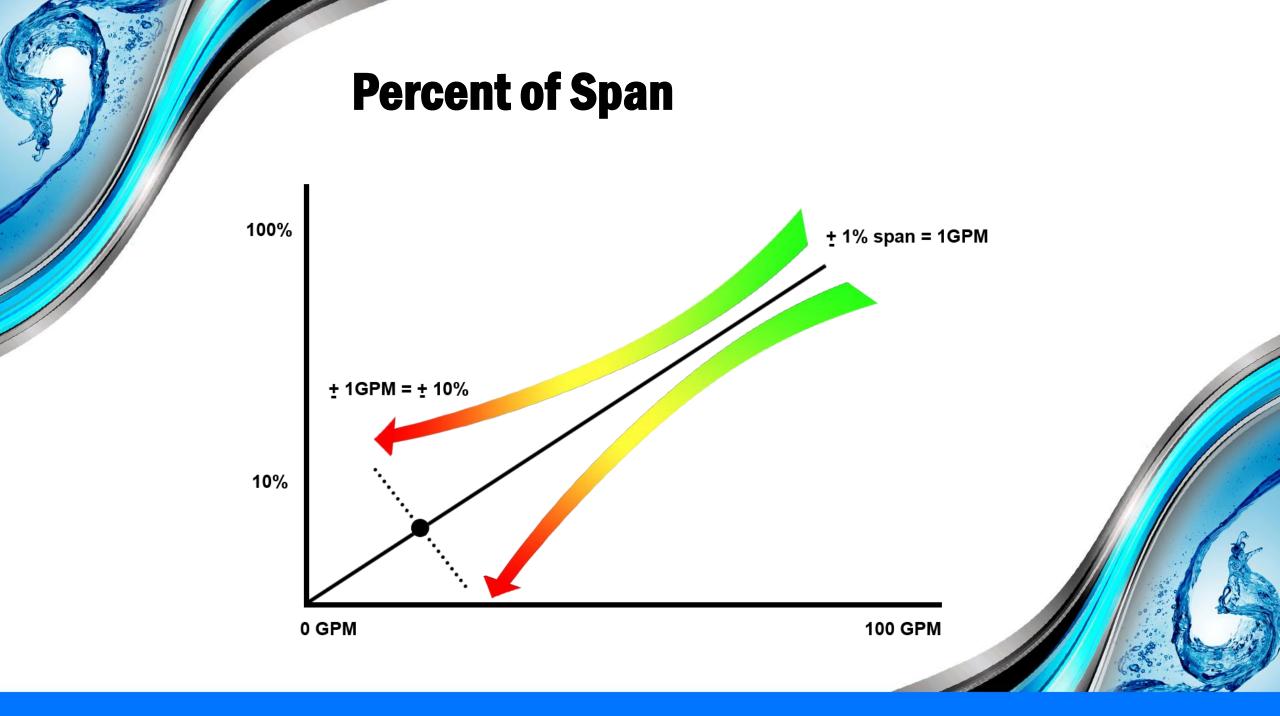

Calibration Certificate

Device unde	er test (DUT)	1			Certificate No.: (US) 20150722-004
Transducer:	CDP1NZ7		Ser. No.:	57780	Customer Name & Address:
Transmitter:	Flexim	F601	Ser. No.:	06011644	Gerdau Long Steel North America PO Box 468 Calvert City, KY 42029
Pipe ID [inch]:	6.11	Fluid:	Water	Temperatu	re: 75.6 °F
Range[Gal/min]:	900	Spec. Accuracy:	1.0% of rate	Offset Allow	wance: ±0.03 ft/s

Test results

Meas. Point		Standard	DUT	measure	ement error	Limit	Standard	pass
	Meas. Time	Flowrate	Flowrate	Flowrate	Flowrate	Flowrate	Velocity	fail
		Qn	Qp	(Qp-Qn)	(Qp-Qn) / Qn	Q	v	
	s	Gal/min	Gal/min	Gal/min	%	Gal/min;%	ft/s	
1	120	-0.07	-0.05	0.02	0.0Gpm	2.7Gpm	0.0	р
2	120	100.02	100.06	0.04	0.0%	3.7%	1.1	p
3	120	299.90	297.83	-2.07	-0.7%	1.9%	3.3	р
4	120	697.52	692.12	-5.40	-0.8%	1.4%	7.6	р
5	120	899.94	892.71	-7.23	-0.8%	1.3%	9.9	p



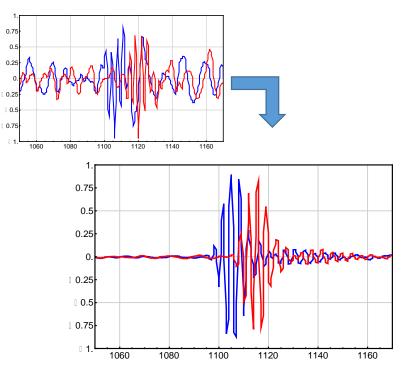

Aperture Calibration Certificate

Calibration Certificate

er test (DUT)				Certificate No	.: (L	JS) 201702	28-001			
Transducer: CDG1NZ7 Transmitter: Flexim Pipe ID [inch]: 19.72		Ser. No.:	72771	Customer Name & Address:						
		Sor No :	Mastar26	Cha	ms, Inc.					
		581. 10	Waster 25	PO Box 836	6 Chardon, OH 44024-083					
		Water	Ten	nperature:	66.2	°F				
	Standard	DUT	measure	ment error	Limit	Standard	-			
Meas. time	Flowrate	Flowrate	Flowrate	Flowrate	Flowrate	Velocity				
	Qn	Qp	(Qp-Qn)	(Qp-Qn) / Qn	Q	v				
S	Gal/min	Gal/min	Gal/min	%	Gal/min;%	ft/s				
20	0.00	0.75	0.75		21.86Gpm	0.00	р			
20	2639.85	2639.34	-0.51		1.8%	2.77	р			
	5720.73	5719.94	-0.79	-0.01%		6.01	P			
	11880.81	11880.61	-0.20	0.00%		1 DISTRICT STREET	р			
20	18044.86	18042.18	-2.68	-0.01%	1.1%	18.96	p			
· · · · · +										
	Flexim 19.72 : 31000.00 Measureme Meas. time s 20	CDG1NZ7 Flexim G721 19.72 Fluid: : 31000.00 Spec. Accuracy Measurement uncertainty (k= Meas. time Standard Meas. time Flowrate Qn 20 0.00 20 2639.85 20 5720.73 20 11880.81	CDG1NZ7 Ser. No.: Flexim G721 Ser. No.: 19.72 Fluid: Water : 31000.00 Spec. Accuracy: 1.0% of rate Measurement uncertainty (k=2): Meas. time Standard DUT Flowrate Flowrate Gal/min Qn Qp Gal/min 20 0.00 0.75 20 2639.85 2639.34 20 5720.73 5719.94 20 11880.81 11880.61	CDG1NZ7 Ser. No.: 72771 Flexim G721 Ser. No.: Master25 19.72 Fluid: Water Ten : 31000.00 Spec. Accuracy: 1.0% of rate Offfed : 31000.00 Spec. Accuracy: 1.0% of rate Offfed : Measurement uncertainty (k=2): 0.16% of rate Offfed Meas. time Flowrate Flowrate Flowrate Qn Qp (Qp-Qn) Gal/min 20 0.00 0.75 0.75 20 2639.85 2639.34 -0.51 20 5720.73 5719.94 -0.79 20 11880.81 11880.61 -0.20	CDG1NZ7 Ser. No.: 72771 Custor Flexim G721 Ser. No.: 72771 Custor Flexim G721 Ser. No.: Master25 PO Box 836 19.72 Fluid: Water Temperature: : 31000.00 Spec. Accuracy: 1.0% of rate Offset Allowance: Measurement uncertainty (k=2): 0.16% of rate Offset uncertainty: Meas. time Flowrate Flowrate Flowrate Qn Qp (Qp-Qn) / Qn (Qp-Qn) / Qn s Gal/min Gal/min Gal/min 20 0.00 0.75 0.75 20 2639.85 2639.34 -0.51 20 5720.73 5719.94 -0.79 20 11880.81 1180.61 -0.20	CDG1NZ7 Ser. No.: 72771 Customer Name & Chaltron Syster Flexim G721 Ser. No.: Master25 PO Box 836 Chaltron Syster 19.72 Fluid: Water Temperature: 66.2 31000.00 Spec. Accuracy: 1.0% of rate Offset Allowance: 0.023 Measurement uncertainty (k=2): 0.16% of rate Offset uncertainty: 0.016 Meas. time Standard DUT measurement error Limit Meas. time Flowrate Flowrate Flowrate Flowrate Qn Qp (Qp-Qn) (Qp-Qn) / Qn Q s Gal/min Gal/min Gal/min Gal/min 20 0.00 0.75 0.75 - 21.86Gpm 20 5720.73 5719.94 -0.79 -0.01% 1.4% 20 11880.61 -0.20 0.00% 1.2%	CDG1NZ7 Ser. No.: 72771 Customer Name & Address: Chaltron Systems, Inc. Flexim G721 Ser. No.: Master25 Chaltron Systems, Inc. 9.72 Fluid: Water Temperature: 66.2 °F 19.72 Fluid: Water Offset Allowance: 0.023 ft/s 31000.00 Spec. Accuracy: 1.0% of rate Offset Allowance: 0.023 ft/s Measurement uncertainty (k=2): 0.16% of rate Offset uncertainty: 0.016 ft/s Meas. time Flowrate Flowrate Flowrate Flowrate Flowrate Velocity Qn Qp (Qp-Qn) (Qp-Qn) / Qn v v v 20 0.00 0.75 0.75 - 21.86Gpm 0.00 20 2639.85 2639.34 -0.51 -0.02% 1.8% 2.77 20 5720.73 5719.94 -0.79 -0.01% 1.4% 6.01 20 11880.61 11880.61 -0.20 0.01% 1.2% 12.49			

Aperture Calibration Benefits

- Direct Time and Direct Distance Calibration
- No Pipe = No Pipe Uncertainty
- No Flow = No Flow Uncertainty
- Final Transducer Calibration Uncertainty Rating: 0.15%
- SENSPROM Auto Detection / Calibration Loading


External Labs Traceable to National Standards

New Transmitter – Signal Processing

- 1000 signals per second
- Dual Processor
- Noise Suppression
- Data Recorder

Transmitter – Diagnostics

Meter Diagnostics

Quantity	Unit	А
SCNR	dB	39.11
SNR	dB	36.89
Gain	dB	64.41
Amplitude	%	56.18%
Quality	%	99.07%
Vari.time	%	0.00%
Vari.amplitude	%	0.00%
Sound speed	m/s	1447.6
Flow velocity	fps	0.74

Transmitter – Sound Speed

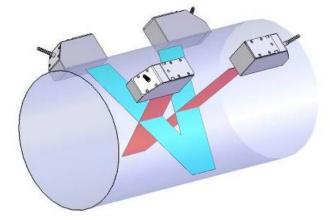
	Sonic	Veloci	ty Re	elativ	e to Ter	nperat	ure o	f Pur	e Water	
Tem	perature	Velocity		Tem	perature	Velocity		Tem	perature	Velocity
°F	°C	M/S		°F	°C	M/S		°F	°C	M/S
0	-17.8	1292.5		100	37.8	1525.0		200	93.3	1548.4
2	-16.7	1300.6		102	38.9	1527.0		202	94.4	1547.6
4	-15.6	1308.6		104	40.0	1528.9		204	95.6	1546.8
6	-14.4	1316.4		106	41.1	1530.7		206	96.7	1547.6
8	-13.3	1324.1		108	42.2	1532.4		208	97.8	1545.0
10	-12.2	1331.5		110	43.3	1534.1		210	98.9	1544.1
12	-11.0	1338.8		112	44.4	1535.6		212	100.0	1543.1
14	-10.0	1345.9		114	45.6	1537.2		214	101.1	1542.1
16	-8.9	1352.8		116	46.7	1538.6		216	102.2	1541.1
18	-7.8	1359.5		118	47.8	1540.0		218	103.3	1540.0
20	-6.7	1366.1		120	48.9	1541.3		220	104.4	1538.9
22	-5.6	1372.6		122	50.0	1542.6		222	105.6	1537.7
24	-4.4	1378.8		124	51.1	1543.7		224	106.7	1536.5
26	-3.3	1384.9		126	52.2	1544.9		226	107.8	1535.3
28	-2.2	1390.9		128	53.3	1545.9		228	108.9	1534.0
30	-1.1	1396.7		130	54.4	1546.9		230	110.0	1532.7
32	0.0	1402.4		132	55.6	1547.8		232	111.1	1531.4
34	1.1	1407.9		134	56.7	1548.7		234	112.2	1530.1
36	2.2	1413.3		136	57.8	1549.5		236	113.3	1528.7
38	3.3	1418.6		138	58.9	1550.3		238	114.4	1527.3
40	4.4	1423.7		140	60.0	1551.0		240	115.6	1525.8
42	5.6	1428.6		142	61.1	1551.6		242	116.7	1524.3
44	6.7	1433.5		144	62.2	1552.2		244	117.8	1522.8
46	7.8	1438.2		146	63.3	1552.7		246	118.9	1521.3
48	8.9	1442.8		148	64.4	1553.2		248	120.0	1519.7
50	10.0	1447.3		150	65.6	1553.6		250	121.1	1518.1
52	11.1	1451.6		152	66.7	1554.0		260	126.7	1507.0
54	12.2	1455.9		154	67.8	1554.3		270	132.2	1497.0
56	13.3	1460.0		156	68.9	1554.6		280	137.8	1487.0
58	14.4	1464.0		158	70.0	1554.8		290	143.3	1476.0
60	15.6	1467.9		160	71.1	1555.0		300	148.9	1465.0
62	16.7	1471.6		162	72.2	1555.1		310	154.4	1453.0
64	17.9	1475.3		164	73.3	1555.1		320	160.0	1440.0
66	18.9	1478.9		166	74.4	1555.2		330	165.6	1426.0
68	20.0	1482.3		168	75.6	1555.1		340	171.1	1412.0
70	21.1	1485.7		170	76.7	1555.0		350	176.7	1398.0
72	22.2	1489.0		172	77.8	1554.9		360	182.2	1383.0
74	23.3	1492.1		174	78.9	1554.7		370	187.8	1368.0
76	24.4	1495.2		176	80.0	1554.5		380	193.3	1353.0
78	25.6	1498.2		178	81.1	1554.2		390	198.9	1337.0
80	26.7	1501.0		180	82.2	1553.9		400	204.4	1320.0
82	27.8	1503.8		182	83.3	1553.6		410	210.0	1302.0
84	28.9	1506.5		184	84.4	1553.1		420	215.6	1283.0
86	30.0	1509.1		186	85.6	1552.7		430	221.1	1264.0
88	31.1	1511.7		188	86.7	1552.2		440	226.7	1244.0
90	32.2	1514.1		190	87.8	1551.7		450	232.2	1220.0
92	33.3	1516.4		192	88.9	1551.1		460	237.8	1200.0
94	34.4	1518.7		194	90.0	1550.5		470	243.3	1180.0
96	35.6	1520.9		196	91.1	1549.8		480	248.9	1160.0
98	36.7	1523.0		198	92.2	1549.1		490	254.4	1140.0

1447 = 50F

What is Turndown Ratio?

"Ratio of maximum value measured to the minimum value that can be measured."

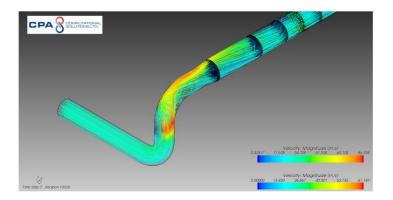
Example: 100 GPM Maximum 5 GPM Minimum Turndown = 20:1

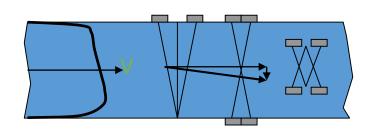

Unlimited Turndown Ratio

- Low and High flows:
- Velocities 0.01 ft/sec to 200ft/sec

Transmitter – Dual Beam

- Dual Channel Transmitter (2) Sensor Sets
- (A+B)/2
- For Large Line Sizes / Short Straight Run
- Two Independent Flow Profiles


Flow Disturbance Correction



Profile Correction for Pipe Disturbances

- Based on Fluid Modeling
- Extensive Testing and Data Analysis
- Correction Based on the Distance to the Disturbance
- Proven by Independent Flow Labs in Germany and USA

Continued Testing at PTB Labs – Germany

Continued Testing at ALDEN Labs – USA

Advanced Meter Verification

Advanced Meter Verification

- Health Check of Meter Operation and Diagnostics
- Based on Data, Maintenance can be Planned, and Unexpected Failures can be Avoided
- Report Provides the Documentation Required for Your Quality Management System
- Documentation compliant with IS09001:2015

Recap on Ultrasonic Capabilities

- 0.25" Tubing to 256" Hydro Power Plant Lines
- Parameters for all Pipe Materials and Walls
- Heavy Duty Construction of Equipment
- Unlimited Turndown Ratio Low and High Flows: (Velocities 0.01 ft/sec to 200ft/sec)
- Cost Effective
- No Process Shutdown for Installation
- Reduced Time and Labor for Installation

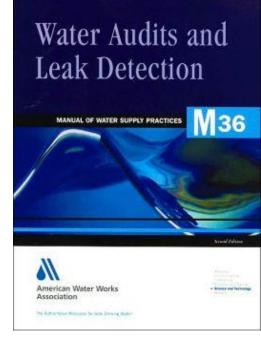
Recap on Ultrasonic Technology

- Family of Transducers for Proper Line Sizing
- New, More Accurate Aperture Calibration
- NIST Traceable Certificate of Calibration
- SENSPROM Auto Detection / Calibration Loading
- Permanent Coupling with Rubber Pad
- Built in RTD Temperature Compensation
- Full set of Diagnostics, Now with AMV
- Dual Processor Transmitter, Dual Channel Capable
- Advanced Noise Reduction and Signal Processing
- Disturbance Correction: Short Run Capabilities

Water Loss Prevention

Water Loss Prevention

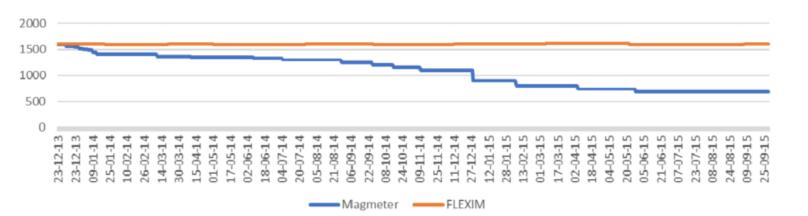
- Trends in the Water and Waste Water Industries
- Current and Common Situations
- Addressing Issues with Ultrasonic Metering


Pressure to Reduce Water Loss

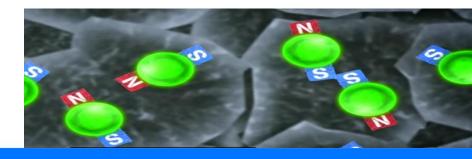
- Municipalities with High Loss Rates are Regarded as Poorly Managed
- Strong Focus on Lowering Water Loss Rates and Increasing Revenue Across all Municipalities
- EPA Direction to Lower Water Loss
- More Precise Monitoring of Utilities Needed

AWWA Water Audit Manual

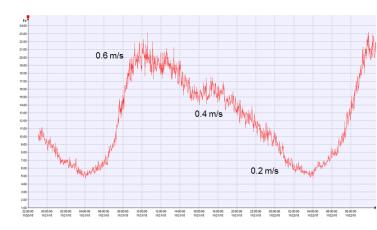
- M36 Manual for Water Resource Management
- Key Activity: Metering the Water
- Begin to View Water not as an Abundance, but as a Revenue Stream


Direct Benefits of Controlling Your Water Loss

- Management: Limiting Wasteful or Unnecessary Source Water Withdrawals
- **Financial**: Optimizing Revenue Recovery and Promoting Equity Among Rate Payers
- Operational: Minimizing Distribution Disruptions and
 Optimizing Supply Efficiency


Current and Common Metering

- Magnetic Flow Meter
- Injecting Chemicals and Specific Minerals in the Water has Unintended Consequences
- Overtime the Coating of Electrodes will Render the Flow Meter Unreliable


Current and Common Metering

- Magnetic Flow Meter
- Periodic Cleaning of Electrodes Requires the Meter to be Removed from the Line and Physically Cleaned
- Does not Typically Happen

Current and Common Metering

- Low Flows Who Cares about 0.03 1.0 FPS?
- Outside of the Accuracy Range of Most Other Meter Technologies
- Time to Start Metering all Flows, Including Minimum Nightly Operational Flows

How Chaltron Systems, Inc. Can Help

Flow Testing with Portable Meter

- F601 Dual Channel Standard Portable
- Lightweight, Handheld, Battery Powered
- Accurate Measurement
- Set up in 5-10 minutes
- Internal Data Logging
- Report Generating Software

Flow Meter Rental

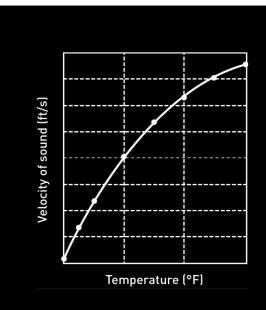
- Rent for 1 Week or Multiple Weeks
- 10 Meters Available (More if Needed Through Flexim)
- Chaltron Delivery, Set Up, Install and Removal
- Continuous Data Recording
- Report Generation

Retrofit Failed Meters

- F721 Single Channel or Dual Channel Transmitter
- Highly Customizable
- 4-20ma, HART, Modbus Communication
- Non-intrusive
- No Shutdown Installation
- Maintenance Free

FLEXIM COMPLIANCE WITH AWWA C750-10

- Compliant with all Standards for Transit Time Meter
- Performance
- Accuracy
- Linearity
- Repeatability
- Rangeability
- Verification / Calibration of Meter
- NIST Traceability



Transit-Time Flowmeters in Full Closed Conduits

Now Providing Temperature Measurement

Water Temperature Calculated
 Through Speed of Sound Measurement

Sample Flexim Data Report

Image: Solution of the second sec	AYOUT FORMULAS DATA R	EVIEW VIEW		FAIRBORN_WRIGHT	STATE_12 LINE [Cor	npatibility Mode] - E	ixcel			R	0	$ \rightarrow $?	困 — f
Arial Paste ✓ Format Painter Clipboard 5		Wrap Text	General ▼ \$ ▼ % ♥ €.00 ⊕.00 Number Γ≤	Conditional Format a Formatting [∞] Table •		Bad Explanatory St	Good Input yles	Neutral Linked Cell	Calculation Note		sert Delete F	→ AutoSu → Fill → → Clear →	m * Average Sort & Filter * Editing		
A22 $\overline{}$: $\times \checkmark f_x$															
A B C D E	F G H I J K			S T U	V W	X Y Z	AA AB	AC AD AI	E AF	AG	AH	AI AJ	AK	AL	AM
1 Flexim Ultrasonic Meter Inspec	ction Report	FLE	EXIM												
4 Meter Name Flexim F601 Lo 5 S/N Meter 06016448 Fit 6 K-factor n/a K	irmware Version 6.22 Test Gaotor inverse n/a Test	Time 02255 Ohn Doution DNI Dni Dni Samples 16 Fax Else Papa	m.yy) mnssi mpisj 												
42 0.30 43 13:24:00 13:26:0	00 132800 13300 Time	00 133200	13:34(
45															

Time Stamped Data

	Α	В	С	D	E	F	G	Н	1	J	K	L	Μ
1			А	А	А	А	А	А	А	А	А	А	A
			Flow	Volume	Volume	Volume	Sound	Amplitu				Vari.am	Vari.tim
2			velocity	flow	POS	NEG	speed	de	Quality	SCNR	SNR	plitude	е
3			fps	USgpm	gal	gal	m/s	%	%	dB	dB	%	%
4	09.05.2016 13:22:54		0.39	136.48	104.03	0.00	1472.7	52.00%	100.00%	36.00	37.00	0.00%	0.00%
5	09.05.2016 13:23:39		0.47	162.64	232.95	0.00	1472.7	52.00%	100.00%	36.00	33.00	0.00%	0.00%
6	09.05.2016 13:24:24		0.47	163.78	362.34	0.00	1472.7	52.00%	99.00%	36.00	33.00	0.00%	0.00%
7	09.05.2016 13:25:09		0.34	118.28	476.34	0.00	1472.7	52.00%	99.00%	36.00	33.00	0.00%	0.00%
8	09.05.2016 13:25:54		0.50	171.74	590.87	0.00	1472.7	52.00%	100.00%	36.00	33.00	0.00%	0.00%
9	09.05.2016 13:26:39		0.43	150.13	710.17	0.00	1472.7	52.00%	100.00%	36.00	33.00	0.00%	0.00%
10	09.05.2016 13:27:24		0.36	126.24	798.33	0.00	1472.7	52.00%	99.00%	36.00	33.00	0.00%	0.00%
11	09.05.2016 13:28:09		0.37	127.38	898.87	0.00	1472.7	52.00%	100.00%	36.00	34.00	0.00%	0.00%
12	09.05.2016 13:28:54		0.40	138.76	995.79	0.00	1472.7	52.00%	100.00%	36.00	34.00	0.00%	0.00%
13	09.05.2016 13:29:39		0.28	97.81	1085.06	0.00	1472.7	52.00%	100.00%	36.00	34.00	0.00%	0.00%
14	09.05.2016 13:30:24		0.42	144.44	1187.91	0.00	1472.7	52.00%	100.00%	36.00	34.00	0.00%	0.00%
15	09.05.2016 13:31:09		0.41	141.03	1288.48	0.00	1472.7	52.00%	100.00%	37.00	34.00	0.00%	0.00%
16	09.05.2016 13:31:54		0.55	192.21	1425.60	0.00	1472.7	53.00%	99.00%	36.00	34.00	0.00%	0.00%
17	09.05.2016 13:32:39		0.48	166.05	1550.51	0.00	1472.7	53.00%	100.00%	36.00	34.00	0.00%	0.00%
18	09.05.2016 13:33:24		0.45	154.68	1664.64	0.00	1472.7	53.00%	99.00%	36.00	34.00	0.00%	0.00%
19	09.05.2016 13:34:09		0.47	161.50	1785.26	0.00	1472.7	52.00%	100.00%	36.00	34.00	0.00%	0.00%
20													

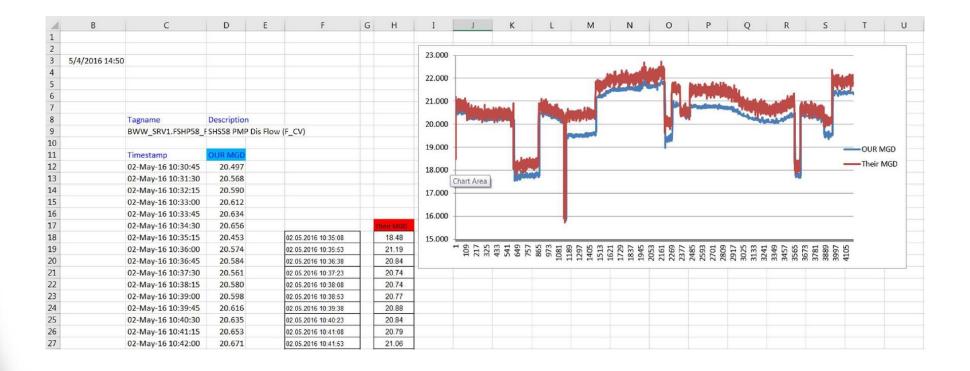
LOCAL APPLICATIONS

Water Treatment Plant in Ohio with Magnetic Flow Meter

- Domestic Water 12" Line
- City utility water supply to University
- Common use: Blending, Optional use: Total Supply
- Common use = 100 GPM (.30 ft/sec)
- Below minimum capability of existing magnetic flow meter
- Installation of ultrasonic meter measures as low as .01 ft/sec (3.50 GPM)

Water Treatment Plant in Ohio

• Loss of revenue \$600.00/Day


\$18,000.00/month

Turndown allowing for measurement of extremely low flow rates is important.

Venturi Retrofit

Venturi / Ultrasonic Comparison

- At 20 MGD the Venturi is +/- 1% to 2%
- This would be .2 MGD to .4 MGD
- The Differential Pressure Transmitter inaccuracy is .25% to .5%
- This would be .05 MGD to .1 MGD
- At 20 MGD the Flexim is +/- 1%
- This would be .2 MGD
- The typical difference between the meters was in the range of 0.38 MGD to 0.20 MGD

Application - Updating

- Local Water Plant in Cleveland, Ohio
- Multiple 48" Cast Iron Water Lines Dispersing Water to Different Areas of the City
- 70+ Years Old
- 60' Below Ground Level
- Worn/Failed Valves
- Tight Work Area with Limited Line Access: Direct Mode
- Pre-tested with Portable Unit

Application – New Installations

- Local Waste Water Plant in Cleveland, Ohio
- 94MGD Average 400MGD Capable
- 300,000 Residents/Businesses
- 74 Meters on Line Sizes 10" to 48"
- Expansion Replacing Venturi Meters (Clogging Issues)
- Too much work to clean and meters were disregarded
- Dual Channel / Dual Beam Meters for Short Run

Application – Venturi Replacement

Figure 1: Existing 48" Venturi meter

Figure 2: 2path – 4beam Ultrasonic On 48" spool piece

Additional Highlights

- Multiple Beam approach to overcome straight run
- More consistent, more repeatable than the venturi meters
- Non-intrusive: No contact, No shutdown, No pressure loss, (+12 years and counting in operation)
- Permanent Coupling vs. Traditional Re-greasing
- Consistent, Reliable Data for process control, monitoring and optimization

- Paul McGuire, Senior Project Engineer, NEORSD

Application – Retrofitting

- Small Water Plant in Ohio
- New Magnetic Flowmeter in Pit
- Improper installation and cable extending
- Meter reading -300GPM to 400GPM
- Serious Problem: Triggering Alarms, Questionable Water Treatment
- Would Require Meter to be Returned to Factory
- Large Job for Small Water Plant

Application – Mag Retrofit

Figure 1: Located in pit

Figure 2: Submersible M Sensors Existing meter left in line

Application – Mag Retrofit

- Large WWTP in Ohio
- New Magnetic Flowmeter for Chemical Feeds
- Flow Much Lower (9 -16 GPH)
- Meter reading 0
- Serious Problem for Monitoring Chemical
- Would Require Re-Engineering
- Simple Application for Flexim
- Existing Meters left in the Line

Application – Mag Retrofit

Figure 1: Magnetic Flowmeters

Figure 2: Flexim Flowmeters with Q Sensors in Direct Mode

Application – Optimization

- VAMC Cleveland, Ohio
- 1.38 Million SQFT
- Over 1,700,000 Outpatient Encounters
- Thermal, Domestic Water (Main lines, Makeup water)
- 51 Meters

Application – Pump Stations

- Easy to Outfit Existing and New Stations
- 4" 12" Typical Installation, Vertical Down
- M Sensors / Ductile Iron Concrete Lined Pipe
 - Single Channel and Dual Channel Applications
 - Nanodac Recorder Available

Application – Pump Station

- Large Waste Water Plant in Southern Ohio
- (4) 3,000 GPM Rated Pumps
- 18" Ductile Iron Concrete Lined Pipe
- Beyond Capability of Low Cost Ultrasonic Meter
- Tested and Replaced

Application – Pump Stations

Figure 1: Low Cost Ultrasonic Reading 0.00 GPM. Advanced Technology Reading 2,960 GPM

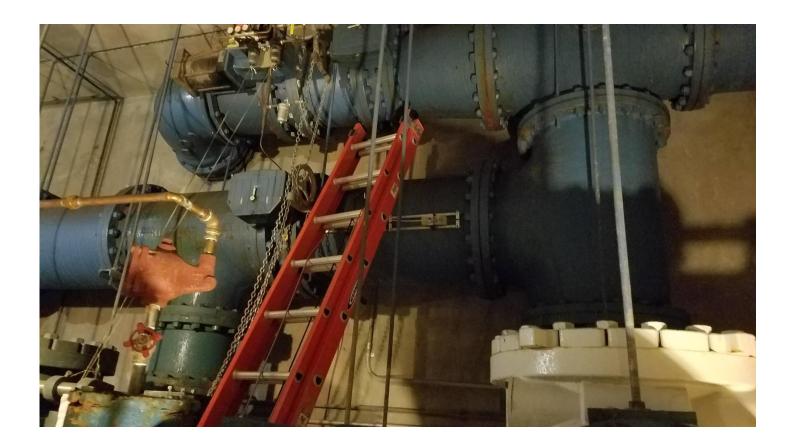


Figure 2: 18" Ductile Iron Line, G Sensor in Direct Mode next to Existing Low Cost Sensor

Application – Tracking 30% Solids

- Greater Cincinnati Metropolitan Sanitary District
- 10" Ductile Iron Line
- Schwing Pump (piston)
- Large Process to Estimate and Report Flow

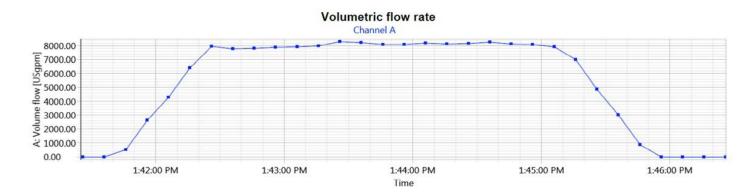
Station Name	TOLEDO - COLLINS PARK			
	F601 w/ G			
Transmitter	SENSORS			
S/N Meter	F 601 -06010961			
K-factor	n/a			
Freq full scale	n/a			

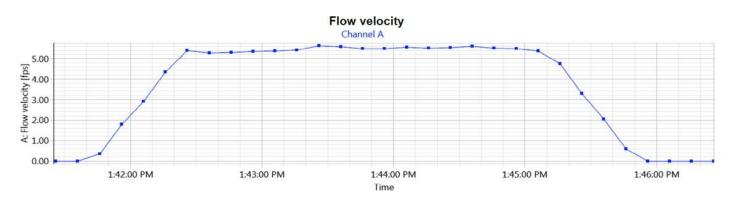
Company	CHALTRON SYSTEMS
Location/ Tag#	24" DUCTILE IRON
Firmware Version	6.28
K-factor inverse	n/a
Computed SOS	1463.4 m/s

11/2/2017	(m/d/yyyy)		
1:41:25 PM	(h:mm:ss tt)		
00:05:00	(hh:mm:ss)		
31	(Samples)		
ERIC PAPA			

Met	er Diagnostics				
Quantity	Unit	A			
SCNR	dB	38.48			
SNR	dB	42.19			
Gain	dB	68.43			
Amplitude	%	53.45%			
Quality	%	99.10%			
Vari.time	%	0.00%			
Vari.amplitude	%	2.00%			
Sound speed	m/s	1463.4			
Flow velocity	fps	3.64			

Meter Pr	ogramn	ned Data
tv	Unit	А

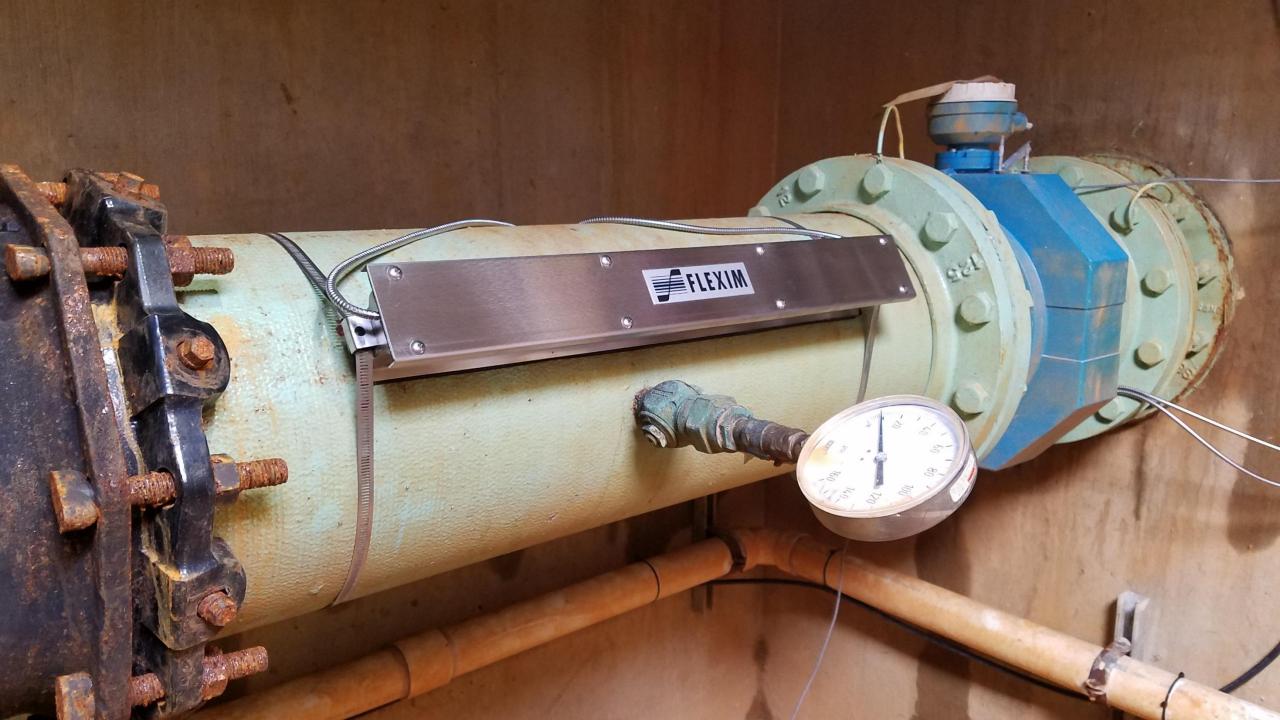

Test Date Test Time

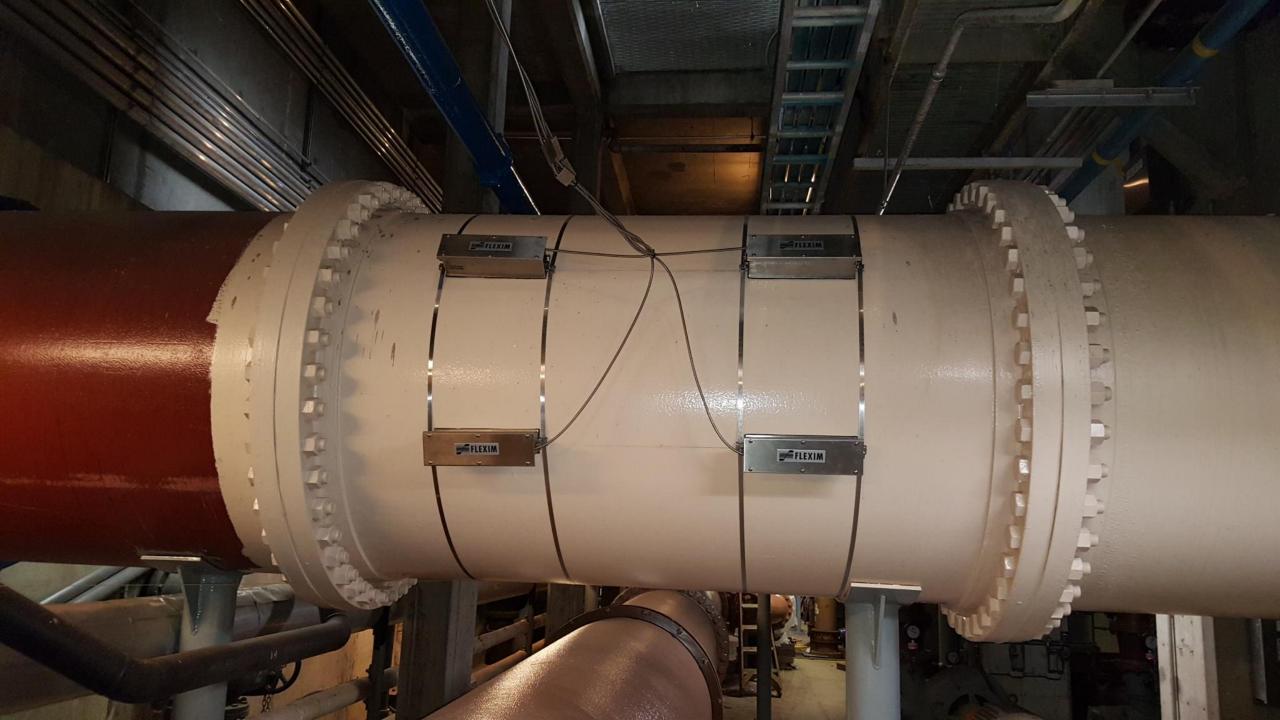

Test Duration

Test Samples

Technician

Quantity	Unit	A
Outer Diameter	inch	25.800
Wall thickness	inch	0.440
Wall material		Ductile Iron
Roughness	inch	0.079
Fluid		Water
Fluid SOS	m/s	1463.4
Fluid temp.	°F	57.9
Fluid pressure	psi(a)	14.504
Transducer S/N		CDG1NZ772771
Sound paths		2
Transducer distance	inch	14.551
Volume Units		USgpm
Damping	s	30
Logging enabled		Yes
Storage Mode		Sample
Storage Rate	s	10
Ringbuffer		Yes
Add. Diagnostics		Yes
Cutofflow +	fps	0.16
Cutofflow -	fps	0.16





Ultrasonic Application Advantages

- Non-intrusive Solution (no wetted parts, no wear and tear, no pressure losses)
- No process interruption for installation
- Virtually maintenance free
- No internal pressure drops
- Extreme precision and accuracy
- Cost effective
- Easy to "fix" other meter technology problems by retrofitting or replacing

