Nutrient Optimization: Why? How? What?

> Operator Training Committee of Ohio Compliance Workshop Columbus, OH October 17, 2017

Grant Weaver, PE & wastewater operator President CleanWaterOps.com, an ERG subcontractor

Nutrient Optimization: Why, How & What

Why

Facility Planning solutions can be very expensive Optimizing existing facilities is often quicker and more sustainable How

Create optimal habitats for N&P removal

What: Case Studies

Chinook, Montana Conrad, Montana Cookeville, Tennessee Palmer, Massachusetts

Cost of Nutrient Removal

	Effluent Concentration	Capital Cost (\$/MGD)	O&M Cost (\$/yr/MGD)
Nitrogen	3-8 mg/L	0-\$98 million	0-\$1.8 million
Phosphorus	1 mg/L or less	\$30,000-\$22 million	\$40,000-\$2.3 million
	1 mg/L +	\$50,000-\$13 million	0-\$1.5 million

Source: EPA 2015 "A Compilation of Cost Data Associated with the Impacts and Control of Nutrient Pollution"

Change day-to-day operations to create ideal habitats for bacteria to remove Nitrogen & Phosphorus

Phosphorus Removal: What an Operator needs to know

ONE. Convert soluble phosphorus to TSS ... Biologically Chemically

TWO. Remove TSS

Biological Phosphorus Removal

Step 1: prepare "dinner"

VFA (volatile fatty acids) production in anaerobic/fermentive conditions

Step 2: "eat"

Bio-P bugs (PAOs) eat VFAs in anaerobic/fermentive conditions ... temporarily releasing more P into the water

Step 3: breathe and grow

Bio-P bugs (PAOs) take in almost all of the soluble P in aerobic conditions as they grow and reproduce

Example: effluent phosphorus (mg/L) Before Phosphorus Removal (Biological or Chemical)

Example: effluent phosphorus (mg/L) After Phosphorus Removal (Biological or Chemical)

TSS Removal Requirements

Since all but 0.05 mg/L of the soluble Phosphorus can be converted to TSS Phosphorus (Biologically and/or Chemically)

And, because approximately 5% of Effluent TSS is Phosphorus

... To meet a total-P limit, the effluent TSS needs to be kept to the max TSS number shown in the table.

P Limit	max TSS	
0.1	1	
0.2	3	
0.3	5	
0.4	7	
0.5	9	
0.6	11	
0.7	13	
0.8	15	
0.9	17	
1.0	19	
1.1	21	
1.2	23	
1.3	25	
1.4	27	
1.5	29	

Phosphorus Removal without Facility Upgrades

	<u>t-P Before</u>	<u>t-P After</u>
Conrad, MT	2.1	0.2
Chinook, MT	2.8	0.3
Westfield, MA	1.0	0.5*
Palmer, MA	0.65	0.65*
Cookeville, TN	3	0.8
Montague, MA	3	0.9
Athens, TN	3	1.8*

*chemical reduction of 50% or more

Biological Phosphorus Removal: Mainstream Flow Fermentation Processes

Bio-P Removal: Mainstream Fermentation Process

Biological Phosphorus Removal: Sidestream Flow Fermentation Processes

Sidestream Biological-P Removal: Sludge Storage

Sidestream Biological-P Removal: Sludge Storage

Biological Phosphorus Removal: Combined Sidestream & Mainstream Fermentation

Bio-P Removal: Sidestream & Mainstream Fermentation

Optimizing Bio-P Removal: Mainstream, Sidestream or Combination Fermentation

Anaerobic Tank

~1 hour HRT* ORP of -200 mV* 25 times as much BOD as influent ortho-P* Ortho-P release (3-4 times influent ortho-P)*

Aeration Tank

High DO / High ORP pH of 6.8+* Ortho-P concentration of 0.05 mg/L*

*Approximate: Every Plant is Different

Ammonia Removal Ammonia (NH₄) is converted to Nitrate (NO₃)

Ammonia (NH₄)

Oxygen (O₂) Ammonia (NH₄)

Nitrification: Ammonia (*NH*₄) *is converted to Nitrate* (*NO*₃)

Oxygen Rich Habitat

MLSS* of 2500+ mg/L (High Sludge Age / MCRT / low F:M) ORP* of +100 to +150 mV (High DO) Time* (high HRT ... 24 hr, 12 hr, 6 hr) Low BOD

Consumes Oxygen Adds acid - Consumes 7 mg/L alkalinity per mg/L of $NH_4 \rightarrow NO_3$

*Approximate, each facility is different.

Biological Nitrogen Removal: Next, The Nitrate (NO₃) created during Nitrification ... is converted to Nitrogen Gas (N₂)

Nitrate (NO₃)

BOD Nitrate (NO₃)

Denitrification: Nitrate (NO₃) is converted to Nitrogen Gas (N₂)

Oxygen Poor Habitat

ORP* of -100 mV or less (DO < 0.3 mg/L) Surplus BOD* (100-250 mg/L: 5-10 times as much as NO₃) Retention Time* of 45-90 minutes

Gives back Oxygen Gives back Alkalinity (3.5 mg/L per mg/L of $NO_3 \rightarrow N_2$)

*Approximate, each facility is different.

	1. Nitrification	2. Denitrification
Nitrogen Removal	Ammonia Removal	Nitrate Removal
	NH₄→NO ₃	$NO_3 \rightarrow N_2$
DO: Dissolved Oxygen	>1 mg/L	<0.3 mg/L
ORP: Oxygen Reduction Potential	>+100 mV	<-100 mV
MLSS	>2500 mg/L	>2500 mg/L
HRT (Hydraulic Retention Time)	>6 hr	~1 hr
BOD: Biochemical Oxygen Demand	<20 mg/L	>100 mg/L
Alltalinity	>60 mg/L	NA
Аіканніцу	Alkalinity is lost	Alkalinity is gained

Notes:

> means "greater than"
< means "less than"
~ means "approximately"

All numbers are "rules of thumb"
Nitrogen Removal without Facility Upgrades

	<u>t-N Before</u>	<u>t-N After</u>
Suffield, CT	7	2
Chinook, MT	26	3
Hardin, MT	18	4
Conrad, MT	35	5
Montague, MA	30	5
Cookeville, TN	25	5
Upton, MA	22	6
Plainfield, CT	25	10
Colchester-East Hampton	n, CT 24	12
Big Sky, MT	25	14
Libby, MT	32	21

Technology!

Ammonia (NH₄) Removal

Target: $NH_4 < 0.5 mg/L$

Nitrate (NO₃) Removal

Target NO₃ in Anoxic Tank: 0.5-2 mg/L

MLE Process Control:

Proper Internal Recycle Rate; not too much / not too little. ORP of +100 mV in Aerobic Zone for Ammonia (NH_4) Removal. ORP of -75 to -150 mV in Anoxic Zone for Nitrate (NO_3) Removal. Enough BOD to support Nitrate (NO_3) Removal.

Sequencing Batch Reactor (SBR) Ammonia (NH₄) Removal: Nitrification

Sequencing Batch Reactor (SBR) Nitrate (NO₃) Removal: Denitrification

Sequencing Batch Reactor (SBR) Settle, Decant & Waste Sludge

SBR Process Control: Establish cycle times that are long enough to provide optimal habitats.

And, short enough to allow all of the flow to be nitrified and denitrified.

Optimizing SBR cycle time

<u>Too short</u>

Will not reach +100 mV for Ammonia (NH_4) Removal. Will not reach -100 mV for Nitrate (NO_3) Removal. Note: Temperature and BOD affect Air OFF cycle.

<u>Too long</u>

Wastewater will pass through tank before all Ammonia (NH_4) converted to Nitrate (NO_3). And, before all Nitrate (NO_3) is converted to Nitrogen Gas (N_2).

Just right

Good habitats ...

ORP of +100 mV for 60 minutes

And, ORP of -100 mV for 30 minutes.

Bonus: Changing conditions will serve as a selector.

1

Apro ?

and the second second

F

~

.0.

- A C

Jul16

0.0

Jan11 Jul11 Jan12 Jul12 Jan13 Jul13 Jan14 Jul14 Jan15 Jul15 Jan16

Conrad, Montana

2011-2016

Conrad, Montana

2011-2016

Begin Phosphorus Optimization

0.0 Jan11 Jul11 Jan12 Jul12 Jan13 Jul13 Jan14 Jul14 Jan15 Jul15 Jan16 Jul16

Cookeville, Tennessee

Palmer, Massachusetts

4

Healt

alse a

10005

0

調測

Comments & Questions

