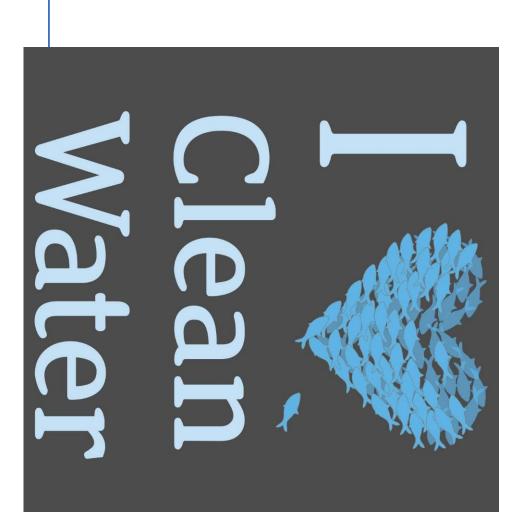
#### Limitations and Impact on Water **NPDES Systems – Nutrient** Quality

OTCO Wastewater Workshop March 6, 2019 Brian Hall, P.E. Assistant Chief




### Today's Discussion

- A. Clean Water Act Water Quality Standard Overview
- B. Ohio's Nutrient Water Quality Standards
- C. Ohio's NPDES Limitation Process
- D. Future Nutrient Standard Changes



### A - Water Quality Standards (WQS) Overview

- Who Establishes
   WQS
- What are WQS



### Who sets WQS?

- U.S. EPA publishes national recommendations
- States establish standards under the Clean Water Act
- U.S. EPA must approve State standards
- U.S. EPA must propose and promulgate federal standards that meet CWA requirements standards for States that fail to adopt



### What are WQS?

- Statement of how clean we want our watersthree elements
- Use Designations
- Water supply, recreation, fish and wildlife
- <u>Criteria</u>
- narrative and numeric criteria and values derived from methods described in rule
- Antidegradation
- Found in Ohio Administrative Code

3745-1



#### Assigned in 3745-1-08 to -32 **Defined in 3745-1-07**; **Use Designations**

- Aquatic Life
- Warmwater
- Exceptional warmwater
- Modified warmwater
- Seasonal salmonid
- Coldwater
- Limited resource water

- Water Supply
- Public
- Agricultural
- Industrial
- Recreation
- Bathing waters
- Primary contact
- Secondary contact



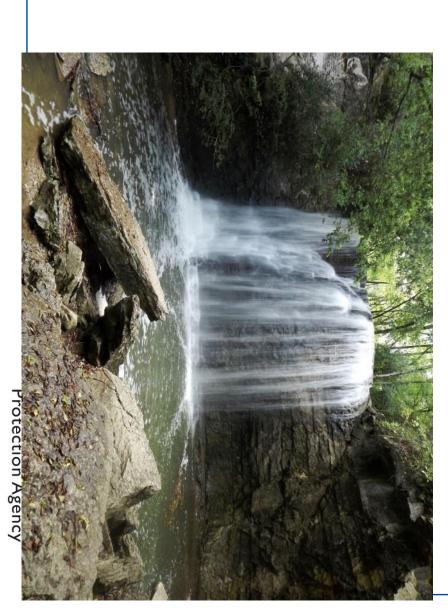
Table 9-1. Use designations for water bodies in the Scioto river drainage basin.

|                                                                   |        |        |        | U                       | se                              | Use Designatio | Sig    | ng | tic             | ns |        |      |            |                                                 |
|-------------------------------------------------------------------|--------|--------|--------|-------------------------|---------------------------------|----------------|--------|----|-----------------|----|--------|------|------------|-------------------------------------------------|
| Water Body Segment                                                |        |        | Α      | Aquatic Life<br>Habitat | <sub>l</sub> uatic L<br>Habitat | .ife<br>t      |        |    | Water<br>Supply | er | R      | ecre | Recreation | Comments                                        |
|                                                                   | R<br>R | M<br>M | W<br>W | M                       | s s                             | W C            | L<br>R |    | W               |    | ₩<br>B |      |            |                                                 |
|                                                                   | W      | Н      | Н      | Н                       |                                 | Н              | _      | S  | _               | S  |        | R    | R          |                                                 |
|                                                                   |        |        |        |                         |                                 |                |        |    |                 |    |        |      |            |                                                 |
| Scioto river - at RM 33.6                                         |        | +      |        |                         |                                 |                |        | 0  | +               | +  |        | +    |            | PWS intake - U.S. Enrichment (emergency intake) |
| - Greenlawn dam (RM 129.8) to the mouth                           |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| - Olentangy river (RM 132.3) to Greenlawn dam                     |        |        |        | +                       |                                 |                |        |    | +               | +  |        | +    |            | ECBP ecoregion - impounded                      |
| - Dublin rd. WTP dam (RM 133.4) to the Olentangy river (RM 132.3) |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| - O'Shaughnessy dam (RM 148.8) to the Dublin rd. WTP dam          |        | +      |        |                         |                                 |                |        | +  | +               | +  |        | +    |            | PWS intake - Columbus                           |
| - at RM 180.04                                                    |        | +      |        |                         |                                 |                |        | 0  | +               | +  |        | +    |            | PWS intake - Marion                             |
| - all other segments                                              |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| Pond creek                                                        |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| Dry run                                                           |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| Wolfrun                                                           |        | *      |        |                         |                                 |                |        |    | *               | *  |        | *    |            |                                                 |
| Carroll run                                                       |        | *      |        |                         |                                 |                |        |    | *               | *  |        | *    |            |                                                 |
| Sheep Pen run                                                     |        | *      |        |                         |                                 |                |        |    | *               | *  |        | *    |            |                                                 |
| Scioto Brush creek - headwaters to st. rte. 32 (RM 33.55)         |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| - st. rte. 32 to the mouth                                        |        |        | +      |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| Duck run                                                          |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |
| Sweeney run                                                       |        |        | +      |                         |                                 |                |        |    | *               | *  |        | *    |            |                                                 |
| McCullough creek                                                  |        | +      |        |                         |                                 |                |        |    | +               | +  |        | +    |            |                                                 |

## Water Quality Criteria

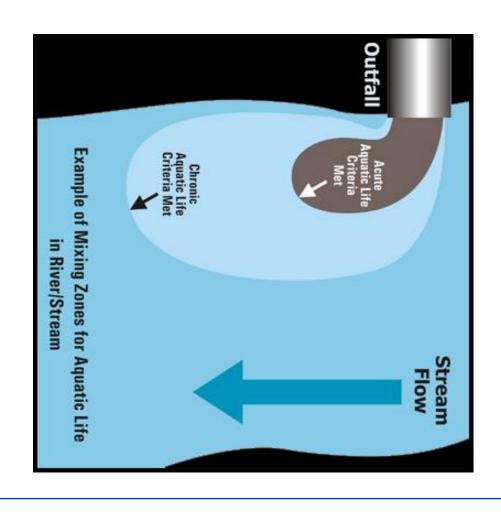
- 1. Narrative 3745-04
- Free From
- 2. Numerical 3745-33 to -37
- Aquatic life (chemical and biological)
- Human health & Wildlife
- Water Supply
- Recreational & Aesthetics




### Antidegradation – National Program 3745-01-05

- Decision making process for proposed or expanding discharges & dredge/fill activities
- Levels of Protection
- Tier I existing uses must be protected (whether designated in rule or not)
- Tier II higher quality waters can be lowered only if a need is shown, but must maintain use
- Tier III Outstanding national resource waters, water quality cannot be lowered \*




### **B – Ohio's Nutrient Water Quality Standards**

- Mixing Zones
- Numerical Criteria
- Nitrogen
- Ammonia
- Nitrate + Nitrite
- Total Phosphorus
- Antidegradation (BADCT)



## Stream Mixing Zones

- Acute Impact (max)
- <u>Inside</u> Mixing Zone
  <u>Maximum</u> (IMZM)
- <u>Outside</u> Mixing Zone <u>Maximum</u> (OMZM)
- Chronic Impact (ave)
- Outside Mixing Zone
   Average (OMZA)





## Example - Receiving Stream



- Pristine Creek, Ohio River Basin
- Aquatic Life = Warmwater
- Critical Conditions Winter water temp 10 <sup>c</sup>, pH 8
- Water Supply = Public, Agriculture, Industrial
- Recreation = Primary



## Ammonia - Aquatic Life

3745-1-35

Table 35-1. Page 1 of 2 Statewide water quality criteria for the protection of aquatic life.

|                    | Chlorine (SSH <sup>4</sup> ) | Chlorine (LRW) | (WWH, EWH, MWH, CWH) | Chlorine | Cadmium <sup>8</sup> | Arsenic | Arsenic | Anunonia-N (LRW) | Ammonia-N (CWH) | Ammonia-N (SSH <sup>4</sup> ) | Anunonia-N (MWH) | Anunonia-N (EWH) | Ammonia-N (WWH) | Chemical           |  |
|--------------------|------------------------------|----------------|----------------------|----------|----------------------|---------|---------|------------------|-----------------|-------------------------------|------------------|------------------|-----------------|--------------------|--|
|                    | R                            | R              | R                    |          |                      | $TR^7$  | ď       | Т                | Т               | Η                             | Н                | Т                | Τ               | Form <sup>1</sup>  |  |
|                    | μg/l                         | µg/l           | μg/l                 |          |                      | µg/l    | l/g/l   | mg/1             | mg/1            | mg/1                          | mg/1             | mg/1             | mg/1            | Units <sup>2</sup> |  |
|                    | 1                            | 1              | 1                    |          |                      | 680     | 680     | 1                | 1               | 1                             | 1                | !                | 1               | $IMZM^3$           |  |
|                    | ь                            | 19             | 19                   |          |                      | 340     | 340     | Table 35-2       | Table 35-4      | Table 35-4                    | Table 35-2       | Table 35-3       | Table 35-2      | OMZM <sup>3</sup>  |  |
| Onio Environmentai | ь                            | 1              | 11                   |          |                      | 150     | 150     | 1                | Table 35-8      | ш                             | Table 35-7       | Table 35-6       | Table 35-5      | OMZA <sup>3</sup>  |  |

Protection Agency

## Ammonia- WWH, OMZM

3745-1-35

Table 35-2.

Warmwater habitat, modified warmwater habitat and limited resource water outside mixing zone maximum total ammonia-nitrogen criteria (mg/l).

| 6<br>7<br>8<br>9                                                                | Temp. (°C)                                   |       |
|---------------------------------------------------------------------------------|----------------------------------------------|-------|
|                                                                                 | 3                                            | PH    |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 13.0<br>13.0<br>13.0<br>13.0                 | 6.5   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    |                                              | 6.7   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 13.0                                         | 6.9   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 13.0<br>13.0<br>13.0<br>13.0                 | 7.0   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 100                                          | 7.1   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    |                                              | 7.2   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 15.0                                         | 7.3   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 13.0                                         | 7.4   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 13.0<br>13.0<br>13.0<br>13.0                 | 7.5   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    | 13.0<br>13.0<br>13.0<br>13.0                 | 7.6   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    |                                              | 7.7   |
| 13.0<br>13.0<br>13.0<br>13.0                                                    |                                              | 7.8   |
|                                                                                 | 12.7<br>12.5<br>12.3<br>12.1<br>12.0<br>11.0 | 7.9   |
| 9.8<br>9.7<br>9.6<br>9.5                                                        | 10.6<br>10.5<br>10.3<br>10.1<br>10.1<br>9.9  | 8.0   |
| 7.8<br>7.8<br>7.7<br>7.6<br>7.6                                                 | 8.4<br>8.3<br>8.1<br>8.0<br>7.9              | 8.1   |
| 00<br>01<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 | 0000000                                      | 8.2   |
| 5.0<br>5.0<br>4.9<br>4.8                                                        | 5.4<br>5.2<br>5.1<br>5.1                     | 80    |
| 4.0<br>4.0<br>3.9<br>3.9                                                        | 43<br>42<br>41<br>41                         | <br>4 |



# Nitrate + Nitrite - Drinking Water

3745-1-33

|                                 |                   |                                      | NO         | OMZA <sup>3</sup>    |
|---------------------------------|-------------------|--------------------------------------|------------|----------------------|
| Chemical                        | $\mathrm{Form}^1$ | Form <sup>1</sup> Units <sup>2</sup> | Dri        | Drinking             |
|                                 |                   |                                      | Ohio river | Ohio river Lake Erie |
| Methyl bromide                  | T                 | $\mu g/1$                            | 48         |                      |
| Methylene chloride <sup>5</sup> | T                 | /8ո                                  | $5.0^{a}$  | 47                   |
| Nickel                          | TR                | /8ո                                  | 610        |                      |
| Nitrate-N + Nitrite-N           | T                 | 1/8ո                                 | 10,000ª    | 10,000               |
| Nitrite-N                       | T                 | µջ/1                                 | 1,000ª     |                      |
| Nitrobenzene                    | T                 | μ <u>ջ</u> /1                        | 17         |                      |
| Nitrosoamines <sup>5</sup>      | T                 | $\mu g/1$                            | 0.0080     |                      |
|                                 |                   | -                                    |            |                      |



## Nitrate + Nitrite - Aquatic life

- Nitrogen is also to be limited to the extent necessary to prevent nuisance growths
- Currently Ohio has no numerical nitrogen criteria for aquatic life/aesthetics
- Nitrogen limits to prevent nuisance conditions are determined on a case-by-case basis
- Using Ohio EPA, Association Between Nutrients, Streams, 1999 Habitat, and the Aquatic Biota in Ohio Rivers and



#### Total Phosphorus – Aesthetic Conditions

Table 37-1 Statewide water mality criteria for the protection against adverse sesthetic

| Phosphorus T mg/1 | Phenol T µg/1 | Oil & grease T mg/l | agents) | MBAS (foaming T mg/1 | 2,4-Dichlorophenol T μg/l | 2-Chlorophenol T μg/1 | Chemical Form <sup>1</sup> Units <sup>2</sup> |             | Table 27-1. Statewise water digmin criteria for the brotechon against anyerse gesinene |
|-------------------|---------------|---------------------|---------|----------------------|---------------------------|-----------------------|-----------------------------------------------|-------------|----------------------------------------------------------------------------------------|
| 1 c               | 1             | 1 -                 |         | 1                    | 1                         | 1 -                   | s <sup>2</sup> IMZM <sup>3</sup>              | conditions. | THETTA TOT THE PROJECT                                                                 |
| -                 | -             | $10^{b}$            |         | 0.50                 | -                         | -                     | OMZM <sup>3</sup>                             | •           | поп авашы ануст                                                                        |
| С                 | $1.0^{a}$     |                     |         | -                    | 0.3ª                      | $0.1^{a}$             | Drinking                                      |             | rac deament                                                                            |



## Total Phosphorus tootnote c

- Total phosphorus shall be limited to the extent necessary to
- nuisance growths and algae, weed, and slimes that result in a violation of the Administrative Code or, of the water quality criteria set forth in paragraph E of rule 3745-1-04
- for public water supplies, that result in taste or odor problems
- In areas where such nuisance growths exist, phosphorus discharges trom point sources determined significant:
- shall not exceed a daily average of one milligram per liter as total P,
- or such stricter requirements as may be imposed in accordance with the International Joint Commission
- Major Lake Erie Basin Dischargers have a 1 mg/l average per rule OAC 3745-33-06
- Currently Ohio has no numerical phosphorus criteria for aquatic life



## **Antidegradation BADCT**

Table 5-1. Best available demonstrated control technology for new sources discharging samtary wastewater.

| * E. coli is to be considered a design standard only. Effluent limitations will not be | n standard only. | nsidered a desig     | * E. coli is to be co |
|----------------------------------------------------------------------------------------|------------------|----------------------|-----------------------|
| n/a                                                                                    | 235 / 100 ml     | 126 / 100 m1         | E. coli*              |
|                                                                                        |                  |                      | chlorine              |
| 0.038 mg/1 (maximum)                                                                   | n/a              | e/u                  | Total residual        |
| 6.0 mg/1 (minimum)                                                                     | n/a              | n/a                  | Dissolved oxygen      |
|                                                                                        | 4.5  mg/1        | 3.0  mg/l            | (Winter)              |
| n/a                                                                                    | 1.5  mg/l        | $1.0  \mathrm{mg/1}$ | (Summer)              |
|                                                                                        |                  |                      | Ammonia               |
| III 61                                                                                 | 10 mg/1          |                      | solids                |
| n/a                                                                                    | 18 mg/l          | 12 mg/l              | Total suspended       |
| n/a                                                                                    | 15 mg/1          | $10  \mathrm{mg/1}$  | CBOD;                 |
|                                                                                        |                  |                      |                       |
|                                                                                        | Limit            |                      |                       |
|                                                                                        | Seven-day        | Limit                |                       |
| Maximum/Minimum Limit                                                                  | Daily or         | Thirty-day           | Parameter             |
|                                                                                        |                  |                      |                       |

incorporated into a control document based solely on this table



## C - Ohio's NPDES Permit Process

- NPDES Regulatory
   Framework
- NPDES Program Areas
- NPDES Permit Limitations
- Technology Based
   Effluent Limits (TBELs)
- Water Quality Based
   Effluent Limits (WQBELs)
- Monitoring



Ohio 2016 Integrated Water Quality Monitoring and Assessment Report



Division of Surface Water Final Report

October 2016

## NPDES Regulatory Framework

- (NPDES) National Pollutant Discharge Elimination System
- Authorized by Clean Water Act Section 402, Ohio Revised Code 6111.03
- Regulated under 40 CFR , OAC 3745
- Do I need an NPDES permit?
- pollutants

point source

waters of the state



## NPDES Program Areas

- Program Authority
- US EPA Lead
- States, Territories, Tribes Lead
- 5 Areas of Delegation (Individual, General, Pretreatment, Federal Facilities, Sewage Sludge)
- Program Areas
- Municipal Sources (POTW, Pretreatment, Sludge, Wet Weather, MS4)
- Non-Municipal Sources (Process, Non-process, Storm Water, CAFOs, Vessels)
- Facility Designation
- Major (Muni > 1MGD, Non-Muni rating sheet)
- Minor
- Permit Types <u>Individual</u> and <u>General</u>



#### **Develop TBELs**

- Technology Based Effluent Limits (TBELs)
- Levels Playing Field
- Based on Industry Categories
- 56 categories
- Different Control Levels
- BPT, BCT, BAT, NSPS
- Applying Effluent Guidelines
- 40 CFR 400-471
- New or Existing Source
- Many are Production Based (lb/day)



### Develop WQBELs

- Water Quality Based Effluent Limits (WQBELs)
- Determine Water Quality Standards
- Characterize Effluent & Receiving Water
- Calculate Parameters
- Apply Reasonable Potential



# Develop WQBELs — Water Quality Standard

- WQS Components
- Designated Uses =
- Warm Water Habitat
- Water Supply Drinking, Agriculture, Industrial
- Primary Recreation
- Numeric and Narrative Criteria -
- Antidegradation
- General High Quality Water



## Develop WQBELs - Characterize

- Identify Pollutants of Concern Identified in 303(d) list - impaired or threatened
- **Identify Critical Conditions**
- Low Flow, Temp, pH, hardness
- **Model Receiving Water**
- Simple (mass balance)
- Complex when interactive dischargers
- Calculate Parameters



# WQBEL Example – Mass Balance



Mass (kg/day) = Flow (Q in cfs) \* Pollutant (C in mg/l) QrCr = QsCs + QdCd

Qs = critical upstream flow

Cs = upstream concentration of pollutant

Qd = discharge flow

Cd = discharge concentration of pollutant

Qr = downstream flow

Cr = water quality criterion of pollutant





The following values are known for ABC Inc., and Pristine Creek:

$$= 1.20 cfs$$

$$= 0.55 \text{ cfs}$$
  
=  $0.55 + 1.2 = 1.75 \text{ cfs}$ 

$$= 1.0 \text{ mg/l}$$

$$Cd = \frac{(1.75 \ cfs) \left(1.0 \frac{mg}{l}\right) - (1.20 \ cfs) \left(0.75 \frac{mg}{l}\right)}{0.55 \ cfs}$$

Cd = 1.5 mg/l of pollutant



## Apply NPDES Requirements

- Compare TBELs vs WQBELs
- Use the most stringent
- Determine Limitations
- **Apply Reasonable Potential**
- Which parameters to include
- Limit > 50% but < 100% of Existing Discharge, Monitoring
- Limit > 100% of Existing Discharge, Limit
- Include Monitoring Frequency



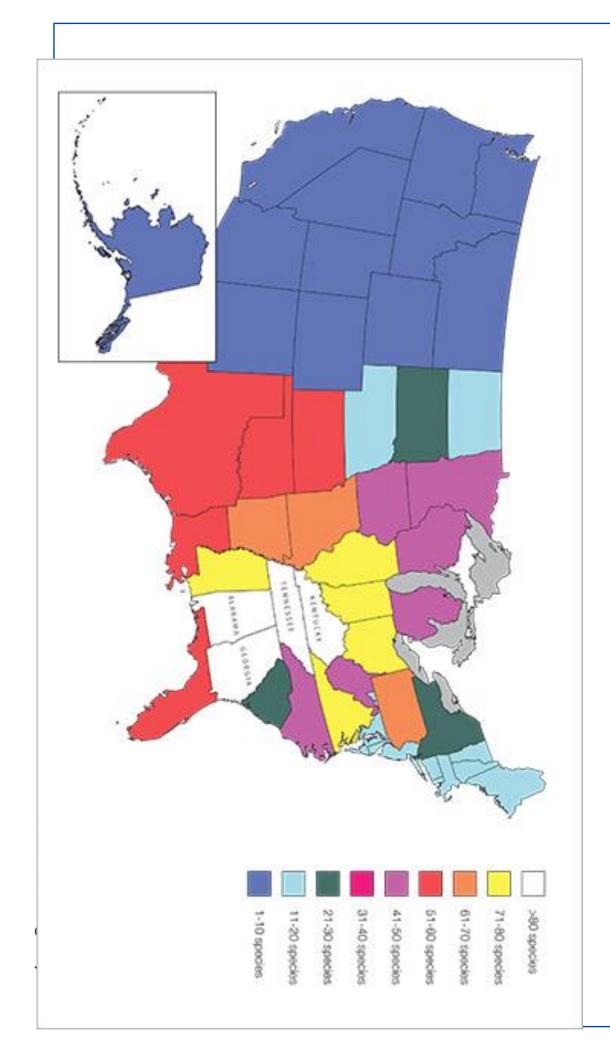
# NPDES Monitoring and Reporting

- Monitoring Conditions
- Monitoring Location (influent, internal, effluent)
- Monitoring Frequency
- Sample Collection (grab, composite)
- Analytical Methods
- 40 CFR 136
- Reporting Results
- Recordkeeping
- Sewage Sludge 5 yrs
- Everything else 3 yrs

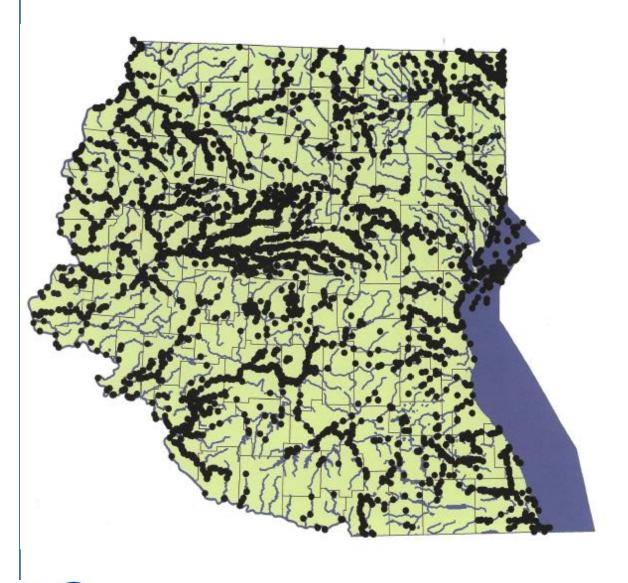


# **D – Future Nutrient Limit Changes**

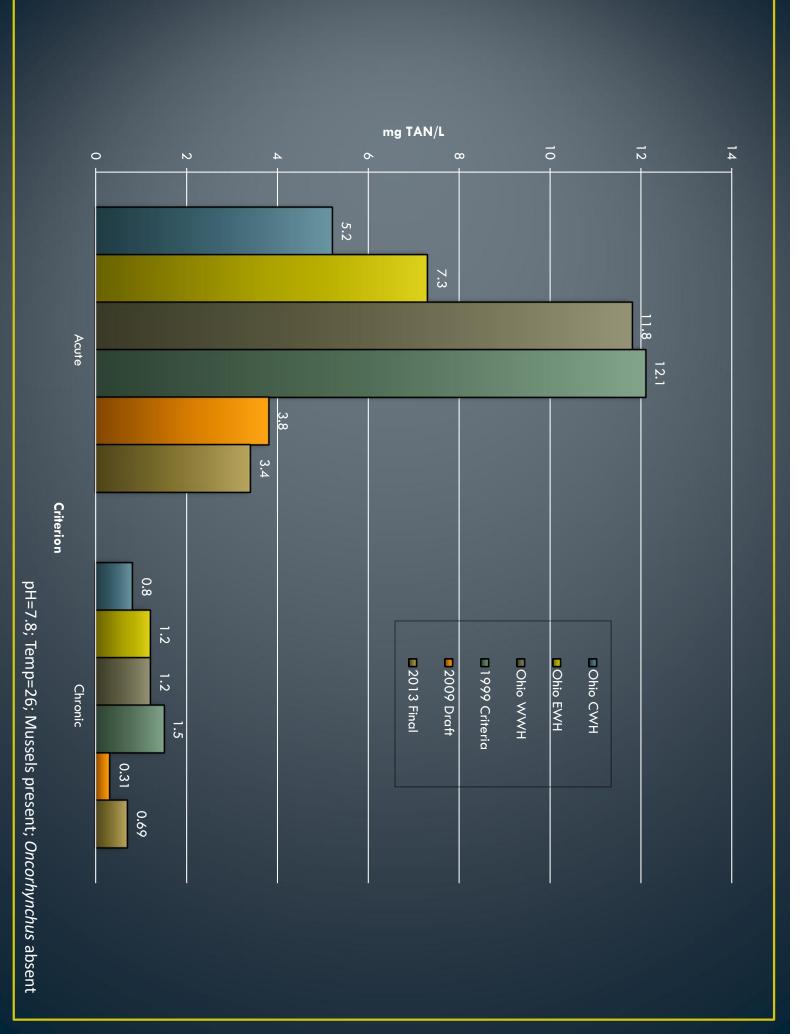
- New Ammonia Aquatic Life Criteria
- Ohio's Aquatic Life Nutrient Water Quality Standards
- **USEPA POTW Nutrient Removal** Technology Review




# New Ammonia Aquatic Life Criteria


- US EPA new Ammonia Criteria in 2013
- Includes toxicity data for mussels and snails
- One set of Criteria based on temp/pH
- US EPA Implementation Flexibility
- Items to consider temp/pH, variances, designated uses, dilution, compliance schedules
- May recalculate for site specific conditions (i.e. use different criteria if mussels are not present)
- US EPA Guidance on Mussel surveys




### Mussel Distribution



# Ohio EPA Mussel Collection Sites







# New Ammonia Aquatic Life Criteria

- Studies show that activated sludge WWTPs can attain new criteria
- however lower the margin of safety
- Proposed Criteria was part of the Ohio EPA 2016 Triennial Review
- Ohio EPA Rule development continues



#### Water Quality Standard (WQS) Ohio's Nutrient Aquatic Life

- Ohio has been working on WQS for Nitrogen and Phosphorus since early 2000's
- Different Nutrient Criteria for different media
- Small to Medium Sized Rivers Stream Nutrient Assessment Protocol (SNAP)
- Technical Advisory Committee 2013 -2015
- Two Parts to SNAP Water Quality Standard & Implementation
- Large Rivers
- Data collection and theory developed
- Early Stakeholder Outreach and concept presentation in Fall 2018
- Agency reviewing comments received
- Inland Lakes
- Part of proposed 2011 Inland Lakes Rule
- Reassessing Inland Lakes Criteria as part of Agency Triennial Rule Review



### **USEPA POTW Nutrient Removal** lechnology Review

- US EPA planning to conduct national study of **POTWs**
- Study Goals
- Obtain nationwide data on nutrient removal to help set realistic and achievable reduction targets
- Encourage improved & cost effective performance
- Forum to share best practices
- Questionnaire still under development



#### Questions?

#### Thank You

