Optimization Stories from the Field (3rd in a Series)

Marvin Gnagy, P.E., President **PMG** Consulting, Inc.

58th Annual Water Workshop March 10, 2020

Agenda

- Optimization practices used in the field
 - Short synopsis
- Optimization stories
 - Evaluations made
 - Technical solutions developed
 - Implementation and verification
 - Results achieved
- Questions

Optimization Practices Used in Field

- Define objectives/goals
 - Why should this project be initiated
- Develop baseline characteristics
 - Current operations and metrics
- Benchmark industry standards or best practices
 - Compare where things are to where you believe they should be
- Conduct gap analysis
 - How do I get to the goals?
 - Tools, capital, training, operating adjustments that might be needed to achieve the goals

Optimization Practices Used in Field

- Establish Implementation strategy
 - Capital needs
 - Tools, modeling, etc.
 - Operational changes
 - Adjustment protocols
 - Verification procedures
- Track progress against objectives/goals
 - Did you meet the objectives and goals?
 - Did you exceed the objectives and goals?
 - Did you improve water quality?
 - Did you improve performance?

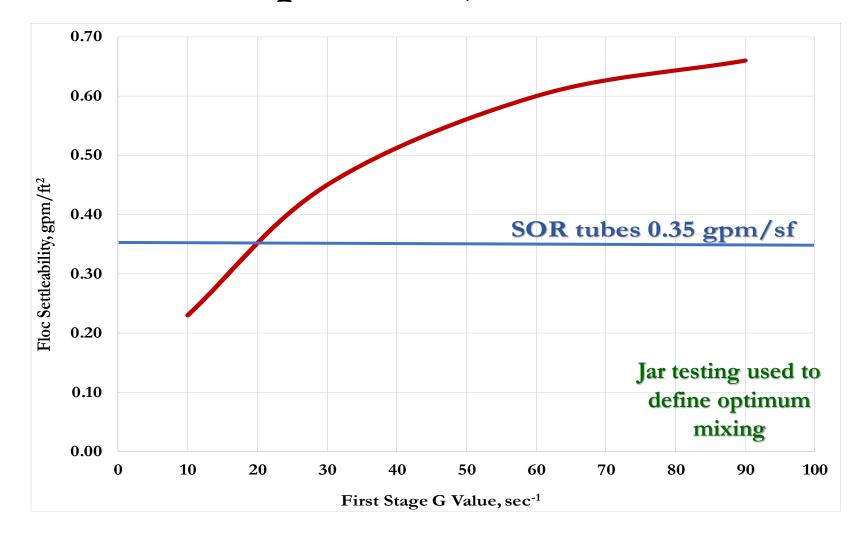
Attica, Ohio

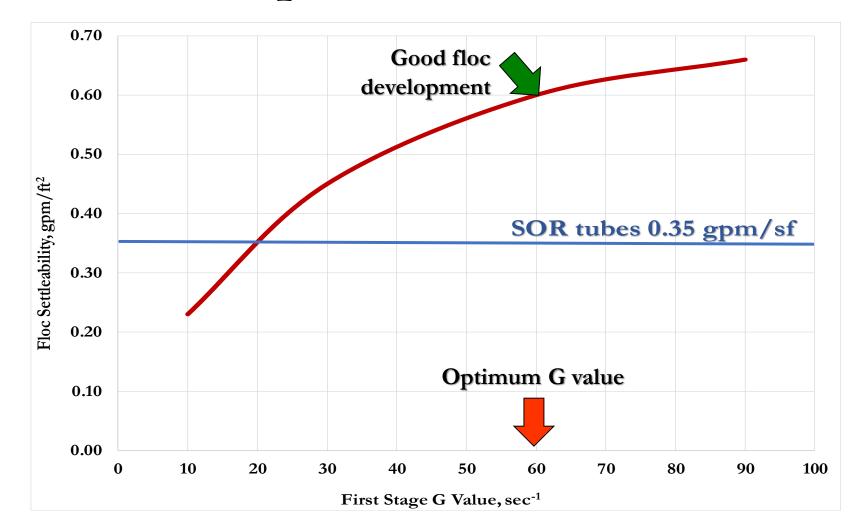
Attica, Ohio

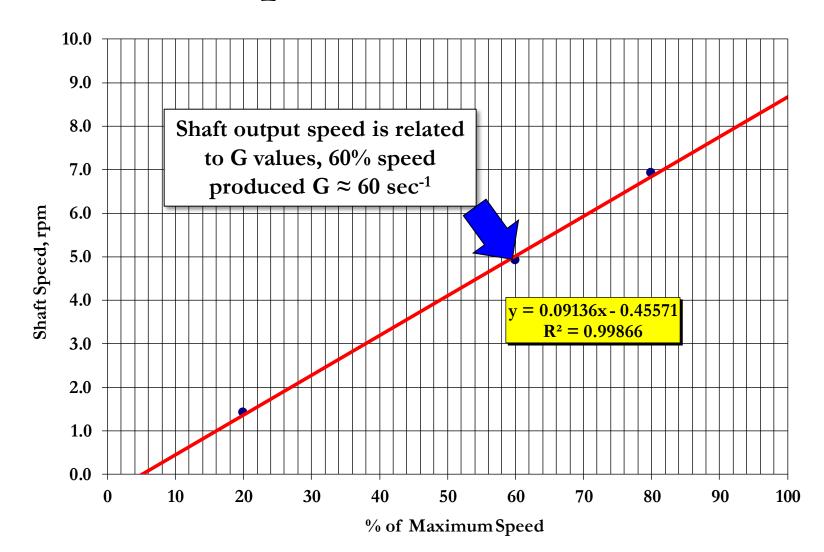
- 0.5 mgd surface water softening plant
 - Average daily production 0.105 mgd (5 hours per day)
- Small reservoir just north of plant
 - Moderate TOC, high hardness, seasonal algae
- Coagulation/pH adjustment/filtration
 - Chemical treatment
 - Solids handling
 - Disinfection and storage
- Finished water pumping to distribution system
 - 900 people

Attica, Ohio

2-stage flocculation


Tonka Unitized Treatment System (UTS)


Dual media filter 🚁


- Initial floc mixer operation
 - **20%** speed
 - G value stage 1 **10 sec**⁻¹
 - G value stage 2 7 sec⁻¹
- Floc characteristics
 - 0.6 mm diameter
 - Settleability 0.22 gpm/sf
- Settled water turbidity
 - 8 NTU
 - Poor water clarity
 - High filter solids loading

SOR tubes 0.35 gpm/sf

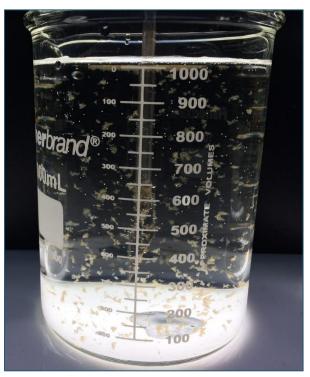
Cannot see tube settlers due to high settled turbidity (yes this is an actual picture)

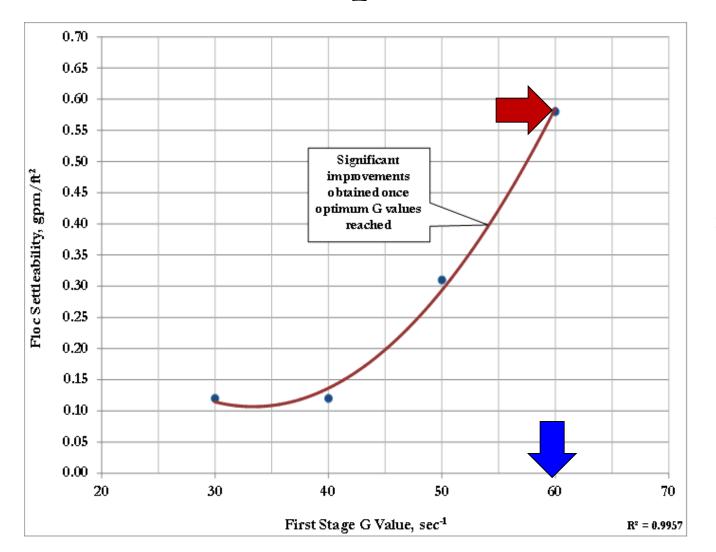
- Adjusted floc speed to 60%
 - G values
 - Stage 1 61 sec⁻¹
 - Stage 2 43 sec⁻¹
 - Floc size increase to 1.2 mm diameter
 - Floc settleability increased to 0.6 gpm/sf
 - Settled water turbidity decreased to 0.63 NTU
 - Extended filter run times

Greatly improved water clarity after one day

Buffalo Water

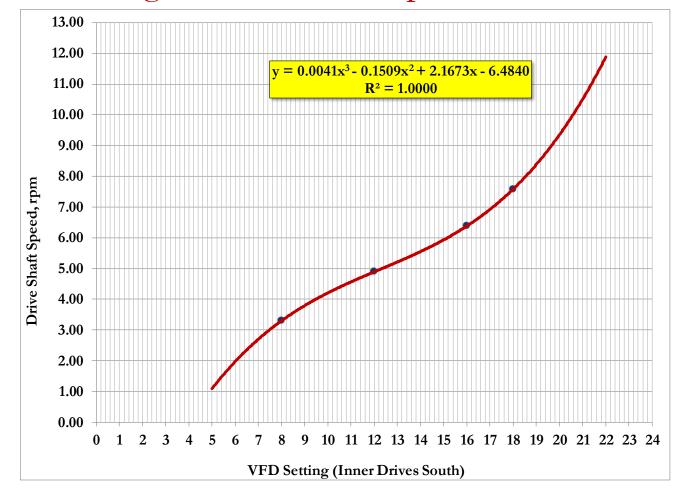
- 120 mgd surface water plant, originally 1922
 Average daily production 71 mgd
- Direct draw from eastern basin Lake Erie
 - Just upstream of Niagara River
- Coagulation/filtration plant
 - Chemical treatment
 - Solids handling
 - Disinfection and storage


Lake Intake Structure


- Finished water pumping to distribution system
 - 257,00 people

Buffalo Water

- SternPac coagulant used since 1990's
 - Raw water turbidity averages 2 NTU
 - 2016 Settled water turbidity averaged 0.28 NTU
 - Previous coagulant mixing improvements
 - Filter run times 72 hours
 - Low head loss
- Initial floc drive operations
 - 4 stages, VFDs
 - Stage 1 18 Hz, 30 G
 - Stage 2 12 Hz, 16 G
 - Stage 3 10 Hz, 14 G
 - Stage 4 8 Hz, 12 G



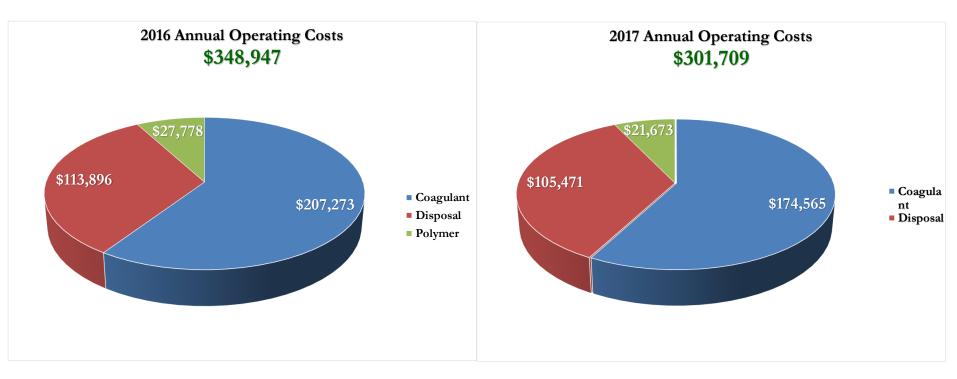
Jar testing suggested that higher G values in flocculation could improve floc development and settleability

Floc size improvement from 0.3 mm to 0.6 mm

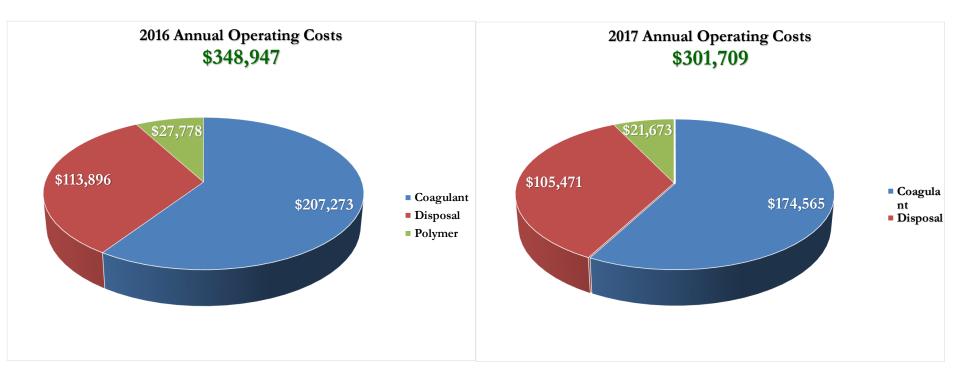
Floc drive settings and rotational speeds verified in field

- Floc speed adjustments suggested from G values calculations based on temperature variations
 - Stage 1 20.2 Hz, 60 G
 - Stage 2 19.4 Hz, 50 G
 - Stage 3 18.4 Hz, 40 G
 - Stage 4 16.6 Hz, 30 G
- Implemented floc speed adjustments late in 2016
 Adjust floc drive speeds twice per year (temperature-based)
- Verified target settled water turbidity
 0.7 NTU to 1.0 NTU

- Floc speed adjustments immediately led to 13% average reduction in coagulant dosage
 - 8.5 mg/L 2016
 - 7.4 mg/L 2017
 - Settled water turbidity averaged 0.83 NTU
 - Target turbidity 0.7 NTU to 1.0 NTU
- Coagulant reduction also impacted
 - Sludge dewatering
 - Polymer conditioning
 - Cake disposal
 - Operating costs



2016 Operating Metrics		
SternPac, mg/L	8.5	2016 Annual Operating Costs \$348,947 \$27,778
Dewatering polymer, lbs/ton	11.9	\$113,896 \$207,273
Cake production, dry tons/yr	173	
Cake solids, %	31.8	


Coagulant

DisposalPolymer

2016 Operating Metrics		2017 Operating Metrics	
SternPac, mg/L	8.5	SternPac, mg/L	7.4
Dewatering polymer, lbs/ton	11.9	Dewatering polymer, lbs/ton	10.5
Cake production, dry tons/yr	173	Cake production, dry tons/yr	154
Cake solids, %	31.8	Cake solids, %	32.7

Actual 13.5% reduction realized in annual costs

Actual 13.5% reduction realized in annual costs Annual cost savings \$47,238

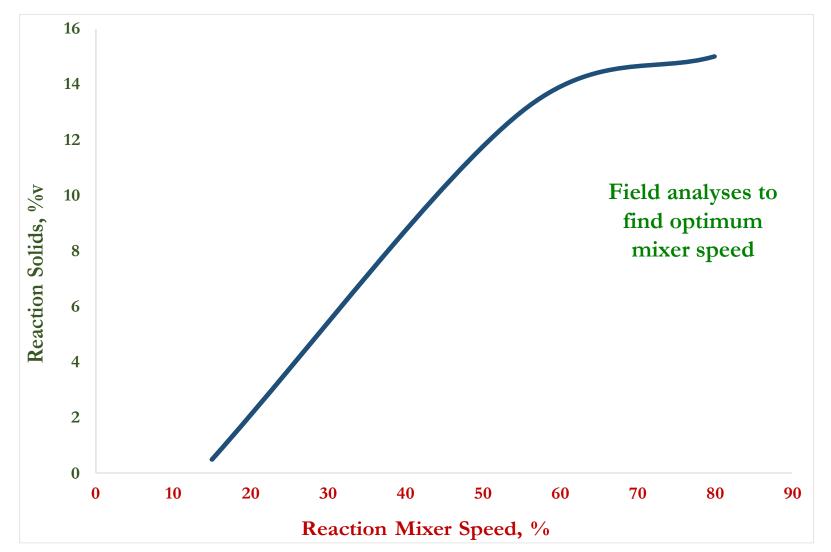
Fort Recovery, Ohio

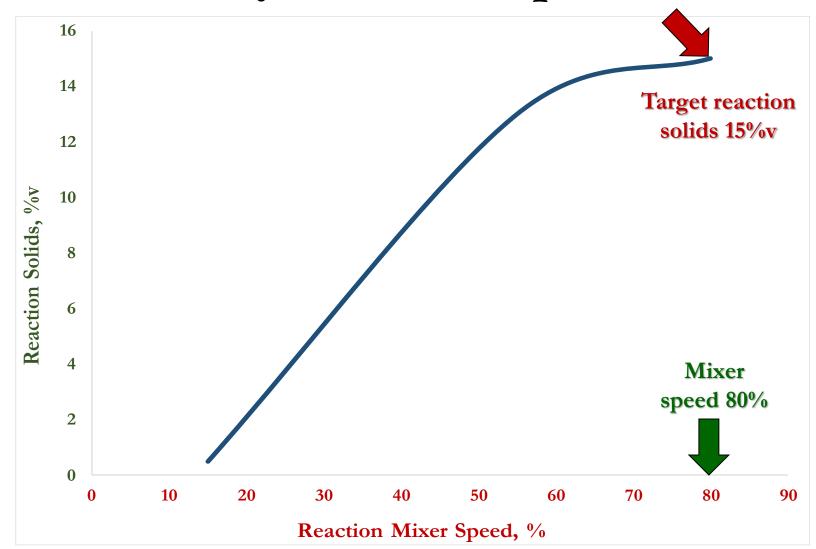
Fort Recovery


• 0.5 mgd ground water softening plant

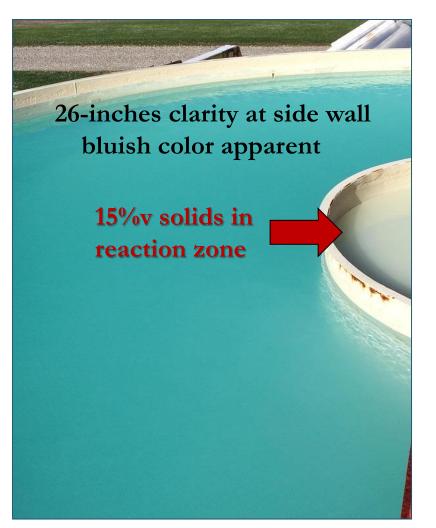
- Average daily production 0.11 mgd (7 hours per day)
- Two wells around treatment plant
 - 400 gpm, 370 gpm
- Aeration/lime-soda softening/recarbonation/filtration
 - Chemical treatment
 - Solids handling
 - Disinfection and storage
- Finished water pumping to distribution system
 - 1,400 people

Fort Recovery


Infilco (Suez) Accelator


Clarifier Optimization Initiative

- Poor water clarity (CaCO₃ and OH carryover)
 - 4-inches clear water at sidewall
 - Previously tried ferric chloride and anionic polymers to improve clarity
- No reaction solids observed
 - Mixer set at 15% speed since 1992 plant start up
- Excessive OH alkalinity
 - 105 mg/L average
- Likely need softening improvements as well
 - Average lime dosage <u>61 mg/L</u>
 - Average NaOH dosage <u>313 mg/L</u>



- Water clarity improved within 2 hours
- Reaction solids observed
- Mixer speed maintained 80%
- Review softening operations
 - Improve stability

Parameter	Raw Water	Clarified Water
Water pH, s.u.	7.31	11.27
CO_2 , mg/L	16	0
Hardness, mg/L	705	258
Total alkalinity, mg/L	163	109
Phenol alkalinity, mg/L	0	107
CO_3 alkalinity, mg/L	0	4
OH alkalinity, mg/L	0	105
Calcium, mg/L	405	172
Magnesium, mg/L	300	86

Lime 61 mg/L NaOH 313 mg/L

Fort Recovery Clarifier Optimization

- Computer modeling to simulate softening and recarbonation
 - Significant noncarbonate hardness (540 mg/L)
 - Review Lime/NaOH
 - Investigate Lime/soda ash
- Target hardness 240 mg/L
 - Too expensive to reduce hardness further
 - Finished water stability adjustments (excessive media growth)
 - Bi-annual filter rebuilding

Fort Recovery Clarifier Optimization

Hydroxide alkalinity - as CaCO₃

56 mg/L

Fort Recovery Water Treatment Plant					
SETTLED WATER QUALITY					
	After				
Remaining Compounds	softening,	Predicted Water Quality			
	meq/L				
Carbon dioxide	0.00	Calcium - as CaCO ₃			
Calcium carbonate	0.47	181 mg/L			
Magnesium hydroxide	0.46	Magnesium - as $CaCO_3$			
Calcium bicarbonate	0.00	79 mg/L			
Magnesium bicarbonate	0.00	Hardness - as CaCO ₃			
Magnesium carbonate	0.00	259 mg/L			
Calcium sulfate	2.77	Total alkalinity - as CaCO ₃			
Calcium chloride	0.00	64 mg/L			
Magnesium sulfate	0.37	Phenol alkalinity - as CaCO ₃			
Magnesium chloride	0.75	60 mg/L			
Calcium hydroxide (Excess)	0.37	Water pH			
TA/PA ratio	1.07	11.19			
CO ₃ /OH Ratio	0.15	Bicarbonate alkalinity - as CaCO ₃			
		0 mg/L			
		Carbonate alkalinity - as CaCO ₃			
		8 mg/L			

Lime dosage	62 mg/L
Caustic soda dosage	316 mg/L

Model matched current dosages and water quality relatively close to existing treatment on plant visits

Fort Recovery Clarifier Optimization

Hydroxide alkalinity - as CaCO₃

12 mg/L

Fort Recovery Water Treatment Plant					
SETTLED WATER QUALITY					
After softening, meq/L	Predicted Water Quality				
0.00	Calcium - as CaCO ₃				
0.47	173 mg/L				
0.23	Magnesium - as CaCO ₃				
0.00	67.3 mg/L				
0.00	Hardness - as CaCO ₃				
0.00	240 mg/L				
2.99	Total alkalinity - as $CaCO_3$				
0.00	35 mg/L				
0.47	Phenol alkalinity - as CaCO ₃				
0.65	23 mg/L				
0.00	Water pH				
1.51	10.75				
2.04	Bicarbonate alkalinity - as CaCO ₃				
	0 mg/L				
	Carbonate alkalinity - as CaCO ₃				
	24 mg/L				
	ED WATER After softening, meq/L 0.00 0.47 0.23 0.00 0.00 0.00 2.99 0.00 0.47 0.65 0.00 1.51				

Lime dosage	431 mg/L
Soda ash dosage	416 mg/L

Lime/soda ash dosages quite high to meet target hardness, increased operating costs

Fort Recovery Clarifier Optimization

SETTLED WATER QUALITY				
	After			
Remaining Compounds	softening,	Predicted Water Quality		
	meq/L			
Carbon dioxide	0.00	Calcium - as CaCO ₃		
Calcium carbonate	0.47	175 mg/L		
Magnesium hydroxide	0.46	Magnesium - as CaCO ₃		
Calcium bicarbonate	0.00	66 mg/L		
Magnesium bicarbonate	0.00	Hardness - as CaCO ₃		
Magnesium carbonate	0.00	240 mg/L		
Calcium sulfate	3.02	Total alkalinity - as CaCO ₃		
Calcium chloride	0.00	39 mg/L		
Magnesium sulfate	0.00	Phenol alkalinity - as CaCO ₃		
Magnesium chloride	0.86	35 mg/L		
Calcium hydroxide (Excess)	0.00	Water pH		
TA/PA ratio	1.12	11.14		
CO ₃ /OH Ratio	0.26	Bicarbonate alkalinity - as CaCO ₃		
		0 mg/L		
		Carbonate alkalinity - as CaCO ₃		
		8 mg/L		

Fort Decovery Water Treatment Dient

droxide alkalinity - as CaCO ₃

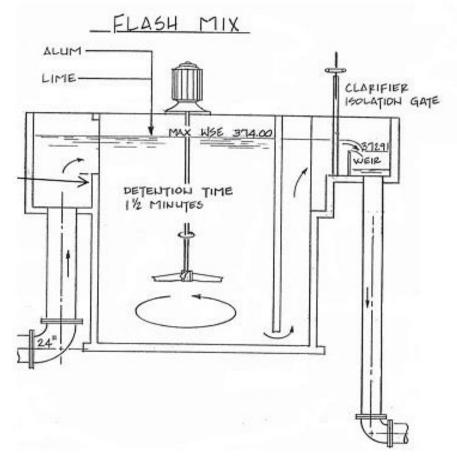
<u>31 mg/L</u>

Lime dosage	159 mg/L
Caustic soda dosage	293 mg/L

Increase in lime and decrease in NaOH met target hardness, reduced OH alkalinity to about 30 mg/L

NEMRWSD - Tupelo, MS

NEMRWD - Tupelo, MS

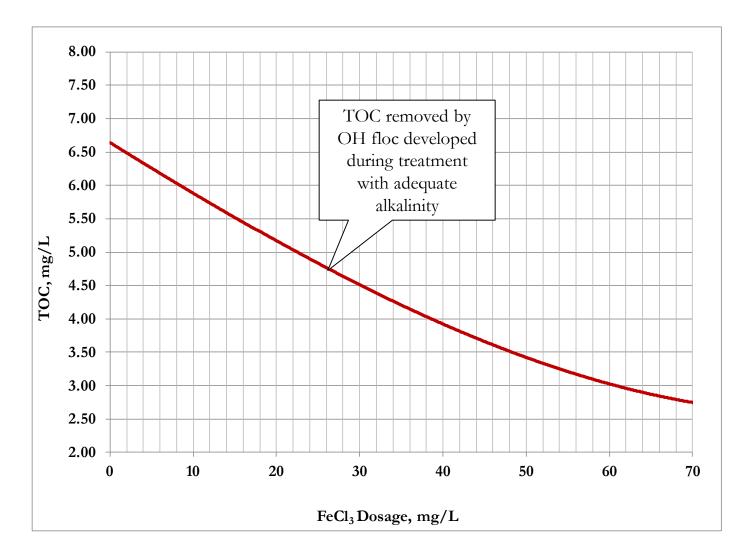


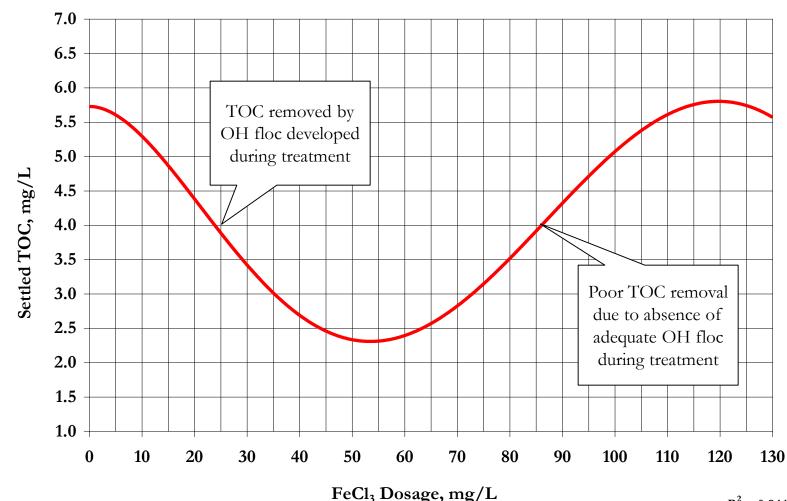
NEMRWD - Tupelo, MS

- 18 mgd surface water plant drawing from Tombigbee River
 Average daily production 12 mgd
- Coagulation/pH adjustment/filtration plant
 - Chemical treatment
 - Solids handling
 - Disinfection and storage
 - Final chloramination
- Finished water pumping to four wholesale distribution systems
 - ≈70,000 people

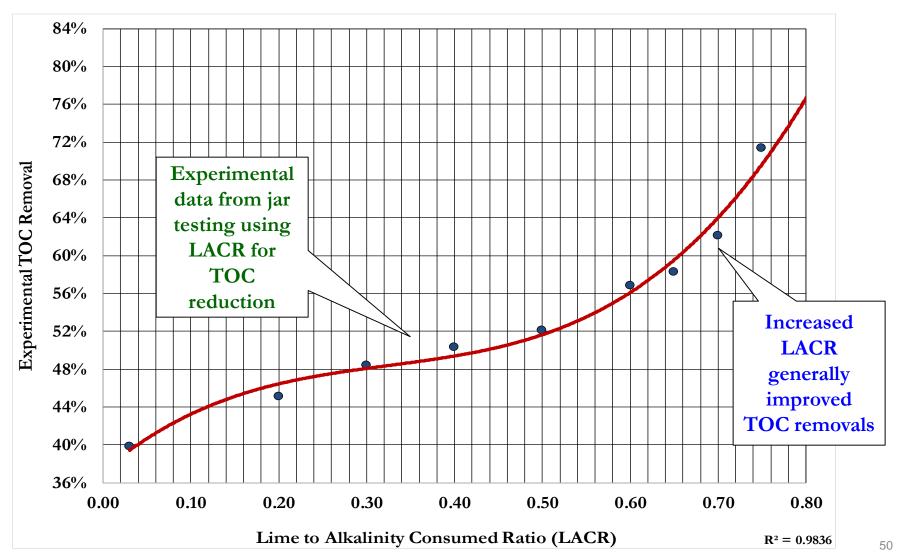
NEMRWD - Tupelo, MS

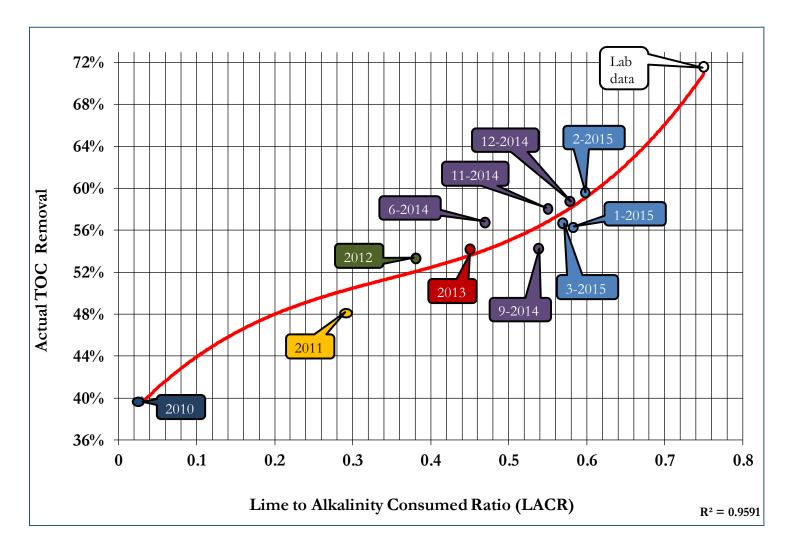
LACR and TOC Removal Initiative

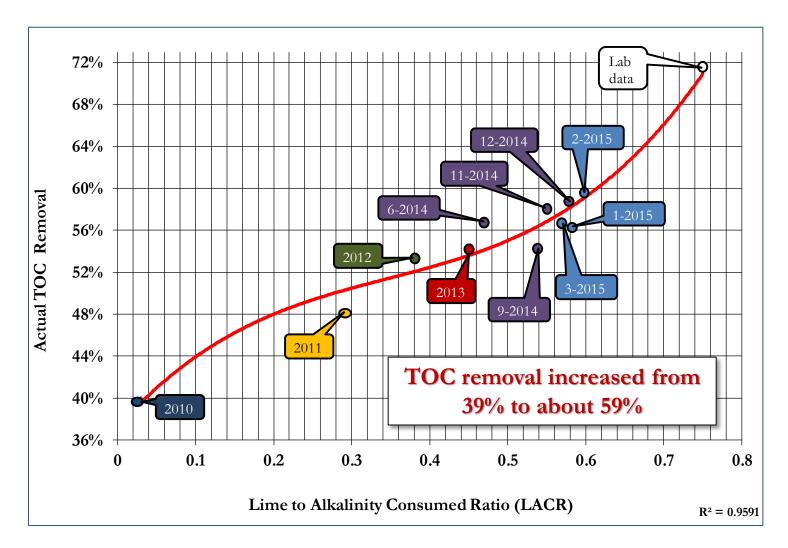

- Low alkalinity source water inhibits TOC removals
 - Average annual alkalinity 45 mg/L
 - TOC varies 5 mg/L to 22 mg/L
- Alum coagulation
 - 58 mg/L average dosage
 - 150 mg/L during rain events
 - Due to high color and high TOC
 - Maximum dosage under NSF
 - Often results in elevated turbidity levels
 - Typically insufficient alkalinity to foster coagulation reactions


- LACR (pr: lacker)
 - Lime to Alkalinity Consumed Ratio
 - Lime most common alkalinity supplement
 - Replacement of alkalinity reacted during coagulation to foster optimum metal hydroxide formation
 - Low alkalinity source water <60 mg/L
 - Metal hydroxides adsorb organic contaminants (TOC)
 - Alkalinity control needed for optimum coagulation, corrosion control, and stability control
- LACR maintains control of alkalinity levels and TOC reduction
 - Alkalinity replacement common using lime or other chemicals

$LACR = \frac{alkalinity \ dosage, mg / L}{k * coagulant \ dosage, mg / L}$


k = alkalinity consumption coefficient


LACR*k*coagulant dosage, mg/L = alkalinity dosage, mg/L



 $R^2 = 0.9442$

Conclusions

Optimization can produce excellent results

- Better performance in many applications
- Follow scientific principles and established procedures
- Document findings and projections
- Verify with first-year field data
- Often improves water quality and can produce cost savings
- Start making you own stories

Optimization Stories From The Field (3rd in Series)

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931