

OPTIMIZATION OF LIME –SOFTENING PROCESS AT WADSWORTH WTP

OPERATOR TRAINING COMMITTEE OF OHIO, INC.

PROCRASTINATORS WORKSHOP

December 11, 2014

Agenda

- Plant Overview
- Plant Process Description
- Water Quality Data
- Hardness Removal Chemistry
- Recarbonation Systems
- Chemical Optimization Study
- Recommended Improvement Plan
- Alternatives
- Lessons Learned
- Questions

Wadsworth Water Quality Data 2013

		Distribution System												
		рН	P Alk	Tot Alk	Total Hardness	Ca	Mg	Stability	Free Cl ₂	Total CL ₂	FI	Free Cl	Tot Cl	Fl
	Max.	8.1	0	88	223	127	96	0	1.2	1.4	1.03	0.9	1.1	1.00
	Min.	7.9	0	69	186	117	91	0	1.0	1.1	0.91	0.7	0.8	0.90
\	AVG.	8.1	0	81	208	122	94	0	1.1	1.2	0.96	0.8	0.9	0.95

Purpose of the Study to Optimize Hardness Removal

Water Well Information

Well #	2	3	4	7A	9	10A	11	12	13	14	15	19
Depth, Feet	275	275	275	275	275	275	275	275	275	275	275	275
Capacity, GPM	300	250	360	195	390	245	335	250	300	240	300	700

Notes:

- 1. #16 used as monitoring well.
- 2. Wells #7A & #9 cannot run at the same time.
- 3. Wells #11 & #12 cannot run at the same time unless it is an emergency.

Average Annual Daily Flow Rates

INDUCED DRAFT AERATOR

- Oxidation of Iron and Manganese
- Reaction Basin: 64,000 gallons
- Detention Time: 20 Min. @4.6 MGD
- Plant Design Capacity; 3 MGD
- Peak Hourly Flow 3.3 MGD
- Peak Day Capacity 4.5 MGD
- Treatment to Reduce Hardness
 - Lime Feed to Precipitate Ca++ and Mn++ at pH 8.9
 - No pH Re-adjustment
 - Chlorination
 - Flouridation

Flash Mix

- Two (2) units each:
 - 2 HP Mixer
 - 5.5' x5.5' x 5.5' SWD
 - 166.4 CF 1,244 Gallons
 - Detention Time:
 - 60 sec Min Required
 - 72 sec @ 3.0 MGD

FLoculation

- Four (4) tanks each:
 - 2 HP Mixer
 - 33.0' x 9.42' x 12' SWD
 - 3730.3 CF
 - 27,903 Gallons Each
 - 111,611 Gallons Total
 - Detention Time:
 - 53.6 Minutes (4 in service)

Settling Basins

- Two (2) tanks each:
 - 88.5' x 20.0' x 12' SWD
 - 21,240 CF
 - 158,875 Gallons Each
 - 317,750 Gallons Total
 - Detention Time:
 - 2.54 Hours (2 @ 3 MGD)

Existing Recarb & Post Settling Bas WARTER W

- Post Settling Basin (1 Each):
 - 76.0' x 14.83' x 12' SWD
 - 13,525 CF
 - 101,167 Gallons Each
 - 418,917 Gallons Total
 - Detention Time:
 - 0.81 Hours (Post Settling Tank only)
 - 3.35 Hours (2 Settling & 1 Post Settling Tanks in Service)

Chemical Feed:

Zinc Orthophosphate

Chlorine Feed

Sand Filters

- 4 Filters each:
 - 16.5' x 16'
 - Dual Media
 - 268 SF Each (Typical 4)
- Loadings w/1 Filter Out of Service
 - 804 SF
 - 3.48 MGD @ 3 gpm/sf
 - 4.63 MGD @ 4 gpm/sf
- Filters Rebuilt in 2013-14

High Service Pump Station

High Service Pumps:

- 3 @ 1,400 gpm
- 1@ 2,000 gpm
- Max. Hydraulic Pumping Rate:
 - **2,800 GPM**
 - 4.00 MGD

Low Service Pumps:

- 3 @ 1,500 gpm
- 1 @ 2,000 gpm
- Max. Hydraulic Pumping Rate :
 - 1,800 GPM
 - 1.87 MGD

CLEARWELL CAPACITY = 0.547 MG

Hardness Classification

Hardness Classification Scale:

• $0 - 75 \text{ mg/L as } CaCO_3$: Soft

75 − 150 mg/L as CaCO₃: Moderately Hard Good

■ 150 – 300 mg/L as CaCO₃: Hard **(a)** Current Condition

> 300 mg/L as CaCO₃: Very Hard

Wadsworth Water Quality Data 2013

	Plant Tap													Distribution System		
		рН	P Alk	Tot Alk	Total Hardness	Ca	Mg	SaCO ₃ Stability	Free Cl ₂	Total CL ₂	FI	Free Cl	Tot Cl	FI		
	Max.	8.1	0	88	223	127	96	0	1.2	1.4	1.03	0.9	1.1	1.00		
	Min.	7.9	0	69	186	117	91	0	1.0	1.1	0.91	0.7	0.8	0.90		
\	AVG.	8.0	0	79	216	122	94	0	1.1	1.2	0.97	0.8	0.9	0.95		

Purpose of the Study to Optimize Hardness Removal

Hardness of Tap Water

- Total Hardness:
 - Calcium + Magnesium
 - = 122 mg/l + 94 mg/l = 216 mg/l
- Carbonate Hardness:
 - Alkalinity
 - = 79 mg/l
- Non-Carbonate Hardness:
 - Total Hardness Carbonate Hardness= 216 mg/l 79 mg/l = 137 mg/l

Goals:

Calcium 80 mg/l Magnesium 40 mg/l

Total Hardness 150 mg/l

Non-Carbonate Hardness can only be removed: by lime & soda ash

- Calcium Sulfate: CaSO₄
- Calcium Chloride: CaCl₂
- Magnesium Sulfate: MgSO₄
- Magnesium Chloride: MgCl₂

Influent Water Quality Composite Wells Raw and Post-Aerator

	Wells #	Total Alk	Total Hard- ness	Non-Carb Hardness	Calcium Hard- ness	Mag Hard- ness	Iron	Mn	TDS	рН	CO2
Raw 10/1/14	15-19	196	336	140	230	106	7.76	0.56	430	7.2	28.62
Aerator 10/1/14	15-19	176	338	162	230	108	5.70	0.56	430	7.3	25.7
Raw 10/2/14	3-10-12-14-19	209	310	101	204	106	4.20	0.34	340	7.3	30.51
Aerator 10/2/14	3-10-12-14-19	194	330	136	208	122	3.30	0.33	500	7.6	11.25
Raw 10/9/14	4-11-13-15	192	302	110	200	102	8.30	0.67	440	7.2	28.02
Aerator 10/9/14	4-11-13-15	170	318	148	224	94	6.70	0.63	430	6.9	39.44

Secondary Limits:

• Iron = 0.30 mg/l (99.65% Removal)

Manganese = 0.05 mg/l (99.25% Removal)

Secondary OEPA Standards

- Aesthetic
 - Standards related to color:
 - Aluminum, Color, Copper, Foaming Agents, Iron, Manganese, Total Dissolved Solids
 - Standards related to odor and taste:
 - Chloride, Copper, Foaming Agents, Iron, Manganese pH, Sulfate, Threshold Odor Number (TON), Total Dissolved Solids, Zinc
- Cosmetic
 - Silver and Fluoride

Technical

- Standards related to corrosion and staining:
 - Chloride, Copper, Corrosivity, Iron, Manganese, pH, Total Dissolved Solids, Zinc
- Standards related to scale and sediments:
 - Iron, pH, Total Dissolved Solids, Aluminum.

Secondary Drinking Water Regulations:

Contaminant	Secondary MCL	Noticeable Effects above the Secondary MCL					
Aluminum	0.05 - 0.2 mg/L <u>*</u>	colored water					
Chloride	250 mg/L	salty taste					
Corrosivity	Non-corrosive	metallic taste; corroded pipes/ fixtures staining					
Fluoride	2.0 mg/L	tooth discoloration					
Iron	0.3 mg/L	rusty color; sediment; metallic taste; reddish or orange staining					
Manganese	0.05 mg/L	black to brown color; black staining; bitter metallic taste					
рН	6.5 - 8.5	low pH: bitter metallic taste; corrosion high pH: slippery feel; deposits					
Sulfate	250 mg/L	salty taste					
Total Dissolved Solids (TDS)	500 mg/L	hardness; deposits; colored water; staining; salty taste					
Zinc	5 mg/L	metallic taste					
*mg/L is milligrams of substance per liter of water.							

Hardness Removal

- Most chemical forms of hardness are water soluble, except:
- Exceptions: Calcium Carbonate & Magnesium Hydroxide removed by precipitation
- Lime softening removes only <u>carbonate</u> hardness
 - Calcium Carbonates [CaCO₃] & Calcium Bicarbonates [Ca(HCO₃)₂]
 - Magnesium Carbonates [CaCO₃] and Mg Bicarbonates Mg(HCO₃)²
- Lime & Soda Ash softening required to remove <u>non-carbonate</u> hardness

- Bicarbonate (HCO₃-)
- Carbonate (CO₃²⁻)
- Sulfate (SO_4^{2-})
- Chloride (Cl⁻)
- Nitrate (NO₃⁻)
- Silica (SiO₃²⁻)
- Chloride: MgCl₂
- Calcium Sulfate: CaSO₄
- Calcium Chloride: CaCl₂
- Magnesium Sulfate: MgSO₄
- Magnesium Chloride: MgCl₂

Alkalinity and pH

• Alkalinity = Measure of the acid neutralizing capacity of water

Forms:

- Bicarbonate
- Carbonate
- Hydroxide
- Total Alkalinity = [Bicarbonate] + [Carbonate] + [Hydroxide] expressed in mg/L as calcium carbonate

Lime Required for Removal of Carbonate Hardness and Magnesium

- CaO (lb/mil gal) =
 - = $10.6 lbs./MG \times CO_2 (mg/L as CO_2)$
 - + 4.7 [Alkalinity (mg/L as CaCO₃)
 - + Mg hardness (mg/L as CaCO₃)
 - + required excess hydroxide alkalinity as CaCO₃ (typically 30 -70 mg/l)]

- CaO x MGD = CaO/divided by 0.88 to 0.95 (actual chemical purity of CaO)
- CaO_{Total/MGD} Required x 3 MGD) =
- CaO_{Total/MGD} x 3 MGD /.90 purity = Required Daily Usage

Acid Feed for Neutralization

- CO2 offers safer and more robust system over acids as shown in Table 1:
- Final pH should be selected by looking at scaling indices:
 - Langlier index
 - CCPP (Calcium Carbonate Precipitation Potential)
 - Ryznar index
 - Lead solubility

Table 1: Comparison of chemicals for pH control at water treatment plant								
	CO ₂	H ₂ SO ₄	HCI					
Safety								
Permit for use								
Availability	•							
Price Variability								
Ease of Storage								
System Maintenance								
Environment-friendliness								
Process Control								
Effect of Overdosing								
Cost of Implementation	•							
Limitations for Use		•	•					

Recarbonation Chemistry

- The effluent from lime softening process is supersaturated with carbonates at high pHs (10 or greater) and it is necessary to stabilize the water to prevent deposition of a hard carbonate scale on the piping and filters.
- Lime Softening

Recarbonation

Process Flowsheet High Service Pump Soda Ash & Recarbonation with CO₂

New Induced CO₂ Tank **Draft Aerator** New Recarb Tanks Rapid Mix #2 Floc Tank #4 **Post-Settling** Lime **New Soda** Floc Tank #3 Future **Ash Feed** Clarifier #2 Floc Tank #2 Lime Clarifier #1 Floc Tank #1 Rapid Mix #1 Floc Tanks **Future** 4 @23,250 Gal. 6 Filters @ 271 SF

Carbonate Forms vs. pH

- The effluent from lime softening process is supersaturated with carbonates at high pHs (10 or greater) and it is necessary to stabilize the water to prevent deposition of a hard carbonate scale on the piping and filters.
- pH lowered to below pH of 9.5 and dissolve the CaCO3 into bicarbonate form.
- CO2 Usage
 - Theoretical 330 lbs /MG
- Finished Water pH = 8.8 9.2 (Adjustable)

CO2 Recarbonation Schematic

Gas Feed Systems Recommended Design Parameters

- Contact basins shall provide a minimum detention time 30 minutes, and
- Tank water depths greater than 15 feet to achieve 60 85% transfer efficiency.

Pressurized CO2 Feed System

- 99.9% of the chemical reaction has taken place within 3 minutes of the carbonic acid injection.
- pH is controlled and the water is stabilized within this 3 minute period.
- Recarb Basin Basis of Design = 4.5 MGD x 1.33
 - Flow = 6 MGD
 - Detention Time = 5 minutes (min.)
- **Existing Recarb Basin** (11.5' x 14.83' x 12' SWD)
 - Capacity = 15,300 gallons
 - Detention Time (Ex. Recarb Tank) = 3.67 min.
- Add Mix Chamber in Influent Channel
 - 14.83' x 5' x 12' SWD = 890 CF
 - Capacity = 6,655 gallon
 - Detention Time = @ 1.6 minutes

CO2 Storage Tank & Feed System

Process Flowsheet High Service Pump Soda Ash & Recarbonation with CO₂

High Service Pumps Low Service Pumps WADSWORTH

New Induced CO₂ Tank **Draft Aerator** New Recarb Tanks Rapid Mix #2 Floc Tank #4 **Post-Settling** Lime **New Soda** Floc Tank #3 Future **Ash Feed** Clarifier #2 Floc Tank #2 Lime Clarifier #1 Floc Tank #1 Rapid Mix #1 Floc Tanks **Future** 4 @23,250 Gal. 6 Filters @ 271 SF

New Pressurized Recarb Basin

Optimization for Hardness Removal

Sludge Production for Alternates

Parameter		Lime w/o Recarb	Lime w/ Recarb	Lime & Soda Ash /w Recarb
рН		8.8	10.97	11.16
Magnesium Hydroxide	mg/l	0	0	38
	Lbs./MG	0	0	321
Calcium Carbonate	mg/l	284	338	442
	lbs./MG	2,380	2,831	3,685

Blending or Split Treatment W/O Soda Ash

Pressure Filters and Softeners

FILTER SECTION

N.T.S.

Water Softeners

FEATURES AND SPECIFICATIONS

Model	Vessel Diameter	Flow Rate Range	Resin Quantity	Capacity Range		Inlet/Outlet Pipe Size Range	Brine Tank Diameter x Height	Approximate Dimensions L x D x H
Prefix	inches	gpm	cubic feet	gra	ins	inches	inches	inches
ZSO-20	20	26-54	5-7	150,000	210,000	1 to 1 ½	24x54	56x32x94
ZSO-24	24	37-75	7-10	210,000	300,000	1 ½ to 2	24x54	60x36x94
ZSO-30	30	59-118	11-16	330,000	480,000	2 to 2 ½	30x60	72x42x98
ZSO-36	36	85-170	16-24	480,000	720,000	2 to 3	39x48	87x48x98
ZSO-42	42	115-230	21-32	630,000	960,000	2 ½ to 3	50x60	104x54x101
ZSO-48	48	150-225	28-42	840,000	1,260,000	2 ½ to 4	50x60	110x60x101
ZSO-54	54	190-380	36-53	1,080,000	1,590,000	3 to 4	60x46	126x66x110
ZSO-60	60	235-470	44-65	1,320,000	1,950,000	3 to 4	72x46	144x72x110
ZSO-66	66	285-570	53-79	1,590,000	2,370,000	3 to 4	72x46	150x78x110
ZSO-72	72	340-680	64-94	1,920,000	2,820,000	4 to 6	84x46	168x84x110
ZSO-78	78	400-795	75-111	2,250,000	3,330,000	4 to 6	Not Included	174x90x110
ZSO-84	84	460-925	87-128	2,610,000	3,840,000	4 to 6	Not Included	180x96x110

Specification Bases: (For your specific water source, contact Res-Kem for estimates)

Flow Rate Range: Minimum Flow 12 gpm/ft2 to Maximum Flow 24 gpm/ft2

Resin Quantity: Bed Depth 27 - 40 inches

Capacity Range: Regeneration Level is 15lbs NaCl /ft3

Area = 700 GPM/2 units

= 350 gpm/12 gpm/sf = 29.2 sf

Provide 3 - 72" Dia. (1 standby)

Water Softener Regeneration

Regeneration = 84" Dia. Bed Capacity/ Loading

= 2,400,000 gr x 3 beds 700 gpm x 21.05 gr/gallon

= 8.4 hours / bed @ 1 MGD flow

Stabilization for Corrosion Control

- Increasing Ca hardness, alkalinity or pH:
 - Increase scaling and decrease corrosive tendency
- Increasing temperature:
 - Increase scaling and corrosive tendency
- TDS can affect scaling and corrosivity
- Caustic soda is commonly used as an acidity buffer
- Unstable water: red water, lead and copper corrosion problems
- Orthophosphates, silicates used to prevent lead & copper corrosion, sequester Ca & carbonate
- CCPP: Calcium Carbonate Precipitation Potential

STABILIZATION
Process of
making water
less corrosive
and less
depositing

Conclusions

- Assess variability in raw water quality analysis and water demand.
- Assess impact of process improvements for aeration, mixing, settling, recarb, filters, chemical feed, and solids handling.
- Establish effluent water quality goals.
- Establish EPA rules and water quality standards.
- Evaluate options and improvements needed to meet goals.
- Estimate any additional O&M costs or savings.
- Prepare Capital Improvement Plan with prioritized improvement plan, budgetary costs, impact on rates, and funding sources.

Thank You!

Any Questions?

Dana Moore

City of Wadsworth Water Treatment Plan Supervisor 120 Maple Street Wadsworth, OH 44281 dmoore@wadsworthcity.org

Carl M. Seifried, PE

Senior Project Manager
Burgess & Niple
100 West Erie Street
440.354.9700 x 3123
carl.seifried@burgessniple.com

