OPTIMIZATION OF LIME－SOFTENING PROCESS AT WADSWORTH WTP

OPERATOR TRAINING COMMITTEE OF OHIO，INC． PROCRASTINATORS WORKSHOP

December 11， 2014

Agenda

- Plant Overview
- Plant Process Description
- Water Quality Data
- Hardness Removal Chemistry
- Recarbonation Systems
- Chemical Optimization Study
- Recommended Improvement Plan
- Alternatives
- Lessons Learned
- Questions

Wadsworth Water Quality Data 2013

Water Well Information

Well \#	2	3	4	$7 A$	9	$10 A$	11	12	13	14	15	19
Depth, Feet	275	275	275	275	275	275	275	275	275	275	275	275
Capacity, GPM	300	250	360	195	390	245	335	250	300	240	300	700

Notes:

1. \#16 used as monitoring well.
2. Wells \#7A \& \#9 cannot run at the same time.
3. Wells \#11 \& \#12 cannot run at the same time unless it is an emergency.

Average Annual Daily Flow Rates

Peak Day Factor

Max Flow: Avg. Flow = 1.3
—Annual Average Daily Flow, MGD
-Annual Max Daily Flow, MGD

Process Flowsheet

High Service Pumps Low Service Pumps

Chlorine Contract/ Clearwell
547,000 Gal.

INDUCED DRAFT AERATOR

- Oxidation of Iron and Manganese
- Reaction Basin: 64,000 gallons
- Detention Time: 20 Min. @4.6 MGD
- Plant Design Capacity; 3 MGD
- Peak Hourly Flow 3.3 MGD
- Peak Day Capacity 4.5 MGD
- Treatment to Reduce Hardness
- Lime Feed to Precipitate Ca++ and Mn++ at pH 8.9
- No pH Re-adjustment
- Chlorination
- Flouridation

Flash Mix

- Two (2) units each:
- 2 HP Mixer
$-5.5^{\prime} \times 5.5^{\prime} \times 5.5^{\prime}$ SWD
- 166.4 CF 1,244 Gallons
- Detention Time:
- 60 sec Min Required
- 72 sec @ 3.0 MGD

FLoculation

- Four (4) tanks each:
- 2 HP Mixer
- $33.0^{\prime} \times 9.42^{\prime} \times 12^{\prime}$ SWD
- 3730.3 CF
- 27,903 Gallons Each
- 111,611 Gallons Total

- Detention Time:
- 53.6 Minutes (4 in service)

Settling Basins

- Two (2) tanks each:
$-88.5^{\prime} \times 20.0^{\prime} \times 12^{\prime}$ SWD
- 21,240 CF
- 158,875 Gallons Each
- 317,750 Gallons Total
- Detention Time:
- 2.54 Hours (2 @ 3 MGD)

Existing Recarb \& Post Settling Basinn win

- Post Settling Basin (1 Each):
$-76.0^{\prime} \times 14.83^{\prime} \times 12^{\prime}$ SWD
- 13,525 CF
- 101,167 Gallons Each
- 418,917 Gallons Total
- Detention Time:

- 0.81 Hours (Post Settling Tank only)
- 3.35 Hours (2 Settling \& 1 Post Settling Tanks in Service)

Chemical Feed:

 WATER \& WASTE WATERDIGTRIGUTIGN

- Zinc Orthophosphate
- Chlorine Feed

Sand Filters

- 4 Filters each:
$-16.5^{\prime} \times 16^{\prime}$
- Dual Media
- 268 SF Each (Typical 4)
- Loadings w/1 Filter Out of Service
- 804 SF
- 3.48 MGD @ 3 gpm/sf
- 4.63 MGD @ 4 gpm/sf

- Filters Rebuilt in 2013-14

High Service Pump Station

- High Service Pumps:
- 3 @ 1,400 gpm
- 1 @ 2,000 gpm
- Max. Hydraulic Pumping Rate:
- 2,800 GPM
- 4.00 MGD
- Low Service Pumps:
- 3 @ 1,500 gpm
- 1 @ 2,000 gpm

CLEARWELL CAPACITY $=0.547 \mathrm{MG}$

- Max. Hydraulic Pumping Rate :
- 1,800 GPM
- 1.87 MGD

Hardness Classification

- Hardness Classification Scale:
- $0-75 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} : Soft
- $75-150 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} :
- $150-300 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} :
- > $300 \mathrm{mg} / \mathrm{L}$ as CaCO_{3} :

Moderately Hard Goal Hard current Condition
Very Hard

Wadsworth Water Quality Data 2013

	Plant Tap										Distribution System		
	pH	$\begin{aligned} & \text { P } \\ & \text { Alk } \end{aligned}$	Tot Alk	Total Hardness	Ca	Mg	$\begin{aligned} & \mathrm{CaCO}_{3} \\ & \text { Stablikity } \end{aligned}$	$\begin{aligned} & \text { Free } \\ & \mathrm{Cl}_{2} \end{aligned}$	Total CL_{2}	FI	Free Cl	Tot Cl	FI
Max.	8.1	0	88	223	127	96	0	1.2	1.4	1.03	0.9	1.1	1.00
Min.	7.9	0	69	186	117	91	0	1.0	1.1	0.91	0.7	0.8	0.90
AVG.	8.0	0	79	216	122	94		1.1	1.2	0.97	0.8	0.9	0.95

Hardness of Tap Water

- Total Hardness:
- Calcium + Magnesium
$=122 \mathrm{mg} / \mathrm{l}+94 \mathrm{mg} / \mathrm{l}=216 \mathrm{mg} / \mathrm{l}$

Goals:
Calcium $\quad 80 \mathrm{mg} / \mathrm{l}$ Magnesium 40 mg/l

Total Hardness 150 mg/l

- Carbonate Hardness:
- Alkalinity

$$
\text { = } 79 \mathrm{mg} / \mathrm{l}
$$

- Non-Carbonate Hardness:
- Total Hardness - Carbonate Hardness
$=216 \mathrm{mg} / \mathrm{l}-79 \mathrm{mg} / \mathrm{l}=137 \mathrm{mg} / \mathrm{l}$

Non-Carbonate Hardness can only be removed: by lime \& soda ash

- Calcium Sulfate: CaSO_{4}
- Calcium Chloride: CaCl_{2}
- Magnesium Sulfate: MgSO_{4}
- Magnesium Chloride: MgCl_{2}

Influent Water Quality

Composite Wells Raw and Post-Aerator

	Wells \#	Total Alk	Total Hardness	Non-Carb Hardness	Calcium Hardness	Mag Hardness	Iron	Mn	TDS	pH	CO2
Raw 10/1/14	15-19	196	336	140	230	106	7.76	0.56	430	7.2	28.62
$\begin{aligned} & \text { Aerator } \\ & 10 / 1 / 14 \end{aligned}$	15-19	176	338	162	230	108	5.70	0.56	430	7.3	25.7
Raw 10/2/14	3-10-12-14-19	209	310	101	204	106	4.20	0.34	340	7.3	30.51
Aerator 10/2/14	3-10-12-14-19	194	330	136	208	122	3.30	0.33	500	7.6	11.25
Raw 10/9/14	4-11-13-15	192	302	110	200	102	8.30	0.67	440	7.2	28.02
Aerator 10/9/14	4-11-13-15	170	318	148	224	94	6.70	0.63	430	6.9	39.44

Secondary Limits:

```
- Iron = 0.30 mg/l (99.65% Removal)
- Manganese = 0.05 mg/l (99.25% Removal)
```


Secondary OEPA Standards

- Aesthetic
- Standards related to color:
- Aluminum, Color, Copper,

Foaming Agents, Iron, Manganese, Total Dissolved Solids

- Standards related to odor and taste:
- Chloride, Copper, Foaming Agents, Iron, Manganese pH, Sulfate, Threshold Odor Number (TON), Total Dissolved Solids, Zinc
- Technical
- Standards related to corrosion and staining:
- Chloride, Copper, Corrosivity, Iron, Manganese, pH, Total Dissolved Solids, Zinc
- Standards related to scale and sediments:
- Iron, pH, Total Dissolved Solids, Aluminum.
- Cosmetic
- Silver and Fluoride

Secondary Drinking Water Regulations:

Contaminant	Secondary MCL	Noticeable Effects above the Secondary MCL	
Aluminum	$0.05-0.2 \mathrm{mg} / \mathrm{L}^{*}$		colored water
Chloride	$250 \mathrm{mg} / \mathrm{L}$		salty taste
Corrosivity	Non-corrosive	metallic taste; corroded pipes/ fixtures staining	
Fluoride	$2.0 \mathrm{mg} / \mathrm{L}$		tooth discoloration
Iron	$0.3 \mathrm{mg} / \mathrm{L}$	rusty color; sediment; metallic taste; reddish or orange staining	
Manganese	$0.05 \mathrm{mg} / \mathrm{L}$	black to brown color; black staining; bitter metallic taste	

Hardness Removal

- Most chemical forms of hardness are water soluble, except:
- Exceptions: Calcium Carbonate \& Magnesium Hydroxide removed by precipitation
- Lime softening removes only carbonate hardness

Hardness due to
Anions:

- Bicarbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$
- Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$
- Sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$
- Chloride (Cl^{-})
- Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$
- Silica $\left(\mathrm{SiO}_{3}{ }^{2-}\right)$
- Calcium Carbonates $\left[\mathrm{CaCO}_{3]}\right.$ \& Calcium Bicarbonates $\left[\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2]}\right.$
- Magnesium Carbonates $\left[\mathrm{CaCO}_{3]}\right.$ and Mg Bicarbonates $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
- Lime \& Soda Ash softening required to remove non-carbonate hardness
- Chloride: MgCl_{2}
- Calcium Sulfate: CaSO_{4}
- Calcium Chloride: CaCl_{2}
- Magnesium Sulfate: MgSO_{4}
- Magnesium Chloride: MgCl_{2}

Alkalinity and pH

- Alkalinity = Measure of the acid neutralizing capacity of water
- Forms:
- Bicarbonate
- Carbonate
- Hydroxide
- Total Alkalinity = [Bicarbonate] + [Carbonate] + [Hydroxide] expressed in mg / L as calcium carbonate

Lime Required for Removal of
 Carbonate Hardness and Magnesium

- $\mathrm{CaO}(\mathrm{lb} / \mathrm{mil}$ gal $)=$
$=10.6 \mathrm{lbs} . / \mathrm{MG} \mathrm{x} \mathrm{CO}_{2}\left(\mathrm{mg} / \mathrm{Las} \mathrm{CO}_{2}\right)$
+4.7 [Alkalinity $\left(\mathrm{mg} / \mathrm{L}\right.$ as $\left.\mathrm{CaCO}_{3}\right)$
+Mg hardness ($\mathrm{mg} / \mathrm{L}^{2 s} \mathrm{CaCO}_{3}$)
+ required excess hydroxide alkalinity as CaCO_{3} (typically $30-70 \mathrm{mg} / \mathrm{I}$)]

- $\mathrm{CaO} \times \mathrm{MGD}=\mathrm{CaO} /$ divided by 0.88 to 0.95 (actual chemical purity of CaO)
- $\mathrm{CaO}_{\text {Total/MGD }}$ Required $\left.\times 3 \mathrm{MGD}\right)=$
- $\mathrm{CaO}_{\text {Total/MGD }} \times 3 \mathrm{MGD} / .90$ purity $=$ Required Daily Usage

Acid Feed for Neutralization

- CO2 offers safer and more robust system over acids as shown in Table 1:
- Final pH should be selected by looking at scaling indices:
- Langlier index
- CCPP (Calcium Carbonate Precipitation Potential)
- Ryznar index
- Lead solubility

l					
Table 1: Comparison of chemicals for pH control at water treatment plant CO_{2}				$\mathrm{H}_{2} \mathrm{SO}_{4}$	HCl
Safety					
Permit for use					
Availability					
Price Variability					
Ease of Storage					
System Maintenance					
Environment-friendliness					
Process Control					
Effect of Overdosing					
Cost of Implementation					
Limitations for Use					

Recarbonation Chemistry

 WATER \& WASTE WATER DISTRIGUTIION- The effluent from lime softening process is supersaturated with carbonates at high pHs (10 or greater) and it is necessary to stabilize the water to prevent deposition of a hard carbonate scale on the piping and filters.
- Lime Softening

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{HCO} 3) 2+\mathrm{Ca}(\mathrm{OH}) 2 \square 2 \mathrm{CaCO} 3+2 \mathrm{H} 2 \mathrm{O} \\
& \mathrm{Mg}(\mathrm{HCO} 3) 2+2 \mathrm{Ca}(\mathrm{OH}) 2 \rightleftarrows \mathrm{Mg}(\mathrm{OH}) 2+\mathrm{CaCO} 3+2 \mathrm{H} 2 \mathrm{O}
\end{aligned}
$$

- Recarbonation

$$
\begin{aligned}
& \mathrm{CaCO} 3+\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O} \\
& \mathrm{Mg}(\mathrm{OH}) 2+\mathrm{CO} 2 \square \mathrm{Ca}(\mathrm{HCO} 3)^{2} \\
& \\
& \mathrm{MgCO} 3+\mathrm{H} 2 \mathrm{O}
\end{aligned}
$$

Process Flowsheet Soda Ash \& Recarbonation with CO_{2}

Carbonate Forms vs. pH

- The effluent from lime softening process is supersaturated with carbonates at high pHs (10 or greater) and it is necessary to stabilize the water to prevent deposition of a hard carbonate scale on the piping and filters.
- pH lowered to below pH of 9.5 and dissolve the CaCO 3 into bicarbonate form.
- CO2 Usage

- Theoretical 330 lbs /MG
- Finished Water pH = 8.8-9.2 (Adjustable)

CO2 Recarbonation Schematic

Gas Feed Systems Recommended Design Parameters

- Contact basins shall provide a minimum detention time 30 minutes, and
- Tank water depths greater than 15 feet to achieve 60-85\% transfer efficiency.

Pressurized CO2 Feed System

- 99.9% of the chemical reaction has taken place within 3 minutes of the carbonic acid injection.
- pH is controlled and the water is stabilized within this 3 minute period.
- Recarb Basin Basis of Design = 4.5 MGD x 1.33
- Flow $\quad=6 \mathrm{MGD}$
- Detention Time $=5$ minutes (min.)
- Existing Recarb Basin (11.5' x 14.83' x 12' SWD)
- Capacity = 15,300 gallons
- Detention Time (Ex. Recarb Tank) $=3.67 \mathrm{~min}$.
- Add Mix Chamber in Influent Channel
- $14.83^{\prime} \times 5^{\prime} \times 12^{\prime}$ SWD $=890$ CF
- Capacity = 6,655 gallon
- Detention Time = @ 1.6 minutes

CO2 Storage Tank \& Feed System

Process Flowsheet Soda Ash \& Recarbonation with CO_{2}

New Pressurized Recarb Basin

Optimization for Hardness Removal

Sludge Production for Alternates

Parameter		Lime w/o Recarb	Lime w/ Recarb	Lime \& Soda Ash /w Recarb
pH	8.8	10.97	11.16	
Magnesium Hydroxide	mg / l	0	0	38
	Lbs./MG	0	0	321
Calcium Carbonate	mg / I	284	338	442
	$\mathrm{Ibs./MG}$	2,380	2,831	3,685

Blending or Split Treatment W/O Soda Ash

 WATER \& WASTE WATER DISTRIDUTION

Pressure Filters and Softeners

FILTER SECTION

Water Softeners

Res-Kem
 GENERAL WATER

FEATURES AND SPECIFICATIONS

Model Prefix	Vessel Diameter inches	Flow Rate Rangegpm	Resin Quantity cubic feet	Capacity Range grains		Inlet/Outlet Pipe Size Range inches	Brine Tank Diameter x Height inches	Approximate Dimensions xDxH inches
ZSO-20	20	26-54	5-7	150,000	210,000	1 to $11 / 2$	24x54	$56 \times 32 \times 94$
ZSO-24	24	37-75	7-10	210,000	300,000	$11 / 2$ to 2	24×54	$60 \times 36 \times 94$
ZSO-30	30	59-118	11-16	330,000	480,000	2 to $21 / 2$	30×60	$72 \times 42 \times 98$
ZSO-36	36	85-170	16-24	480,000	720,000	2 to 3	39×48	87x48x98
ZSO-42	42	115-230	21-32	630,000	960,000	$21 / 2$ to 3	50×60	$104 \times 54 \times 101$
ZSO-48	48	150-225	28-42	840,000	1,260,000	$21 / 2$ to 4	50x60	$110 \times 60 \times 101$
ZSO-54	54	190-380	36-53	1,080,000	1,590,000	3 to 4	60x46	$126 \times 66 \times 110$
ZSO-60	60	235-470	44-65	1,320,000	1,950,000	3 to 4	72×46	$144 \times 72 \times 110$
ZSO-66	66	285-570	53-79	1,590,000	2,370,000	3 to 4	72×46	$150 \times 78 \times 110$
ZSO-72	72	340-680	64-94	1,920,000	2,820,000	4 to 6	84×46	$168 \times 84 \times 110$
ZSO-78	78	400-795	75-111	2,250,000	3,330,000	4 to 6	Not Included	$174 \times 90 \times 110$
ZSO-84	84	460-925	87-128	2,610,000	3,840,000	4 to 6	Not Included	180×96x110

Specification Bases: (For your specific water source, contact Res-Kem for estimates)
Flow Rate Range: Minimum Flow $12 \mathrm{gpm} / \mathrm{ft} 2$ to Maximum Flow $24 \mathrm{gpm} / \mathrm{ft} 2$
Resin Quantity: Bed Depth 27-40 inches
Capacity Range: Regeneration Level is $15 \mathrm{lbs} \mathrm{NaCl} / \mathrm{ft} 3$

Area $=700$ GPM $/ 2$ units $=350 \mathrm{gpm} / 12 \mathrm{gpm} / \mathrm{sf}=29.2 \mathrm{sf}$ Provide 3-72" Dia. (1 standby)

Water Softener Regeneration

$$
\begin{aligned}
\text { Regeneration } & =84^{\prime \prime} \text { Dia. Bed Capacity/ Loading } \\
& =\frac{2,400,000 \text { Grains Hardness }}{360 \mathrm{mg} / \mathrm{l} / 17.1 \mathrm{mg} / \mathrm{l} / \text { grain }}
\end{aligned}
$$

$=\frac{2,400,000 \mathrm{gr} \times 3 \mathrm{beds}}{700 \mathrm{gpm} \times 21.05 \mathrm{gr} / \mathrm{gallon}}$
= 8.4 hours / bed @ 1 MGD flow

Stabilization for Corrosion Control

- Increasing Ca hardness, alkalinity or pH:
- Increase scaling and decrease corrosive tendency
- Increasing temperature:
- Increase scaling and corrosive tendency
- TDS can affect scaling and corrosivity

STABILIZATION
Process of
making water
less corrosive and less
depositing

- Caustic soda is commonly used as an acidity buffer
- Unstable water: red water, lead and copper corrosion problems
- Orthophosphates, silicates used to prevent lead \& copper corrosion, sequester Ca \& carbonate
- CCPP: Calcium Carbonate Precipitation Potential

Conclusions

- Assess variability in raw water quality analysis and water demand.
- Assess impact of process improvements for aeration, mixing, settling, recarb, filters, chemical feed, and solids handling.
- Establish effluent water quality goals.
- Establish EPA rules and water quality standards.
- Evaluate options and improvements needed to meet goals.
- Estimate any additional O\&M costs or savings.
- Prepare Capital Improvement Plan with prioritized improvement plan, budgetary costs, impact on rates, and funding sources.

Thank You!

 WATER \& WASTE WATER DISTRIIUTIIAN
Dana Moore

City of Wadsworth Water
Treatment Plan Supervisor
120 Maple Street
Wadsworth, OH 44281
dmoore@wadsworthcity.org

Carl M. Seifried, PE
Senior Project Manager
Burgess \& Niple 100 West Erie Street
$440.354 .9700 \times 3123$
carl.seifried@burgessniple.com

Any Questions?

