Emerging Water & Wastewater Treatment Technologies

Lagoon Optimization

Deer Creek State Park Lodge & Convention Center Mount Sterling, Ohio

August 3, 2016

Microalgae (Lagoon Optimization)

Municipal

Greenhouse

Primary Lagoon Cell

Electrocoagulation

The Challenges We Face

Fact

• 30% of the wastewater treatment systems in the United States employ some sort of lagoon system

Challenges:

- Power consumption and maintenance costs are increasing
- Most rural and small communities cannot afford the costs associated with mechanical alternatives
- Discharge regulations will become more stringent for all NPDES permit holders

Wastewater Treatment Challenges

BOD	Pond dimensions	Land Application	
	Ice cover	More Restrictive	
TSS	ice cover	Sludge Buildup	
Odor	Pond hydraulics	Phosphorus	
рН	Temperature	Ammonia	
т о_ т	Pond Configuration	TKN	
I & I	Short Circuiting	Fecal Coliform	

Bacteria Viruses **Toxicity**

Short Circuiting

Pharmaceuticals Duckweed Mat Algae

Fluoride Arsenic (cyanobacteria/

Selenium Forced mechanical upgrades cyanotoxins)

> Low Oxygen Illegal Dumping

Lagoon Logistics, LLC **Sundine Enterprises**

Bad Algae vs. Good Algae

Bad Algae---"Mat algae" (cyanobacteria or bluegreen algae) disrupt treatment process and pollute discharge waterways and can produce cyanotoxins.

Good Algae---Single-cell (microalgae) produce pure oxygen for the bacteria which, in turn, will outcompete the "mat algae" for nutrients.

Microalgae Facts

- Single-cell Do not form mats
- Doubles population every 24 hours
- Mobile (swims)
- Creates a pure oxygen environment for bacteria
- Symbiotic relationship between microalgae and bacteria
- Good bacteria population will out-compete the mat algae and duckweed for nutrients, resulting in weed control and odor control.

Biological Aeration vs. Mechanical Aeration

Symbiotic Relationship Between Microalgae and Bacteria

Oxygen Production: How Do We Know How Much Microalgae

Table 1: Total Oxygen Production from Algae Photosynthesis

Parameter	Value for December (month with the least amount of sunlight)	Value for June (month with the most amount of sunlight)
Energy available for photosynthesis (Assume 5% of that from sunlight)	50 kJ/ft ² -day	75 kJ/ft ² -day
Algae cell production by photosynthesis (Assume 24 J produce 1 mg of algal cells)	2,083 mg algal cells/ft ² -day	3,125 mg algal cells/ft ² -day
Oxygen production by algae cells (1.56 mg of O ₂ for every 1 mg of algal cells)	3,250 mg O ₂ /ft ² -day	4,875 mg O ₂ /ft ² -day
Oxygen production in terms of pounds per acre per day in a stagnant pond	310 lbs O ₂ /acre-day	470 lbs O₂/acre-day
Total oxygen production with mixing and continuous algae addition (200% that of a stagnant pond)	620 lbs O₂/acre-day	940 lbs O ₂ /acre-day

1 mg of microalga cells produces 1.56 mg of O2.

Greenhouse & Microalgae Growth Tanks

Lagoon Logistics, LLC

Greenhouse Lighting for Microalgae

Greenhouse at Sunset

Laminar Mixing Creates Facultative Zones

Aerobic zone

Anoxic zone

Diffuser Marker

Anaerobic zone

Curtain Shore Anchors

Laminar Mixing

- can increase the <u>efficiency of sunlight</u> <u>exposure to the microalgae by up</u> to 200%
- distributes more pure oxygen into the lagoon
- creates an 18" to 24" ecosystem biomass of microalgae & bacteria, maximizing overall wastewater treatment.
- Provides the bacteria <u>continual exposure</u> to both the <u>oxygen</u> from the microalgae and to the BOD and TSS within the wastewater
- Keeps the microalgae and solids in suspension

EC & Compressor Buildings

EC Unit Connections

Electrocoagulation Tertiary Treatment

Solids Separation

Results: Bacterial Components

	Fecal Coliforms (CFU/ml)	Enterococci (CFU/ml)
Before EC Treatment	1,000,000	1,000,000
After EC Treatment	Below Detection	Below Detection

Data Source: Rosario and Adkinson University of Southern Florida

Results: Viral Components

Phage, E. Phage, B.

coli subtilis PMMoV HPyV

(Pfu/ml) (Pfu/ml) (copies/ml) (copies/ml)

Before EC Treatment	12,800	2,220	60,100	100,000
After EC	Below	Below	Below	Below
Treatment	Detection	Detection	Detection	Detection

Data Source: Rosario and Adkinson University of Southern Florida

Journal of Environmental Management 88 (2008) Pgs. 437-447

"The cost for mechanical treatment is approximately 4-5.5 times higher than a lagoon system." (3.1.2 page 440)

"Aeration of lagoon systems (by mechanical means) may increase energy use considerably, by 3 times for a 0.1 MGD plant capacity, and 5 times for a 5 MGD plant capacity." (3.2.1 page 440)

Review: What is the Powell Water Lagoon Logistics Solution?

- Is a patented and engineered process
- <u>provides oxygen</u> for wastewater treatment in traditional lagoon systems by <u>cultivating beneficial microalgae</u>
- replaces the traditional mechanical lagoon aeration components with this <u>natural source of oxygen</u>
- is a <u>savings of 45% to 80%</u> of the electrical costs for wastewater treatment
- allows lagoon systems to <u>meet the ammonia limits</u> without the <u>conversion to a mechanical plant</u>
- Provides additional nitrogen and phosphorus removal
- Reduces sludge accumulation

THANK YOU!

Local Ohio Powell Water Representative
Mark Fashian
740-815-2440
mark@covenantanalytical.com

For Questions and Comments Please Contact

Judd Sundine at: isolite@ix.netcom.com (720)-363-0548

or Jeff Couch at: jeffcouch7@comcast.net (970)-231-9937

