Optimization Stories From the Field

Marvin Gnagy, P.E., President

PMG Consulting, Inc.

OTCO Class 3&4 Workshop

August 3, 2017

Agenda

- Optimization practices used in the field
 - Short synopsis
- Optimization stories
 - Evaluations made
 - Technical solutions developed
 - Implementation and verification
 - Results achieved
- Questions

Optimization Practices Used in Field

- Define objectives/goals
 - Why should this project be initiated
- Develop baseline characteristics
 - Current operations and metrics
- Benchmark industry standards or best practices
 - Compare where things are to where you believe they should be
- Conduct gap analysis
 - How do I get to the goals?
 - Tools, capital, training, operating adjustments that might be needed to achieve the goals

Optimization Practices Used in Field

- Establish Implementation strategy
 - Capital needs
 - Tools, modeling, etc.
 - Operational changes
 - Adjustment protocols
 - Verification procedures
- Track progress against objectives/goals
 - Did you meet the objectives and goals?
 - Did you exceed the objectives and goals?
 - Did you improve water quality?
 - Did you improve performance?

Atlanta-Fulton County, Georgia

- 90 mgd surface water plant
 - Average daily production 44.5 mgd
- Reservoir storage from Chattahoochee River
- Coagulation/filtration plant
 - Chemical treatment
 - Solids handling
 - Disinfection and storage
- Finished water pumping to two wholesale distribution systems
 - **400,00** people

- Floc Speed Adjustments Initiative
 - Jagged, feathery floc observed entering the sedimentation process
 - Measured drive output speeds at different VFD settings
 - Established rotational output at any VFD setting
 - Defined current G values for each of four stages
 - 4 sec⁻¹, 4 sec⁻¹, 3 sec⁻¹, 2 sec⁻¹
 - Operators afraid of floc shear
 - Conducted jar testing to establish optimum G values for floc development and settleability
 - Graphed floc settleability versus G value to find optimum mixing characteristics

Low density floc particles observed in full-scale operations

- Adjusted floc drive speeds to produce suggested G values
- Tracked settled water turbidity online monitoring
- Reduced from 0.5
 NTU average to 0.1
 NTU average
 within 4 days
- Possible to reduce coagulant dosage to obtain similar settled turbidity
- Implemented without capital costs

- Dewatering accomplished in gravity thickeners, lime amendment to **pH 12**, sludge conditioning and pumping, plate and frame filter press
- Cake disposal in local landfill
- Cake typically 23% solids (another story)

- Coagulant reduction could impact other processes and costs
 - Reduced solids production
 - Reduced lime for dewatering
 - Reduced post-lime for pH adjustment/corrosion control
 - Cake disposal
- Phase 2 optimization
 - Define current operating costs
 - Develop potential costs under optimized coagulant dosing
 - Establish new settled water target values
 - Verify operating costs from annual operations

Initial Operating Metrics				
Alum, mg/L	15.6			
Post-lime, mg/L	3.92			
Dewatering lime, lbs/mo.	76,798			
Filter cake, dry tons per year	941			
Alum, lbs/MG	132.2			
Post-lime, lbs/MG	33.3			
Dewatering lime, tons per dry ton cake	1.832			

Initial Operating Metrics		Projected Operating Metrics	
Alum, mg/L	15.6	Alum, mg/L	12.5
Post-lime, mg/L	3.92	Post-lime, mg/L	3.2
Dewatering lime, lbs/mo.	76,798	Dewatering lime, lbs/mo.	57,599
Filter cake, dry tons per year	941	Filter cake, dry tons per year	752
Alum, lbs/MG	132.2	Alum, lbs/MG	105.9
Post-lime, lbs/MG	33.3	Post-lime, lbs/MG	27.2
Dewatering lime, tons per dry ton cake	1.832	Dewatering lime, tons per dry ton cake	1.832

Expected 20% overall reduction in operating costs

- Implementation and verification of annual operations
 - Month-to-month tracking and comparisons first year
 - Calculation of operating costs and actual savings
 - Adjustment of operating metrics
 - Summation of first-year operations

Dewatering lime feed

Initial Operating Metrics		Actual Operating Metrics	
Alum, mg/L	15.6	Alum, mg/L	9.6
Post-lime, mg/L	3.92	Post-lime, mg/L	2.9
Dewatering lime, lbs/mo.	76,798	Dewatering lime, lbs/mo.	51,123
Filter cake, dry tons per year	941	Filter cake, dry tons per year	650
Alum, lbs/MG	132.2	Alum, lbs/MG	79.8
Post-lime, lbs/MG	33.3	Post-lime, lbs/MG	23.7
Dewatering lime, tons per dry ton cake	1.832	Dewatering lime, tons per dry ton cake	1.832

Actual 38% reduction in annual costs obtained

Excellent coordination between operations and engineering toward a common goal

Buffalo Water, New York

- 120 mgd surface water plant, originally 1922
 - Average daily production 71 mgd
- Direct draw from eastern basin Lake Erie
 - Just upstream of Niagara River
- Coagulation/filtration plant
 - Chemical treatment
 - Solids handling
 - Disinfection and storage

Lake Intake Structure

- Finished water pumping to distribution system
 - **257,00** people

- SternPac coagulant used since 1990's
 - Raw water turbidity averages 2 NTU
 - Settled water turbidity averaged 0.85 NTU
 - Filter run times 72 hours
 - Low head loss, possible optimization initiaitive
- One coagulant feed point
 - Low service discharge header
 - Relatively poor mixing
 - Coagulant not contacting within pump flow depending on pump in operation

- Mixing improvement immediately led to 17% reduction in coagulant dosage
 - 9.7 mg/L to 8 mg/L
- Coagulant reduction also impacted
 - Sludge dewatering
 - Polymer conditioning
 - Cake disposal
 - Operating costs

Initial Operating Metrics			
SternPac, mg/L	9.67		
Dewatering polymer, lbs/ton	12.95		
Cake production, dry tons/yr	931		
Cake solids, %	22.6		

Initial Operating Metrics		Actual Operating Metrics		
SternPac, mg/L	9.67	SternPac, mg/L	8.0	
Dewatering polymer, lbs/ton	12.95	Dewatering polymer, lbs/ton	10.13	
Cake production, dry tons/yr	931	Cake production, dry tons/yr	725	
Cake solids, %	22.6	Cake solids, %	32.1	

Actual 33.5% reduction realized in annual costs

Actual 33.5% reduction realized in annual costs
Annual cost savings \$157,657

- Future optimization plans
 - Floc speed adjustments (underway with another <u>12%</u> coagulant reduction)
 - Incorporate activated carbon reactors for T&O/cyanotoxin treatment
 - Install conventional rapid mix to further reduce coagulant feed
 - Add streaming current monitors to automate coagulant feed
 - Optimize filter performance

Edwardsville Water, Illinois

- Two separate ground water treatment plants
 - Plant 1 1948, 3 IX softeners, 12 filters, production capacity 4.2 mgd
 - Plant 2, 2000, 6 IX softeners, 6 filters, production capacity 3.6 mgd
 - Total production capacity 7.8 mgd
- Current production availability 4.7 mgd
 - 40% reduction due to IX softener issues
 - Likely would not meet summer 2016 demands
 - Target 130 mg/L hardness
 - Target manganese <0.05 mg/L
- Manganese breakthrough in Plant 2 filters
 - Causing color problems

High salt usage, manganese breakthrough, low production issues

- Investigations into high salt usage, manganese breakthrough, and poor production capabilities September 2015
 - 25-year old softening resin, Plant 1
 - 65-year old pressure tanks, Plant 1
 - 4 hour softener cycles
 - No softener bypass used
 - Manganese breakthrough Plant 2 only
 - Chlorides at WWTP approaching 1,400 mg/L
 - Operators on mandatory overtime just to wash filters and to regenerate softeners
 - Ongoing contract dispute related to who pays for capital and what is considered capital expense

- Manganese breakthrough
 - KMnO₄ used for greensand recharge at 0.3 mg/L
 - Manganese levels in Plant 2 greater than 0.1 mg/L
- Reviewed greensand dosing requirements
 - KMnO₄ dosing requirement 0.4 ounces per cubic foot filter media
 - New KMnO₄ dosing set at 0.7 mg/L
 - Manganese quickly reduced to 0.03 mg/L in filter effluent
 - Color issues eliminated

- Well hardness increased from 380 mg/L to greater than 700 mg/L
 - Identify source of hardness increase
- Significant increase in salt demand
 - Likely due to raw hardness increase
- Resin capacity in question
 - No current capacity evaluations
 - Original capacity Plant 1 <u>20,000 grains/cf</u>
 - Original capacity Plant 2 43,700 grains/cf

- Spent brine analysis
 - 45,000 mg/L chlorides
 - 36,000 mg/L calcium
 - 9,000 mg/L magnesium
- Backwash ponds recharge wells near the ponds
 - Spent brine responsible for hardness increase in wells
 - Once spent brine pumps replaced, well hardness returned to normal within 12 days

- Softener resin investigations Plant 2
 - 30,000 gallons softened between regeneration cycles
 - Salt dosing 1,100 pounds per softener (5.5 lbs/cf)
 - Run cycles about 4 hours
 - Regeneration cycle about 75 minutes
 - No current capacity evaluations
 - 2009 last capacity check showing 33% lost capacity
 - 20,000 grains/cf original capacity (low capacity resin)
 - Resin placed in softeners in 1990 (25 years old)

Resin condition - significant broken, cracked, and collapsed beads

Resin condition, significant broken, cracked, and collapsed beads

New resin illustrating smooth spherical beads

- Resin capacity evaluations
 - Collected softener effluent hardness data every hour
 - Ran softeners beyond hardness breakthrough
 - Graphed data
 - Estimated current operating capacity from graphs
 - Estimated salt dosing based on current capacity

- Current resin capacity estimated at about 11.2% (2,200 grains/cf)
- Salt dose estimated at 420 pounds rather than 1,100 pounds
 - Resin capacity related to hardness capture and salt retention
 - Developed softener operating and regeneration model
 - Further evaluations of operating costs

Softener Regeneration Model

Edwardsville			
Plant 1 Softening			
Plant operating hours	16.7	ave.	
Plant production	1.938	mgd	
Actual flow	1,934	gpm	645 gpm per softener
Average hardness	390	mg/L	22.8 gpg
Target hardness	130	mg/L	
_			
Plant 1 Softeners			
Percent bypass	30%		193 gpm
Flow per softener	451	gpm	
Total capacity	20.0	kgr/cf	
Capacity efficiency	11.2%		
Exchange Capacity	0.9	kgr/cf	
Salt requirement	1.429	lbs/kgr	
_	1.2	lbs/cf	
Volume softened per cycle		31,000 gallons	
Estimated softener run tim	e	4.2 hours	
Salt required for regeneration	on	420 pounds	
Saturated brine required		164 gallons	

Operating Costs Plant 1				
	2014	2015		
Salt usage, pounds	4,680,000	6,063,011		
Salt dose, lbs/cf	5.5	5.5		
Run times	9.2	4.6		
Bypass	0%	0%		
Salt cost	\$242,424	\$314,064		

Increased costs from 2014 \$71,640

New high capacity resin cost \$53,000

Disposal of resin \$14,800

- Salt dosing set at 10.7 lbs/cf after resin replacement
 - 30% bypass initiated
 - Effluent target hardness 130 mg/L
 - Softener throughput 360,000 gallons
 - Run cycles 15.3 hours
 - Regained Plant 1 production capacity of 4.2 mgd
 - Met summer demands in 2016
 - **2**016 salt usage 4, 115,446 pounds (\$213,180)
 - Cost savings over 2015 \$100,884 (ROI 8 months)

Elyria Water Pumping Plant, Ohio

- 22 mgd surface water plant drawing from Lake Erie
 - Average daily production 12 mgd (2009)
- Coagulation/filtration plant
 - Chemical treatment
 - Solids handling
 - Disinfection and storage
- Finished water pumping to Elyria and one wholesale distribution system
 - ≈54,000 people

- 2008 chemical treatment
 - Potassium permanganate
 - Alum coagulation
 - Activated carbon (seasonally)
 - Lime
 - Fluoride
 - Chlorine, zinc orthophosphate
- Wet weather turbidity can reach more than 200 NTU
 - Significant increases in alum dose
 - Excess solids carryover to filters
 - Excess sludge stored in sedimentation basins until it can be processed

- Optimization needs
 - Reduce coagulant dosing overall and during wet weather events
 - Dosages often reached more than 60 mg/L
 - Reduce solids carryover to filters
 - Settled turbidities climbed as high as 10 NTU during wet weather
 - Extend filter run times
 - Reduce solids handling
 - 2,500 gallon tanker shipments to WWTP for processing
 - Reduce chemical operating costs
 - Some chemicals increased 100% in 2009 bids

Alum rotodipper

Lime slurry

in basement

Alum, carbon fluoride, lime fed to raw water channel upstream of rapid mix

- Jar test screening
 - Raw turbidity 130 NTU
 - Alum
 - Acidified alum
 - Ferric chloride
 - Ferric sulfate
 - Aluminum chlorohydrate (ACH)
 - Aluminum chlorohydrate with cationic polymer
- Identify coagulant dosing to achieve settled water turbidity
 2 NTU or less
- Prepare dosing curve based on raw turbidity

- Jars evaluated under average raw water conditions
 - Determine average dosing
 - Define likely pH adjustment using lime
 - Estimate solids production and operating costs
 - Compare coagulants for optimum treatment and costs
 - Select alternate coagulant for plant trial

Lime Dosage, mg/L (with FeCl3 at 30 mg/L)

Item	Alum	Acid alum	FeCl ₃	Fe ₂ (SO ₄) ₃	ACH
Coagulant, mg/L	26	16.3	11.2	23	4
Lime, mg/L	6	8.5	8	10	0
Solids, gal/yr (2.6%)	6,744,000	5,771,000	4,498,000	4,938,000	2,827,000
Coagulant, \$/yr	\$184,681	\$114,912	\$107,399	\$138,866	\$49,722
Lime, \$/yr	\$15,982	\$22,641	\$21,309	\$26,637	\$0
Disposal, \$/yr	\$155,116	\$132,743	\$103,454	\$113,576	\$65,020
Combined, \$/yr	\$355,799	\$270,296	\$232,162	\$279,079	\$114,742

- ACH selected for full-scale plant trial
 - Feb-Mar 2009 trial period
- Data collection
 - Turbidities raw, applied, filtered
 - Water pH raw, applied, finished
 - Alkalinities raw, applied, finished
 - Dosages (ACH and customary alum)
 - TOC raw, tap
 - CCPP raw, tap
 - Langelier Index raw, tap
 - TTHM and Pb/Cu evaluations

$$Al_2(SO_4)_3 + 3Ca(HCO_3)_2 \Rightarrow 2Al(OH)_3 + 3CaSO_4 + 6CO_2$$

$$1 \text{ mg/L} \qquad 0.5 \text{ mg/L} \qquad 0.26 \text{ mg/L} \qquad 0.44 \text{ mg/L}$$

$$2Al_2Cl(OH)_5 + Ca(HCO_3)_2 \Rightarrow 4Al(OH)_3 + CaCl_2 + 2CO_2$$

$$1 \text{ mg/L} \qquad 0.29 \text{ mg/L} \qquad 0.89 \text{ mg/L} \qquad 0.25 \text{ mg/L}$$

Lower dosage, less alkalinity consumption, less CO₂ production essentially eliminated lime feed for pH adjustment.

ACH tote and temporary feed pump

- Plant trial 60 days
- Stopped alum feed
- Washed all filters
 - Alum-ACH gel
- Initiated ACH feed
- Stopped lime feed
- Observed reduction in fluoride feed
 - Lime consuming F- in raw channel

- Average ACH dosage 6.7 mg/L compared to alum dosing at 29 mg/L
 - ACH likely would be 75% lower than alum
- Settled water turbidity 1.6 NTU
 - Under wet weather turbidity occurrences
- Filtered turbidities 0.06 NTU to 0.08 NTU
- Water pH 7.53 versus 7.3 using alum
 - No lime feed using ACH
- TOC reduction about the same as alum
 - Average 27%
- Sludge production
 - 67% less than alum

Item	Alum	Acid alum	FeCl ₃	Fe ₂ (SO ₄) ₃	ACH
Coagulant, mg/L	26	16.3	11.2	23	4
Lime, mg/L	6	8.5	8	10	0
Solids, gal/yr (2.6%)	6,744,000	5,771,000	4,498,000	4,938,000	2,827,000
Fluoride, mg/L	1.2	1.2	1.35	1.35	1.0
Coagulant, \$/yr	\$184,681	\$114,912	\$107,399	\$138,866	\$49,722
Lime, \$/yr	\$15,982	\$22,641	\$21,309	\$26,637	\$0
Disposal, \$/yr	\$155,116	\$132,743	\$103,454	\$113,576	\$65,020
Fluoride, \$/yr	\$28,351	\$28,351	\$31,959	\$31,959	\$25,996
Combined, \$/yr	\$384,130	\$298,647	\$264,121	\$311,038	\$140,738

- ACH provided lower applied turbidity and increased filter run times
- ACH eliminated lime dosing for pH adjustment
 - Maintained higher pH levels than alum/lime
 - Fluoride feed reduced due to lime elimination
- TOC removals similar to alum
 - TTHM values similar to alum (averaged 41 μg/L)
- Lead/copper projections
 - 8.7 μg/L and 160 μg/L, respectively
- Solids production
 - 67% less than alum/lime
- Overall 63% reduction in operating costs as compared to alum
 - Annual cost savings projected at more than \$243,000

- Converted one alum storage tank to ACH
- Installed new day tank and feed pumps near raw water line in basement
 - Tapped raw water for new feed connection
- Initiated ACH full scale operations spring 2010

MSVD Meander Water, Ohio

- 60 mgd surface water plant drawing from Meander Reservoir
 - Average daily production ≈25 mgd
- Coagulation/softening/filtration plant
 - Chemical treatment
 - Solids contact clarification
 - Solids handling
 - Disinfection and storage
- Finished water pumping to three wholesale distribution systems

- Solids contact clarifiers installed with plant improvements in 2013
 - Replaced old square clarifiers
 - New rapid mix induction equipment
 - New recarbonation feed system
 - Other plant improvements

- Issues prompting optimization
 - Low solids recirculation in reaction zone
 - Less than desired settled water turbidities
 - Higher solids loadings to filters than necessary
 - Need to feed anionic polymer to help control turbidity
 - Assistance in establishing sludge blow-off cycles
 - Assistance in establishing mixer speeds for recirculation
 - New rapid mix effectiveness
 - Proper coagulant type and dosage
 - Better overall clarifier performance

Initial Opera	ating Conditions 2014		
Apparent floc size	0.5 mm		
Settled water turbidity	9 NTU		
Reaction zone solids	3% by volume		
Mixer operating speed	27% and 36%		
Blow-off solids	99% (toothpaste consistency, dark color)		
Blow-off volume	10,800 gpd		
Effluent pH	11.1 - 11.2		
Effluent TOC	4.5 mg/L (33%)		
Hydroxide alkalinity	40 mg/L		
Sodium aluminate	3 mg/L		
Lime dosage	$100~\mathrm{mg/L}$		

Parameter	Existing	Target
Settled water turbidity	9 NTU	≤2 NT U
Reaction zone solids, by volume	3%	10%-15%
Mixer operating speed	27%/36%	45%-55%
Blow-off solids	99%	90%-95%
Blow-off volume	10,800	70,000
Effluent pH	11.1 - 11.2	10.9
Hydroxide alkalinity	40 mg/L	20 mg/L

Bottom recirculation ports blocked with sludge previously and cleaned (26% by weight)

- Slowly increased mixer speed up to 52%
 - Observed floc density and size
 - Tracked recirculation solids (up to 7%v)
- Checked blow-off timers
 - Set up differently from vendor, reset to match
 - Calculated apparent solids production
 - Raw turbidity, chemical treatments
 - 70,000 gpd produced while blowing off 10,800 gpd
 - Manual sludge blow-off for remainder of the day
 - Remove old sludge and re-establish adequate sludge volume
 - More than 300,000 gallons sludge removed
 - Essential just storing sludge in clarifiers

- Re-established sludge blow-off cycles
 - Flow meters provided each blow-off line
 - Initial blow-off cycle 1 minute every 4 hours
 - Reset blow-off cycle 50 seconds every hour
 - Maintained sludge at 90% in blow-off
 - About 35,000 gpd per clarifier
- Improved water quality within 3 days
 - Settled turbidity 3 NTU
- Jar testing showed coagulant change likely needed

5-munute settling test

Sodium Aluminate Dosage, mg/L

 $R^2 = 0.9983$

- Clarifier optimization led to other optimization projects, some are ongoing
 - Chemical optimization
 - Alternate coagulant demonstration and conversion
 - Filter optimization
 - Stabilization optimization

Tampa Regional, Florida

- 90 mgd surface water plant, 15 BG reservoir
 - Alifia River
 - Hillsborough River
 - Tampa Bypass Canal
 - Average daily production ≈52mgd
- Coagulation/ozonation/filtration plant
 - Chemical treatment
 - ActiFlo sand-ballasted clarification
 - Solids handling
 - Disinfection and storage
- Finished water pumping to Tampa Bay Water

- Finished water pH adjustment
 - 50% NaOH to pH 7.6
 - Average dosage 12.5 mg/L
 - Significant fluctuations in pH levels
 - Annual caustic costs \$451,434

- NaOH fed downstream of clearwell weir wall
 - 60 feet upstream of high service pumps
- Significant scaling, annual pump cleaning
 - **\$150,000**
- Questionable mixing at feed point

Serpentine clearwell arrangements

- CFD analysis conducted of mixing at weir wall
 - Predominant mixing energy at top of weir wall
 - Very little mixing energy at existing feed point
 - Leads to scale build-up
 - Annual pump cleaning
 - Pump downtime

- Relocation of NaOH feed point better mixing
 - Slice gate about 50 feet upstream of weir wall
 - CFD analysis confirmed improved mixing
 - Piloted NaOH soda feed at new location
 - Improvements in pH measurements
 - Reduced NaOH feed rates

CFD analysis for relocating NaOH feed

- Nearly complete mixing upstream of weir wall
- Expected to reduce feed rates and stabilize pH measurements

pH Adjustment Operating Costs			
	2016	Future 240	ouction action NaO
Caustic soda feed	\$451,434	\$343,090	ree
Pump cleaning	\$150,000	\$0	
Annual costs	\$601,434	\$343,090	
Eng./Const.		\$270,000	
Cost savings		\$258,344	
ROI		12.5 months	

Conclusions

- Optimization can produce excellent results
 - Better performance in many applications
 - Follow scientific principles and established procedures
 - Document findings and projections
 - Verify with first-year field data
 - Often improves water quality and can produce cost savings
- Start making you own stories

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931