
Optimization Stories From the 
Field 

 Marvin Gnagy, P.E., President 

 PMG Consulting, Inc. 

 

  

 

OTCO Class 3&4 Workshop 

August 3, 2017 



Optimization Stories From The Field 

 Optimization practices used in the field 
 Short synopsis 

 Optimization stories 
 Evaluations made 

 Technical solutions developed 

 Implementation and verification 

 Results achieved 

 Questions 

 

Agenda 

2 



Optimization Stories From The Field 

3 

 Define objectives/goals 
 Why should this project be initiated 

 Develop baseline characteristics 
 Current operations and metrics 

 Benchmark industry standards or best practices 
 Compare where things are to where you believe they should be 

 Conduct gap analysis 
 How do I get to the goals? 

 Tools, capital, training, operating adjustments that might be needed 
to achieve the goals 

Optimization Practices Used in Field 

3 



Optimization Stories From The Field 

4 

 Establish Implementation strategy 
 Capital needs 

 Tools, modeling, etc. 

 Operational changes 

 Adjustment protocols 

 Verification procedures 

 Track progress against objectives/goals 
 Did you meet the objectives and goals? 

 Did you exceed the objectives and goals? 

 Did you improve water quality? 

 Did you improve performance? 

Optimization Practices Used in Field 

4 



Optimization Stories From The Field 

Atlanta-Fulton County, Georgia 
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Optimization Stories From The Field 

 90 mgd surface water plant 
 Average daily production 44.5 mgd 

 Reservoir storage from Chattahoochee River 

 Coagulation/filtration plant 
 Chemical treatment 

 Solids handling 

 Disinfection and storage 

 Finished water pumping to two wholesale distribution 
systems 
 400,00 people 

 

Atlanta-Fulton County 
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Atlanta-Fulton County 
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Floc Speed Adjustments Initiative 
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Atlanta-Fulton County 
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Sedimentation basins with plate settlers 
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 Floc Speed Adjustments Initiative 
 Jagged, feathery floc observed entering the sedimentation process 

 Measured drive output speeds at different VFD settings 

 Established rotational output at any VFD setting 

 Defined current G values for each of four stages 

 4 sec-1, 4 sec-1, 3 sec-1, 2 sec-1 

 Operators afraid of floc shear 

 Conducted jar testing to establish optimum G values for floc 
development and settleability 

 Graphed floc settleability versus G value to find optimum mixing 
characteristics 

 

 

Atlanta-Fulton County 
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Atlanta-Fulton County 
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Low density 

floc particles 

observed in 

full-scale 

operations 
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• Adjusted floc drive 
speeds to produce 
suggested G values 

• Tracked settled 
water turbidity 
online monitoring 

• Reduced from 0.5 
NTU average to 0.1 
NTU average 
within 4 days 

• Possible to reduce 
coagulant dosage to 
obtain similar 
settled turbidity 

• Implemented 
without capital 
costs 

 

 

Atlanta-Fulton County 
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• Dewatering 
accomplished in 
gravity thickeners, 
lime amendment 
to pH 12, sludge 
conditioning and 
pumping, plate and 
frame filter press 

• Cake disposal in 
local landfill 

• Cake typically 23% 
solids (another 
story) 

Atlanta-Fulton County 
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 Coagulant reduction could impact other processes and costs 
 Reduced solids production 

 Reduced lime for dewatering 

 Reduced post-lime for pH adjustment/corrosion control 

 Cake disposal 

 Phase 2 optimization 
 Define current operating costs 

 Develop potential costs under optimized coagulant dosing 

 Establish new settled water target values 

 Verify operating costs from annual operations 

 

Atlanta-Fulton County 
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Initial Operating Metrics 

Alum, mg/L 15.6 

Post-lime, mg/L 3.92 

Dewatering lime, lbs/mo. 76,798 

Filter cake, dry tons per year 941 

Alum,  lbs/MG 132.2 

Post-lime,  lbs/MG 33.3 

Dewatering lime, tons per dry 

ton cake 1.832 

Atlanta-Fulton County 
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$180,969

$35,400

$66,998

$87,219

2015 Operating Cost Breakdown

Coagulant

Post-lime

Dewatering lime

Cake disposal

Cost savings

Annual operating cost $370,586
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Initial Operating Metrics Projected Operating Metrics 

Alum, mg/L 15.6 Alum, mg/L 12.5 

Post-lime, mg/L 3.92 Post-lime, mg/L 3.2 

Dewatering lime, lbs/mo. 76,798 Dewatering lime, lbs/mo. 57,599 

Filter cake, dry tons per 

year 
941 

Filter cake, dry tons per 

year 
752 

Alum,  lbs/MG 132.2 Alum,  lbs/MG 105.9 

Post-lime,  lbs/MG 33.3 Post-lime,  lbs/MG 27.2 

Dewatering lime, tons per 

dry ton cake 1.832 
Dewatering lime, tons per 

dry ton cake 1.832 

Atlanta-Fulton County 
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Expected 20% overall reduction in operating costs 
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 Implementation and verification of annual operations 
 Month-to-month tracking and comparisons first year 

 Calculation of operating costs and actual savings 

 Adjustment of operating metrics 

 Summation of first-year operations 

Atlanta-Fulton County 

23 

Dewatering lime feed 
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Initial Operating Metrics Actual Operating Metrics 

Alum, mg/L 15.6 Alum, mg/L 9.6 

Post-lime, mg/L 3.92 Post-lime, mg/L 2.9 

Dewatering lime, lbs/mo. 76,798 Dewatering lime, lbs/mo. 51,123 

Filter cake, dry tons per 

year 
941 

Filter cake, dry tons per 

year 
650 

Alum,  lbs/MG 132.2 Alum,  lbs/MG 79.8 

Post-lime,  lbs/MG 33.3 Post-lime,  lbs/MG 23.7 

Dewatering lime, tons per 

dry ton cake 1.832 
Dewatering lime, tons per 

dry ton cake 1.832 

Atlanta-Fulton County 
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Atlanta-Fulton County 
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$100,280

$24,392

$44,599
$58,704

$142,611

2016 Operating Cost Breakdown

Coagulant

Post-lime

Dewatering lime

Cake disposal

Cost savings

Annual operating cost $227,975

Actual 38% reduction in annual costs obtained 

 

Excellent coordination between operations and 

engineering toward a common goal 

$180,969

$35,400

$66,998

$87,219

2015 Operating Cost Breakdown

Coagulant

Post-lime

Dewatering lime

Cake disposal

Annual operating cost $370,586
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Buffalo Water, New York 
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 120 mgd surface water plant, originally 1922 
 Average daily production 71 mgd 

 Direct draw from eastern basin Lake Erie 
 Just upstream of Niagara River 

 Coagulation/filtration plant 
 Chemical treatment 

 Solids handling 

 Disinfection and storage 

 Finished water pumping to distribution system 
 257,00 people 

 

Buffalo Water 
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Lake Intake Structure 
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Buffalo Water 
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Coagulant Mixing Initiative 
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 SternPac coagulant used since 1990’s 
 Raw water turbidity averages 2 NTU 

 Settled water turbidity averaged 0.85 NTU 

 Filter run times 72 hours 

 Low head loss, possible optimization initiaitive 

 One coagulant feed point 
 Low service discharge header 

 Relatively poor mixing 

 Coagulant not contacting within pump flow depending on pump in 
operation 

Buffalo Water 
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Buffalo Water 
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Coagulant Feed Line 

Discharge header 
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Buffalo Water 

31 

Coagulant Feed Line 

Discharge header 
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Buffalo Water 
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Coagulant Feed Line 

Discharge header 
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Buffalo Water 
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Coagulant Feed Line 

Changed 

feed point to 

each pump 

discharge to 

improve 

mixing 

Discharge header 
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 Mixing improvement immediately led to 17% reduction in 
coagulant dosage 
 9.7 mg/L to 8 mg/L 

 Coagulant reduction also impacted 
 Sludge dewatering 

 Polymer conditioning 

 Cake disposal 

 Operating costs 

Buffalo Water 
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Buffalo Water 
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Floc and sed basins cleaned annually, no sludge 

removal equipment 
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Buffalo Water 
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Sludge pumped to backwash lagoon for  further processing 
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Buffalo Water 

37 

Lagoon contents pumped to 

conditioning tank for polymer 

addition 
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Initial Operating Metrics 

SternPac, mg/L 9.67 

Dewatering polymer, 

lbs/ton 
12.95 

Cake production, dry 

tons/yr 
931 

Cake solids, % 22.6 

Buffalo Water 

38 

$244,236$177,669

$48,037

Coagulant

Disposal

Polymer

2014 Operating Cost Breakdown

Annual Operating Cost $469,941
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Initial Operating Metrics Actual Operating Metrics 

SternPac, mg/L 9.67 SternPac, mg/L 8.0 

Dewatering 

polymer, lbs/ton 
12.95 

Dewatering polymer, 

lbs/ton 
10.13 

Cake production, 

dry tons/yr 
931 

Cake production, dry 

tons/yr 
725 

Cake solids, % 22.6 Cake solids, % 32.1 
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Buffalo Water 
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Actual 33.5% reduction realized in annual costs 

$196,621

$95,023

$20,640

$157,658

Coagulant

Disposal

Polymer

Savings

2015 Operating Cost Breakdown

Annual Operating Cost $312,284

$244,236$177,669

$48,037

Coagulant

Disposal

Polymer

2014 Operating Cost Breakdown

Annual Operating Cost $469,941
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Actual 33.5% reduction realized in annual costs 

Annual cost savings $157,657  

$196,621

$95,023

$20,640

$157,658

Coagulant

Disposal

Polymer

Savings

2015 Operating Cost Breakdown

Annual Operating Cost $312,284

$244,236$177,669

$48,037

Coagulant

Disposal

Polymer

2014 Operating Cost Breakdown

Annual Operating Cost $469,941
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 Future optimization plans 
 Floc speed adjustments (underway with another 12% coagulant 

reduction) 

 Incorporate activated carbon reactors for T&O/cyanotoxin 
treatment 

 Install conventional rapid mix to further reduce coagulant feed 

 Add streaming current monitors to automate coagulant feed 

 Optimize filter performance 

 

 

Buffalo Water 
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 Two separate ground water treatment plants 
 Plant 1 1948, 3 IX softeners, 12 filters, production capacity 4.2 mgd 

 Plant 2, 2000, 6 IX softeners, 6 filters, production capacity 3.6 mgd 

 Total production capacity 7.8 mgd 

 Current production availability 4.7 mgd 
 40% reduction due to IX softener issues 

 Likely would not meet summer 2016 demands 

 Target 130 mg/L hardness 

 Target manganese <0.05 mg/L 

 Manganese breakthrough in Plant 2 filters 
 Causing color problems 

Edwardsville Water, Illinois 
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Edwardsville Water 
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 Investigations into high salt usage, manganese 
breakthrough, and poor production capabilities September 
2015 
 25-year old softening resin, Plant 1 

 65-year old pressure tanks, Plant 1 

 4 hour softener cycles 

 No softener bypass used 

 Manganese breakthrough Plant 2 only 

 Chlorides at WWTP approaching 1,400 mg/L 

 Operators on mandatory overtime just to wash filters and to 
regenerate softeners 

 Ongoing contract dispute related to who pays for capital and what 
is considered capital expense 

Edwardsville Water 
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 Manganese breakthrough  
 KMnO4 used for greensand recharge at 0.3 mg/L 

 Manganese levels in Plant 2 greater than 0.1 mg/L 

 Reviewed greensand dosing requirements 
 KMnO4 dosing requirement 0.4 ounces per cubic foot filter media 

 New KMnO4 dosing set at 0.7 mg/L 

 Manganese quickly reduced to 0.03 mg/L in filter effluent 

 Color issues eliminated 

 

Edwardsville Water 

46 



Optimization Stories From The Field 

 Well hardness increased from 380 mg/L to greater than 700 
mg/L 
 Identify source of hardness increase 

 Significant increase in salt demand 
 Likely due to raw hardness increase 

 Resin capacity in question 
 No current capacity evaluations 

 Original capacity Plant 1 - 20,000 grains/cf 

 Original capacity Plant 2 - 43,700 grains/cf 

Edwardsville Water 
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Edwardsville Water 
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 Spent brine analysis 
 45,000 mg/L chlorides 

 36,000 mg/L calcium 

 9,000 mg/L magnesium 

 Backwash ponds recharge wells near the ponds 
 Spent brine responsible for hardness increase in wells 

 Once spent brine pumps replaced, well hardness returned to normal 
within 12 days 

Edwardsville Water 
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 Softener resin investigations Plant 2 
 30,000 gallons softened between regeneration cycles 

 Salt dosing 1,100 pounds per softener (5.5 lbs/cf) 

 Run cycles about 4 hours 

 Regeneration cycle about 75 minutes 

 No current capacity evaluations 

 2009 last capacity check showing 33% lost capacity 

 20,000 grains/cf original capacity (low capacity resin) 

 Resin placed in softeners in 1990 (25 years old) 

 

Edwardsville Water 
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Edwardsville Water 
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Resin condition - significant broken, 

cracked, and collapsed beads 
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Edwardsville Water 
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Resin condition, significant broken, 

cracked, and collapsed beads 

New resin illustrating smooth 

spherical  beads 
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 Resin capacity evaluations 
 Collected softener effluent hardness data every hour  

 Ran softeners beyond hardness breakthrough 

 Graphed data 

 Estimated current operating capacity from graphs 

 Estimated salt dosing based on current capacity 

 

Edwardsville Water 
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Edwardsville Water 
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 Current resin capacity 
estimated at about 11.2% 
(2,200 grains/cf) 

 Salt dose estimated at 420 
pounds rather than 1,100 
pounds 
 Resin capacity related to 

hardness capture and salt 
retention 

 Developed softener operating 
and regeneration model 

 Further evaluations of 
operating costs 

Edwardsville Water 
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Edwardsville

Plant 1 Softening

Plant operating hours 16.7 ave.

Plant production 1.938 mgd

Actual flow 1,934 gpm 645 gpm per softener

Average hardness 390 mg/L 22.8 gpg

Target hardness 130 mg/L

Plant 1 Softeners

Percent bypass 30% 193 gpm

Flow per softener 451 gpm

Total capacity 20.0 kgr/cf

Capacity efficiency 11.2%

Exchange Capacity 0.9 kgr/cf

Salt requirement 1.429 lbs/kgr

1.2 lbs/cf

Volume softened per cycle 31,000 gallons

Estimated softener run time 4.2 hours

Salt required for regeneration 420 pounds

Saturated brine required 164 gallons

Softener Regeneration Model  
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Operating Costs Plant 1 

2014 2015 

Salt usage, pounds 4,680,000 6,063,011 

Salt dose, lbs/cf 5.5 5.5 

Run times 9.2 4.6 

Bypass 0% 0% 

Salt cost $242,424 $314,064 

Edwardsville Water 
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Increased costs from 2014 $71,640 

New high capacity resin cost $53,000 

Disposal of  resin $14,800 
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Edwardsville Water 
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Educted old resin and disposed in landfill 
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Edwardsville Water 
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Installed DOW 

HCR-S high 

capacity SAC resin 

43.7 kgr/cf 
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Edwardsville Water 
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 Salt dosing set at 10.7 lbs/cf after resin replacement 
 30% bypass initiated 

 Effluent target hardness 130 mg/L 

 Softener throughput 360,000 gallons 

 Run cycles 15.3 hours 

 Regained Plant 1 production capacity of 4.2 mgd 

 Met summer demands in 2016 

 2016 salt usage - 4, 115,446 pounds ($213,180) 

 Cost savings over 2015 $100,884 (ROI 8 months) 

Edwardsville Water 
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Elyria Water Pumping Plant, Ohio 
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 22 mgd surface water plant drawing from Lake Erie 
 Average daily production 12 mgd (2009) 

 Coagulation/filtration plant 
 Chemical treatment 

 Solids handling 

 Disinfection and storage 

 Finished water pumping to Elyria and one wholesale 
distribution system 
 ≈54,000 people 

 

Elyria Water Pumping Plant 
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Elyria Water Pumping Plant 

64 

Alternate Coagulant Initiative 
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 2008 chemical treatment 
 Potassium permanganate 

 Alum coagulation 

 Activated carbon (seasonally) 

 Lime 

 Fluoride 

 Chlorine, zinc orthophosphate 

 Wet weather turbidity can reach more than 200 NTU 
 Significant increases in alum dose  

 Excess solids carryover to filters 

 Excess sludge stored in sedimentation basins until it can be 
processed  

Elyria Water Pumping Plant 
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 Optimization needs 
 Reduce coagulant dosing overall and during wet weather events 

 Dosages often reached more than 60 mg/L 

 Reduce solids carryover to filters 

 Settled turbidities climbed as high as 10 NTU during wet weather 

 Extend filter run times 

 Reduce solids handling 

 2,500 gallon tanker shipments to WWTP for processing 

 Reduce chemical operating costs 

 Some chemicals increased 100% in 2009 bids 

 

Elyria Water Pumping Plant 
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Elyria Water Pumping Plant 
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Alum 

rotodipper 

Lime slurry 

in basement 

Alum, 

carbon 

fluoride, 

lime fed to 

raw water 

channel 

upstream of  

rapid mix 
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 Jar test screening 
 Raw turbidity 130 NTU 

 Alum 

 Acidified alum 

 Ferric chloride 

 Ferric sulfate 

 Aluminum chlorohydrate (ACH) 

 Aluminum chlorohydrate with cationic polymer 

 Identify coagulant dosing to achieve settled water turbidity 
2 NTU or less 

 Prepare dosing curve based on raw turbidity 

Elyria Water Pumping Plant 
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Elyria Water Pumping Plant 
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Elyria Water Pumping Plant 
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Optimization Stories From The Field 

 Jars evaluated under average raw water conditions 
 Determine average dosing 

 Define likely pH adjustment using lime 

 Estimate solids production and operating costs 

 Compare coagulants for optimum treatment and costs 

 Select alternate coagulant for plant trial 

Elyria Water Pumping Plant 
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Item Alum Acid alum FeCl3 Fe2(SO4)3 ACH 

Coagulant, mg/L 26 16.3 11.2 23 4 

Lime, mg/L 6 8.5 8 10 0 

Solids, gal/yr 

(2.6%) 
6,744,000 5,771,000 4,498,000 4,938,000 2,827,000 

Coagulant, $/yr $184,681 $114,912 $107,399 $138,866 $49,722 

Lime, $/yr $15,982 $22,641 $21,309 $26,637 $0 

Disposal, $/yr $155,116 $132,743 $103,454 $113,576 $65,020 

Combined, $/yr $355,799 $270,296 $232,162 $279,079 $114,742 

Elyria Water Pumping Plant 
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Optimization Stories From The Field 

 ACH selected for full-scale plant trial 
 Feb-Mar 2009 trial period 

 Data collection 
 Turbidities - raw, applied, filtered 

 Water pH - raw, applied, finished 

 Alkalinities - raw, applied, finished 

 Dosages (ACH and customary alum) 

 TOC - raw, tap 

 CCPP - raw, tap 

 Langelier Index - raw, tap 

 TTHM and Pb/Cu evaluations 

 

 

Elyria Water Pumping Plant 
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Elyria Water Pumping Plant 

77 

24323342 63)(2)(3)( COCaSOOHAlHCOCaSOAl 

2232352 2)(4)()(2 COCaClOHAlHCOCaOHClAl 

1 mg/L 0.5 mg/L 0.44 mg/L 

1 mg/L 0.29 mg/L 0.25 mg/L 

0.26 mg/L 

0.89 mg/L 

Lower dosage, less alkalinity consumption, less CO2 

production essentially eliminated lime feed for pH 

adjustment. 
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 Plant trial 60 days 

 Stopped alum feed 

 Washed all filters 
 Alum-ACH gel 

 Initiated ACH feed 

 Stopped lime feed 

 Observed reduction in 
fluoride feed 
 Lime consuming F- in 

raw channel 

Elyria Water Pumping Plant 
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ACH tote and temporary feed pump 
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 Average ACH dosage 6.7 mg/L compared to alum dosing at 29 mg/L 
 ACH likely would be 75% lower than alum 

 Settled water turbidity 1.6 NTU 
 Under wet weather turbidity occurrences 

 Filtered turbidities 0.06 NTU to 0.08 NTU 

 Water pH 7.53 versus 7.3 using alum 
 No lime feed using ACH 

 TOC reduction about the same as alum 
 Average 27% 

 Sludge production 
  67% less than alum 

 

Elyria Water Pumping Plant 
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Item Alum Acid alum FeCl3 Fe2(SO4)3 ACH 

Coagulant, 

mg/L 
26 16.3 11.2 23 4 

Lime, mg/L 6 8.5 8 10 0 

Solids, gal/yr 

(2.6%) 
6,744,000 5,771,000 4,498,000 4,938,000 2,827,000 

Fluoride, mg/L 1.2 1.2 1.35 1.35 1.0 

Coagulant, $/yr $184,681 $114,912 $107,399 $138,866 $49,722 

Lime, $/yr $15,982 $22,641 $21,309 $26,637 $0 

Disposal, $/yr $155,116 $132,743 $103,454 $113,576 $65,020 

Fluoride, $/yr $28,351 $28,351 $31,959 $31,959 $25,996 

Combined, $/yr $384,130 $298,647 $264,121 $311,038 $140,738 

Elyria Water Pumping Plant 
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Optimization Stories From The Field 

 ACH provided lower applied turbidity and increased filter run times 

 ACH eliminated lime dosing for pH adjustment 
 Maintained higher pH levels than alum/lime 

 Fluoride feed reduced due to lime elimination 

 TOC removals similar to alum 
 TTHM values similar to alum (averaged 41 µg/L) 

 Lead/copper projections 
 8.7 µg/L and 160 µg/L, respectively 

 Solids production 
 67% less than alum/lime 

 Overall 63% reduction in operating costs as compared to alum 
 Annual cost savings projected at more than $243,000 

 

Elyria Water Pumping Plant 
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 Converted one alum 
storage tank to ACH 

 Installed new day tank 
and feed pumps near 
raw water line in 
basement 
 Tapped raw water for 

new feed connection  

 Initiated ACH full 
scale operations spring 
2010  

Elyria Water Pumping Plant 
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MSVD Meander Water, Ohio 
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Optimization Stories From The Field 

 60 mgd surface water plant drawing from Meander 
Reservoir 
 Average daily production ≈25 mgd 

 Coagulation/softening/filtration plant 
 Chemical treatment 

 Solids contact clarification 

 Solids handling 

 Disinfection and storage 

 Finished water pumping to three wholesale distribution 
systems 

MSVD Meander Water 
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MSVD Meander Water 

85 

Clarifier Optimization Initiative 



Optimization Stories From The Field 

 Solids contact clarifiers installed with plant improvements 
in 2013 
 Replaced old square clarifiers 

 New rapid mix induction equipment 

 New recarbonation feed system 

 Other plant improvements 

MSVD Meander Water 
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Optimization Stories From The Field 

 Issues prompting optimization 
 Low solids recirculation in reaction zone 

 Less than desired settled water turbidities 

 Higher solids loadings to filters than necessary 

 Need to feed anionic polymer to help control turbidity 

 Assistance in establishing sludge blow-off cycles 

 Assistance in establishing mixer speeds for recirculation 

 New rapid mix effectiveness 

 Proper coagulant type and dosage 

 Better overall clarifier performance 

 

MSVD Meander Water 
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Initial Operating Conditions 2014 

Apparent floc size 0.5 mm 

Settled water turbidity 9 NTU 

Reaction zone solids 3% by volume 

Mixer operating speed 27% and 36% 

Blow-off  solids 
99% (toothpaste consistency, 

dark color) 

Blow-off  volume 10,800 gpd 

Effluent  pH 11.1 - 11.2 

Effluent TOC 4.5 mg/L (33%) 

Hydroxide alkalinity 40 mg/L 

Sodium aluminate 3 mg/L 

Lime dosage 100 mg/L 

MSVD Meander Water 
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Parameter Existing Target 

Settled water 

turbidity 
9 NTU ≤2 NTU 

Reaction zone 

solids, by volume 
3% 10%-15% 

Mixer operating 

speed 
27%/36% 45%-55% 

Blow-off  solids 99% 90%-95% 

Blow-off  volume 10,800 70,000 

Effluent  pH 11.1 - 11.2 10.9 

Hydroxide 

alkalinity 
40 mg/L 20 mg/L 

MSVD Meander Water 
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Bottom recirculation ports blocked with 

sludge previously and cleaned (26% by 

weight) 
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 Slowly increased mixer speed up to 52% 
 Observed floc density and size 

 Tracked recirculation solids (up to 7%v) 

 Checked blow-off timers 
 Set up differently from vendor, reset to match 

 Calculated apparent solids production 

 Raw turbidity, chemical treatments 

 70,000 gpd produced while blowing off 10,800 gpd 

 Manual sludge blow-off for remainder of the day 

 Remove old sludge and re-establish adequate sludge volume 

 More than 300,000 gallons sludge removed 

 Essential just storing sludge in clarifiers 

 

MSVD Meander Water 
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 Re-established sludge blow-off cycles 
 Flow meters provided each blow-off line 

 Initial blow-off cycle 1 minute every 4 hours 

 Reset blow-off cycle 50 seconds every hour 

 Maintained sludge at 90% in blow-off 

 About 35,000 gpd per clarifier 

 Improved water quality within 3 days 
 Settled turbidity 3 NTU 

 Jar testing showed coagulant change     
likely needed 

MSVD Meander Water 
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5-munute settling test 
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MSVD Meander Water 
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Increased settled 

turbidity with 

increased dosing 
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MSVD Meander Water 
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Poor filterability 
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MSVD Meander Water 
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Getting about 9% TOC 

reduction with coagulant 
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 Clarifier optimization led to other optimization projects, 
some are ongoing 
 Chemical optimization 

 Alternate coagulant  demonstration and conversion 

 Filter optimization 

 Stabilization optimization 

 

MSVD Meander Water 
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Optimization Stories From The Field 

Tampa Regional, Florida 
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 90 mgd surface water plant, 15 BG reservoir 
 Alifia River 

 Hillsborough River 

 Tampa Bypass Canal 

 Average daily production ≈52mgd 

 Coagulation/ozonation/filtration plant 
 Chemical treatment 

 ActiFlo sand-ballasted clarification 

 Solids handling 

 Disinfection and storage 

 Finished water pumping to Tampa Bay Water 

Tampa Regional 
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Tampa Regional 
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Caustic Mixing Improvements 
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 Finished water pH adjustment 
 50% NaOH to pH 7.6 

 Average dosage 12.5 mg/L 

 Significant fluctuations in pH levels 

 Annual caustic costs $451,434 

 Chemical application 
 NaOH fed downstream of clearwell weir wall 

 60 feet upstream of high service pumps 

 Significant scaling, annual pump cleaning 

 $150,000 

 Questionable mixing at feed point 

Tampa Regional 
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Tampa Regional 
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Clearwell Weir Wall 

Caustic  soda injection  

Annual CO3 scale build-up 
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Tampa Regional 
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NaOH feed 

NaOH feed 

Pump suction 

Pump suction 

Serpentine clearwell arrangements 
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 CFD analysis conducted of mixing at weir wall 
 Predominant mixing energy at top of weir wall 

 Very little mixing energy at existing feed point 

 Leads to scale build-up 

 Annual pump cleaning 

 Pump downtime 

Tampa Regional 
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NaOH feed 
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Tampa Regional 
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Optimization Stories From The Field 

 Relocation of NaOH feed point better mixing 
 Slice gate about 50 feet upstream of weir wall 

 CFD analysis confirmed improved mixing 

 Piloted NaOH soda feed at new location 

 Improvements in pH measurements 

 Reduced NaOH feed rates 

Tampa Regional 
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 CFD analysis for 
relocating NaOH feed 
 Nearly complete mixing 

upstream of weir wall 

 Expected to reduce feed 
rates and stabilize pH 
measurements 

Tampa Regional 
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Tampa Regional 
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NaOH feed 

NaOH feed 

Pump suction 

Pump suction 
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Tampa Regional 
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pH Adjustment Operating Costs 

2016 Future 

Caustic soda feed $451,434 $343,090 

Pump cleaning $150,000 $0 

Annual costs $601,434 $343,090 

Eng./Const. $270,000 

Cost savings $258,344 

ROI 12.5 months 

Tampa Regional 
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Optimization Stories From The Field 

 Optimization can produce excellent results 
 Better performance in many applications 

 Follow scientific principles and established procedures 

 Document findings and projections 

 Verify with first-year field data 

 Often improves water quality and can produce cost savings 

 Start making you own stories 
 

Conclusions 
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