Optimizing Mixing Applications for Water and Wastewater

pmg Marvin Gnagy, P.E., Owner

PMG Consulting, Inc.

OTCO 60th Anniversary Workshop July 25, 2024

Agenda

- Review mixing concepts
- Optimum mixing characteristics
- Mixing designs
 - Pipe mixing
 - Static mixers
 - Weir mixing
 - Pump mixers
 - Rapid mixers
 - Vertical or horizontal flocculators
- Questions

- Rapid dispersion of chemicals into water (or wastewater) stream
 - Better distribution of chemical application
 - Fewer byproduct formations
 - Assure chemical interfaces with particulate (or biological) matter
 - Assure chemical interfaces with inorganic contaminants
- G value relationship to process control
 - Step-by-step procedures to determine process design parameters
 - G value and Gt calculations
 - Head loss creates mixing intensity
 - Impeller design criteria

- Detention or reaction time
 - Time required for specific chemical reaction or development of settleable particles
- Generally accepted equation

$$d_t = \frac{V}{Q}$$

- d_t = detention or reaction time
- V = basin volume, gallons
- Q = fluid flow rate, (gpm, gph, gpd, etc.)

- Mixing Intensity (G Value)
 - Smoluchowski develop flocculation kinetics concepts 1916
 - Mathematics Theory for Coagulation and Colloidal Kinetics Using Laminar Flow Conditions and Brownian Movement
 - Camp and Stein (1943) applied turbulent flow conditions to theories for G value concepts
 - Camp (1953) extended practical use of G values and developed Gt concept for flocculator design
 - Kawamura (1981) extended Gt concepts to mixing design
 - Possible to improve mixing by altering detention or reaction time

- Mixing Intensity (G value)
 - Calculated using basin configuration and mixer characteristics
 - G value (Camp and Stein 1943)
 - Later researchers further define power input (P) for mixing

$$G = \sqrt{P/\mu V}$$

 $P = \frac{N_p n^3 D^5 \rho}{g}$

 μ - dynamic viscosity

V - basin volume, ft^3

P - power input, ft-lbs/sec

 N_{p} - impeller power number

n - rotational speed, rps

D - impeller diameter, ft.

 ρ - water density (temp.)

g - gravitational constant (32.174)

- Mixing intensity (G value)
 - Researchers also defined input power (P)
 - Paddle mixers

$$G = \sqrt{\frac{C_d A \sigma v^3}{2gV\mu}} \qquad P = \frac{C_d A \sigma v^3}{2g}$$

 C_d - drag coefficient (1.8 for paddles)

A - cross-sectional area of paddles, ft^2

 σ - specific weight of water, lbs./ft³ (temp)

υ - relative velocity between paddles and water, fps

g - gravitational constant, 32.174 ft/sec²

V- volume each stage, ft³

 μ - viscosity, lb.-sec/ft² (temp)

Water Density

Dynamic Viscosity

- Basin Turnover
 - Match pumping rate and basin configuration for optimum turnover rate depending on process
 - Helps produce optimum degree of blending
 - High turnover rate wastes energy and increases mixer wear
 - Equation

$$B_t = \frac{Q_i}{V}$$
 Qi = mixed flow, gpm
V = basin volume, gallons

- Impeller Pumping Capacity
 - Defines turnover rate in rapid mixing and vertical flocculation

$$Q_i = 448.8 N_q n D^3$$

 Q_i - pumping rate, gpm

 N_q - impeller flow number

n - rotational speed, rps

D - impeller diameter, ft.

- Impeller Flow Number (N_q)
 - Great enough to produce turnover
 - Avoid excess turbulence that leads to shearing
- Impeller Power Number (N_p)
 - Provide necessary mixing intensity (G value) without increasing electrical requirements
- Impeller selection important to optimize mixing capabilities
 - Matched to basin configurations and process needs
 - Avoid chemical shearing while maintaining dispersion and contact with contaminants

- Degree of Blending
 - Depicts blending of water and chemicals within detention time provided
 - Prochazka and Landua (1961) proposed fractional unmixedness for impeller performance
 - Khang and Levenspiel (1976) proposed relationship approximate concentration fluctuations during mixing

$$a = 2e^{-kt}$$

 Equation used to estimate degree of blending

Degree of Blending

$$k = \frac{N(d/T_e)^{2.3}}{0.5}$$

$$a = 2e^{-kt}$$

$$B\% = (1-a)*100$$

e - base e exponential (natural logarithm)

k - decay rate

t - detention time, seconds

N - impeller speed, rps

d/Te - impeller diameter/basin diameter ratio

- Displacement Factor (D/F)
 - E.L. Bean proposed displacement factors for paddle mixers
 - Estimate pumping capacity of paddles (D)
 - Dividing by flow rate gives displacement factor (D/F)
 - >30 for effective mixing and floc development
 - Sum of D for each assembly can be used to estimate turnover each stage

■ Displacement Factor (D/F)

$$d = 2a\pi r(rpm) \qquad D = \sum d \qquad \frac{D}{F} \ge 30$$

D - sum of individual d for paddles, ft³/min

F - basin flow rate, ft^3 /min

d - displacement each paddle, ft³/min

a - area of each paddle, ft²

 π - 3.1416

r - radius from outer edge each paddle, ft

rpm - rotational speed, rpm

Optimal Mixing Characteristics

- Optimal Mixing Characteristics
 - Dependent on process used
 - Important features include
 - Detention time
 - Chemical injection point
 - Mixing intensity (G value)
 - Basin turnover
 - Counter-current flow
 - Degree of blending
 - Gt values
 - Displacement factor (flocculation)
 - Impeller selection and pumping capacity

Optimal Mixing Characteristics - Pipe Mixing

Detention time, sec.	1 to 3
Turnover rate, per sec.	0.6 to 3.5
Pipe length/diameter ratio	≥10
G value, sec ⁻¹	≥500
Gt value	500 to 2,500

Optimal Mixing Characteristics - Static Mixing

Detention time, sec.	<1
Pipe length/diameter ratio	≥10, ≥5
G value, sec ⁻¹	≥500
Gt value	200 to 500

Optimal Mixing Characteristics - Inline Mixing

Detention time, sec.	± 1	
Turnover rate, per min.	≥1.5	
Impeller/pipe diameter ratio	0.3 to 0.6	
Length/diameter ratio	2 to 2.5	
G value, sec ⁻¹	≥2,400	
Gt value	500 to 2,400	

Optimal Mixing Characteristics - Rapid Mixing

Detention time, sec.	10 to 15	Degree of blending, %	>99.5
Turnover rate, per min.	≥8, <13	G value, sec ⁻¹	750 to 1,400
Imp/basin diameter ratio	0.3 to 0.6	Gt value	5,000 to 20,000

Optimal Mixing Characteristics - Rapid Mixing

Optimal Mixing Characteristics - Flocculation Mixing

Detention time, min.	≥30	Channel velocity, fps	1.0 to 2.0
Flow thru velocity, fpm	0.5 to 1.5	d/T_e ratio horiz.	0.3 to 0.85
Stages	2 to 6	d/T_e ratio vert.	0.35 to 0.7
Area between stages, %	8 to 10	Displacement factor (D/F)	>30
Paddle area, %	10 to 25	Turnover, per min.	0.4 to 2.0
Paddle speed, fps	0.5 to 3.0	G value, sec ⁻¹	10 to 80
Mixer speed, fps	2 to 8	Tapered G values, per stage	10 to 15
Outlet velocity, fps	0.75 minimum	Gt value	30,000 to 200,000

Optimal Mixing Characteristics - Flocculation Mixing

Optimal Mixing Characteristics - Flocculation Mixing

- Pipe Mixing
 - Chemical dispersion using pipe turbulence and retention
 - Turbulence should be verified using Reynolds number (>4,000)
 - Generally, G values $\approx 500 \text{ sec}^{-1}$ needed to disperse applied chemical
 - Most researchers agree on 500 G for adequate chemical dispersion
 - Promotes more thorough mixing and contact between water and reactants

- Pipe Mixing
 - Chemical applied at least 10 pipe diameters upstream of reacted water zone

- G values then function of head losses in pipe system
- 500 sec⁻¹ creates adequate mixing for dispersion
- >300 sec⁻¹ shears polymers (caution)

- Pipe Mixing
 - Equation

$$G, sec^{-1} = \left(\frac{QwH}{V\mu}\right)$$

G = G value

Q =pipe flow rate, cubic feet per second

w = specific weight of water (temp. dependent)

H = head loss in pipe, ft.

V = volume of pipe under mixing, ft³

 $\mu = \text{dynamic viscosity, lb-s/ft}^2$

■ 12-inch pipe flow at 6.3 ft/sec @20°C will exhibit G of 466 sec⁻¹

- Static Mixers
 - Pipeline mixers with no moving parts
 - Sizes up to 60-inch diameter
 - Mixing veins produce turbulence within mixer body
 - Turbulence proportional to flow and head loss (from manufacturer)
 - Particularly effective for chlorine feed and phosphate feed chemicals

Static Mixers

- Need 10 pipe diameters upstream and 5 pipe diameters downstream
 - Aids in flow stabilization at inlet and outlet
- Good for chemical dispersion
- Detention times typically one second or less
- Should be sized so that customary flow is near maximum for mixer body

- Static Mixers
 - Equation

$$G, sec^{-1} = \left(\frac{QwH}{V\mu}\right)$$

G = G value

Q = mixer flow rate, cubic feet per second

w = specific weight of water (temp. dependent)

H = head loss in mixer body, ft.

 $V = \text{volume of mixer body, ft}^3$

 $\mu = \text{dynamic viscosity, lb-s/ft}^2$

- Static Mixers
 - Head loss proportional to flow (manufacturer's data)

- Weir Mixing
 - Head loss over weir creates turbulence
 - Chemical application at the point of greatest turbulence
 - Turbulence induces mixing intensity (G value)
 - Good for chemical dispersion
 - Very efficient for polymer treatments at low head loss or longer retention times

- Weir Mixing
 - Equation

$$G, sec^{-1} = \left(62.5 \frac{H}{t\mu}\right)^{0.5}$$

G = G value

H = head loss over weir, ft.

t = mixing retention time, sec

 $\mu = \text{dynamic viscosity, lb-s/ft}^2$

 Rectangular weir with retention time zone of 8 seconds and 2-inches head loss @20°C creates G of 250 sec-1

- Pump Mixers
 - Chemical feed pumped directly into pipe flow path
 - Chemical injection in pump impeller or through orifice
 - Water Champ is an example
 - Other systems exist
 - Rapid chemical dispersion actively increases contact with water
 - Conical discharge plume fills pipe area
 - Prone to scale build up at spray nozzles

Pump Mixers

- Chemical feed pumped directly into pipe flow path
- Chemical injection in pump impeller or through orifice
- Designed chemical pumping system can be used to improve mixing efficiency
 - Pump draws suction from pipe system and re-injects chemical solution back into pipe through a jet or orifice
 - Chemical injected into pump discharge pipe prior to re-entry into main pipeline

- Pump Mixers
 - G value equation can vary

$$P = QH\rho g\eta$$

- P = power input,
- Q = pump flow rate. ft3/sec
- H = pump head, ft
- ρ = water density, lbs/ft3
- g = gravitational constant 32.174 lbs/ft
- η = pump efficiency, %
- Then insert into G value equation

- Rapid mixing concepts for chemical dispersion
- Flocculation concepts for effective floc development
- G value relationship to process control

- Rapid Mixing
 - Importance well documented
 - Turbulence to disperse chemicals and water to initiate coagulation
 - Matched to coagulation mechanism used
 - Adsorption and charge neutralization
 - Enmeshment in a precipitate (sweep coagulation)
 - Adsorption and interparticle bridging
 - Mixing disinfection chemicals reduces unwanted byrpoducts

- In-line Rapid Mixing
 - Instantaneous high energy mixing for charge neutralization
 - Destabilization of particles requires collision and transport of particles and formed hydrolyzed coagulant species
 - Chemical dissociation to metal cations (M⁺ⁿ) and salt anions (S⁻ⁿ)

- Chemical dispersion
 - Dissociation reactions

$$Al_{2}(SO_{4})_{3} \Rightarrow 2Al^{+3} + 3SO_{4}^{-2}$$

$$FeCl_{3} \Rightarrow Fe^{+3} + 3Cl^{-}$$

$$Fe_{2}(SO_{4})_{3} \Rightarrow 2Fe^{+3} + 3SO_{4}^{-2}$$

- Generalized chemical species $M_{\chi}(OH)_{\gamma}^{+n}$
 - Dissociation reactions takes less than one second

- Chemical dispersion
 - Common chemical reactions

$$Al_{2}(SO_{4})_{3} + 3Ca(HCO_{3})_{2} \Rightarrow 2Al(OH)_{3} + 3CaSO_{4} + 6CO_{2}$$
 $2FeCl_{3} + 3Ca(HCO_{3})_{2} \Rightarrow 2Fe(OH)_{3} + 3CaCl_{2} + 6CO_{2}$
 $Fe_{2}(SO_{4})_{3} + 3Ca(HCO_{3})_{2} \Rightarrow 2Fe(OH)_{3} + 3CaSO_{4} + 6CO_{2}$

 Reaction times for metal hydroxide development - seven (7) seconds

- Conventional Rapid Mixing
 - Detention times for chemical mixing are longer
 - Create metal hydroxides that do the treatment
 - Precipitation of phosphates and adsorption of organics and turbidity particles
 - Use conventional mixing basin
 - Most treatment occurs in flocculation as collisions occur between floc and particles in water
 - Lower mixing intensity used in floc development

- Adsorption and Interparticle Bridging
 - Simultaneous treatment with polymers
 - Polymer strand length depends on MW
 - Charged sites along polymer strand
 - Foster adsorption of opposite charged particles
 - Multiple strands or looping on single strand creates bridging effect
 - Increase size, density, settleability of floc formed
 - Polymers generally shear at G values greater than 300 sec⁻¹
 - Make take 45 minutes to 2 hours to reform polymer strand after shearing

Flocculation

- Gentle mixing to transform initial floc formations into dense settleability material
- Treatment governed by number of particles in suspension, collisions between particles to increase size and density
- Operational control over chemical dosage and mixing intensity (energy) applied - particle collisions
- Tertiary treatment in wastewater for phosphorus removals using chemical precipitation (pH important

- Flocculation
 - Orthokinetic flocculation most common method
 - Involves bulk fluid motion using mixing intensity to gather chemical and particles into floc
 - Horizontal or vertical flocculation assemblies used
 - Mixing energy successively lowered as process proceeds
 - Tapered mixing promotes dense floc formation for effective settling
 - G values and tapering sequences optimized using jar tests

- Flocculation
 - Two or more chambers or stages
 - Floc develops increasing size to maximum diameter
 - Floc formation 12 minutes to 17 minutes
 - Further mixing promotes compaction of floc reducing size and increasing density
 - Total detention 17 minutes to 25 minutes optimizes floc development
 - Long detention times (>45 minutes) increase potential for floc shear and poor settling

Flocculation

- TSS recommends 30 minutes at design flow for flocculation
 - Can lead to more than 45 minutes at operating flows
- Typical floc diameter range 0.5 mm to 3 mm
- Match mixing and floc development to optimize density and settleability
 - Conduct floc settleability at different mixing conditions

- Conventional Mixing
 - Impeller selection important to basin configuration and design
 - Radial flow impellers 90° outward from shaft
 - Produces pumping action with basin walls
 - Flow both upward and downward returning to impeller shaft
 - Reduces short-circuiting
 - Bulk rotation can be corrected with baffles

- Conventional
 - Axial flow impellers angled flow from shaft
 - 45° common, but other angles used
 - Produces upward or downward pumping action depending on rotating direction
 - Must specify pumping direction
 - Pumping action opposite inlet flow to reduce short-circuiting (countercurrent flow)

Inline Mixers

Inline Mixers

- Designed for mixing applications
 - Blending, turbulent mixing, viscous solutions, mixing gases and liquids
- Operations verified under lab conditions
 - $lacksquare N_{\scriptscriptstyle D}$ power number
 - $lacksquare N_q$ flow number
 - Mixing conditions (velocity profiles)

Impeller	Manufacturers	Power number	Flow number
200	Radial turbine 4 blade Most manufacturers	4.3	0.68
	Radial turbine 5 blade Most manufacturers	5.4	0.73
	Radial turbine 6 blade Most manufacturers	6.0	0.72
No.	Radial turbine 8 blade Most manufacturers	7.8	0.82

Impeller	Manufacturers	Power number	Flow number
	Radial turbine 12 blade Some manufacturers	9.9	0.89
9	Propeller Lightnin' A100/110 Chemineer AP-3	0.32 (1.0 pitch) 0.62 (1.5 pitch) 1.0 (2.0 pitch) 1.35 (2.5 pitch)	No data
2	Pitched blade turbine Lightnin' A200 Chemineer P-4 Philadelphia PBT	1.27	0.79
	Flat turbine Lightnin' A200 Chemineer P-4 Philadelphia PBT	3.4	0.62

Impeller	Manufacturers	Power number	Flow number
	High % hydrofoil Lightnin' A310/510 Chemineer SC-3	0.30	0.56
	High % Chemineer HE-3 Philadelphia hydrofoil	0.20 to 0.26	0.46 to 0.49
3	Pitched fluid foil Lightnin' A320/340 Philadelphia HS	0.64	0.64
	Gas mixing Lightnin' A130 Chemineer CD-6 Philadelphia Smith Turbine	3.2	0.61

Mixing Designs - Paddles

- Different flocculator designs from manufacturers
- Most common
 - Horizontal paddle
 - Vertical mixers
 - Walking beam old technology, but still in use

Mixing Designs VFDs

- Variable frequency drives (VFDs)
 - Variable speed needed to adjust mixing based on water temperature and floc development
 - Speed curves typically linear relationship between VFD setting and paddle rotational speed
 - Shaft speed should be correlated to VFD settings
 - Speeds needed for G value calculations

Mixing Designs VFDs

Questions

Marvin Gnagy pmgconsulting710@gmail.com 419.450.2931