PHOSPHORUS REMOVAL CASE STUDIES

GRANT WEAVER, PE & WWTP OPERATOR PRESIDENT g.weaver@cleanwaterops.com

55th Annual Wastewater Workshop Operator Training Committee of Ohio Columbus, Ohio April 3, 2018

Summary: Biological Phosphorus Removal

<u>Step 1: prepare "dinner"</u>

VFA (volatile fatty acids) production in anaerobic/fermentive conditions

Step 2: "eat"

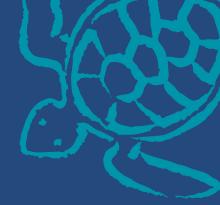
Bio-P bugs (PAOs) eat VFAs in anaerobic/fermentive conditions ... temporarily releasing more P into the water

Step 3: breathe and grow

Bio-P bugs (PAOs) take in almost all of the soluble P in aerobic conditions as they grow and reproduce

Summary, continued ...

Anaerobic Tank

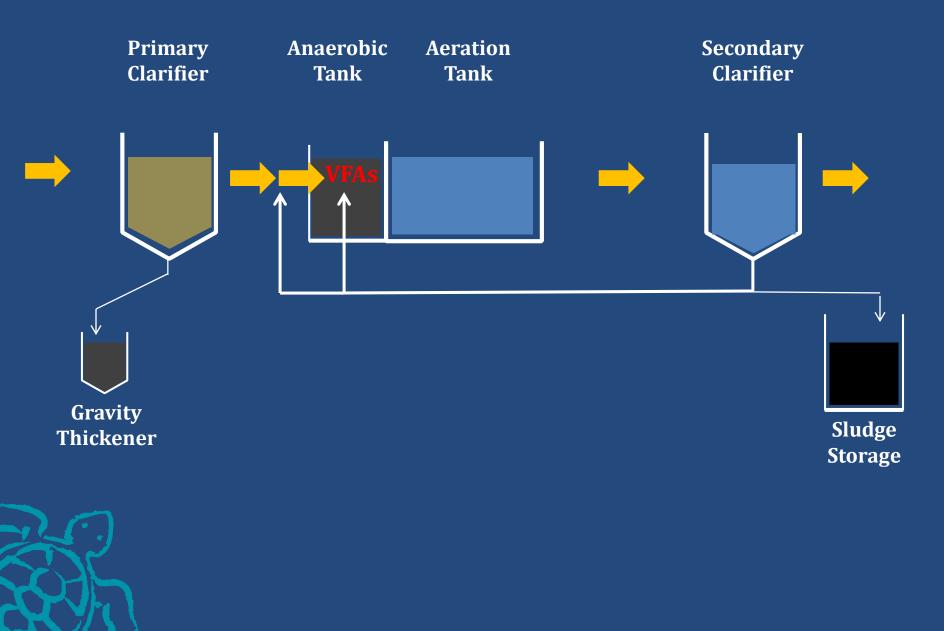

~1 hour HRT* ORP of -200 mV* 25 times as much BOD as influent ortho-P* Ortho-P release (3 times influent ortho-P)*

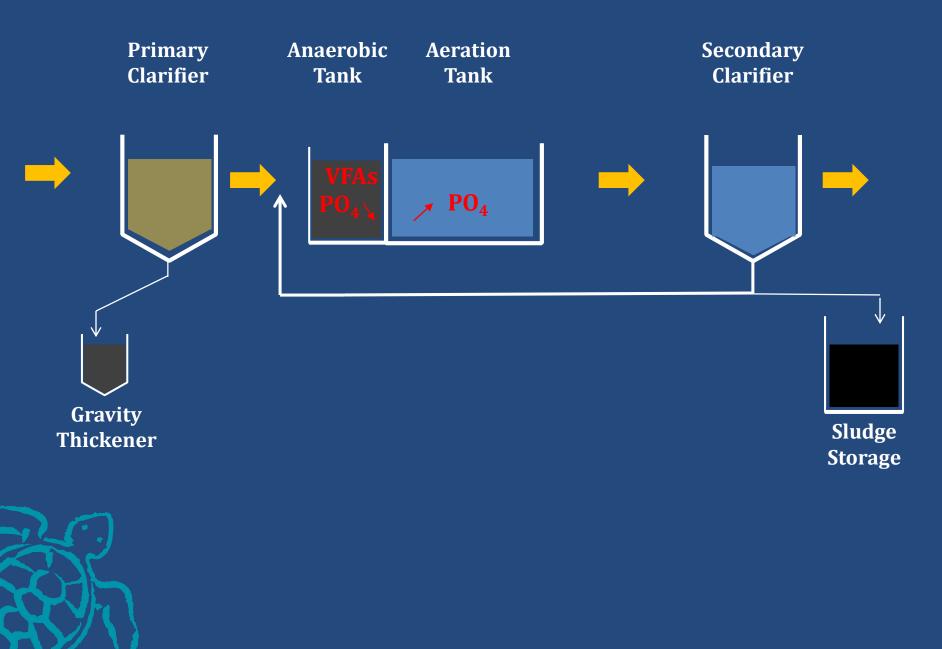
Aeration Tank High DO / High ORP pH of 6.8+* Ortho-P concentration of 0.05 mg/L*

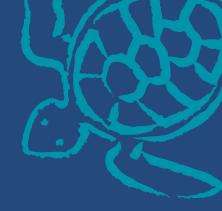
*Approximate: Every Plant is Different


Experimenting with YOUR plant: Finding the "Right" Process Control Strategy

... and, Optimizing Phosphorus Removal

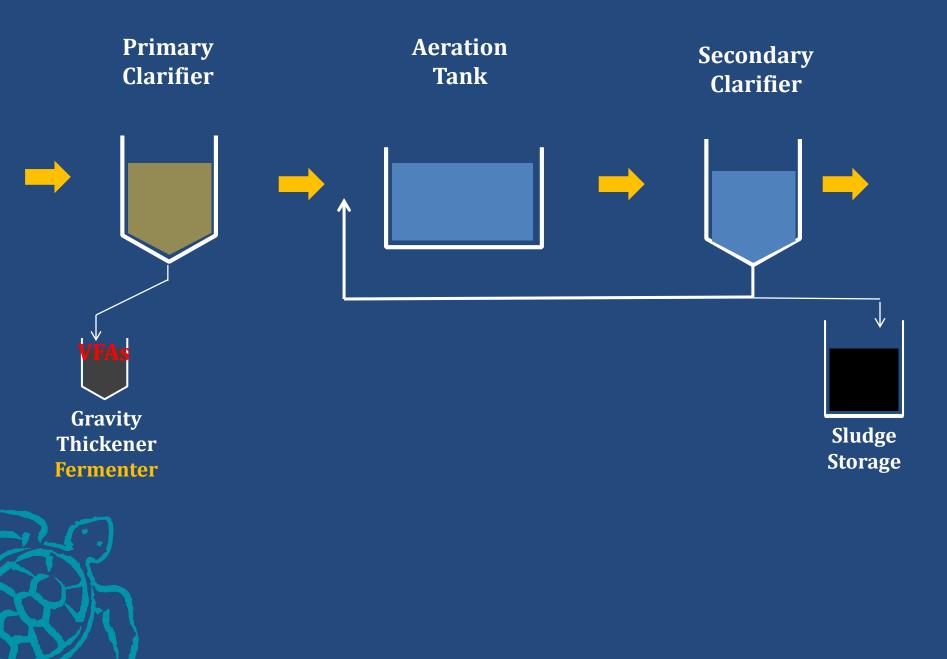


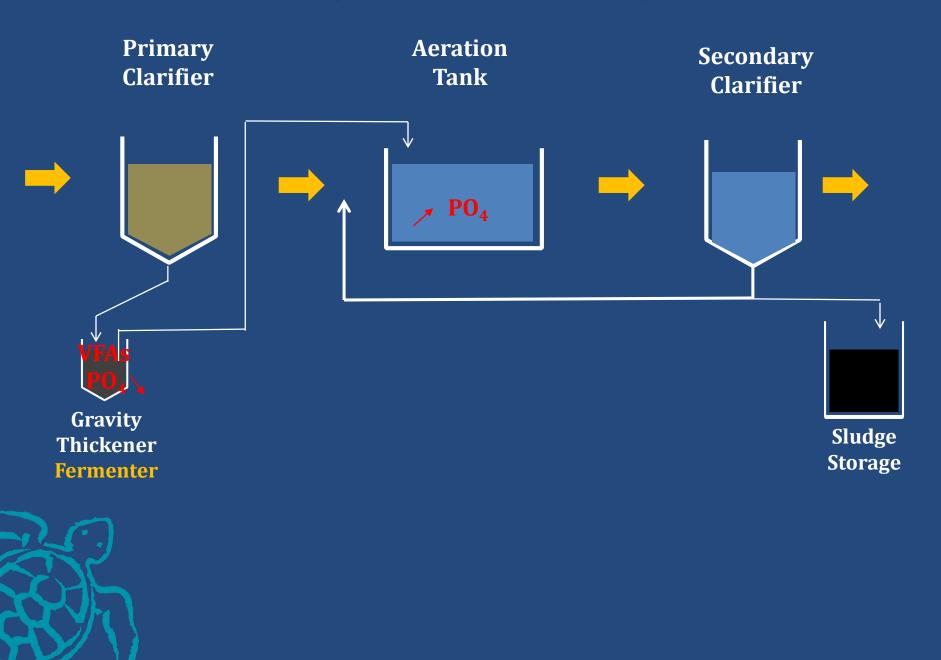

Create a Mainstream Fermentation Zone

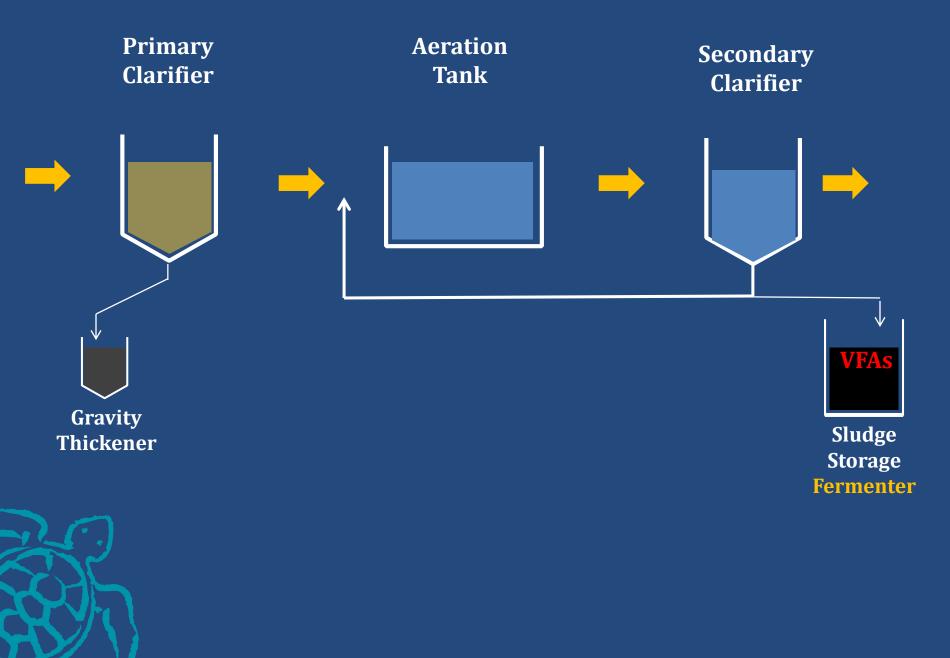


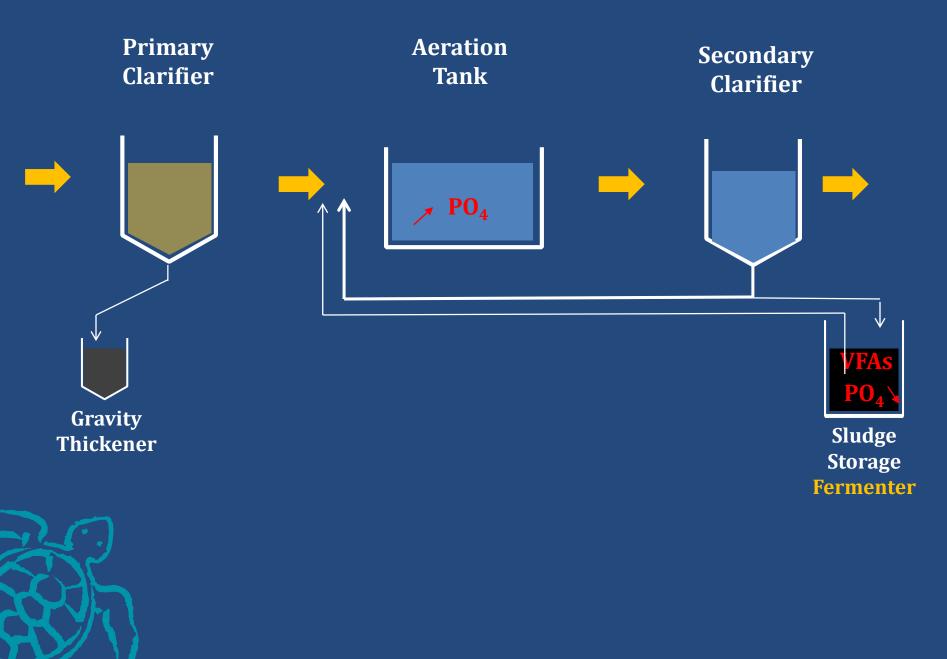
Mainstream Bio-P Removal in Conventional AS Plant

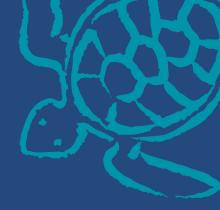
Mainstream Bio-P Removal in Conventional AS Plant




Create a Sidestream Fermentation Zone

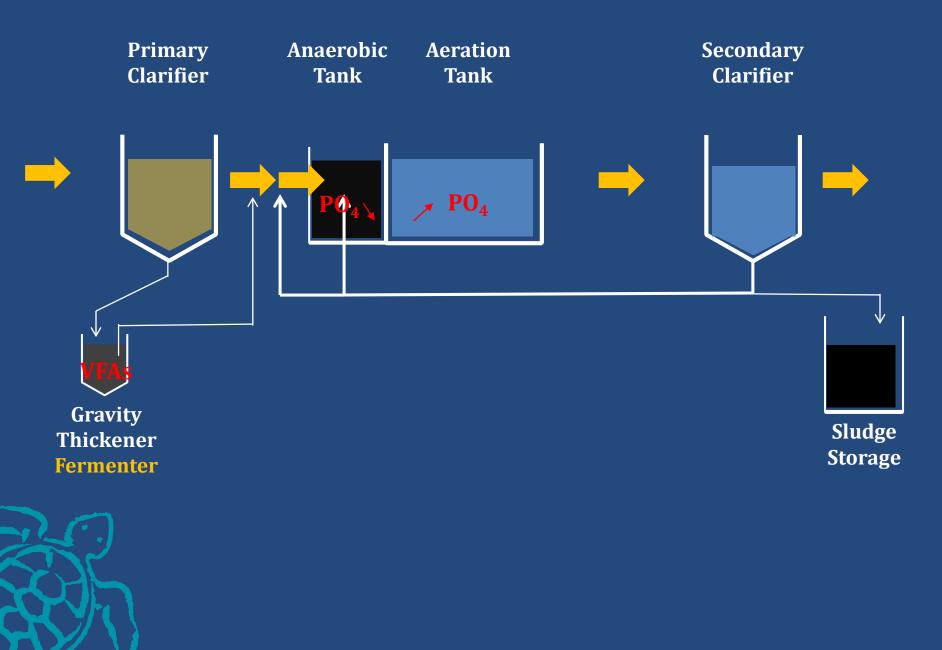

Sidestream Biological-P Removal: Gravity Thickener

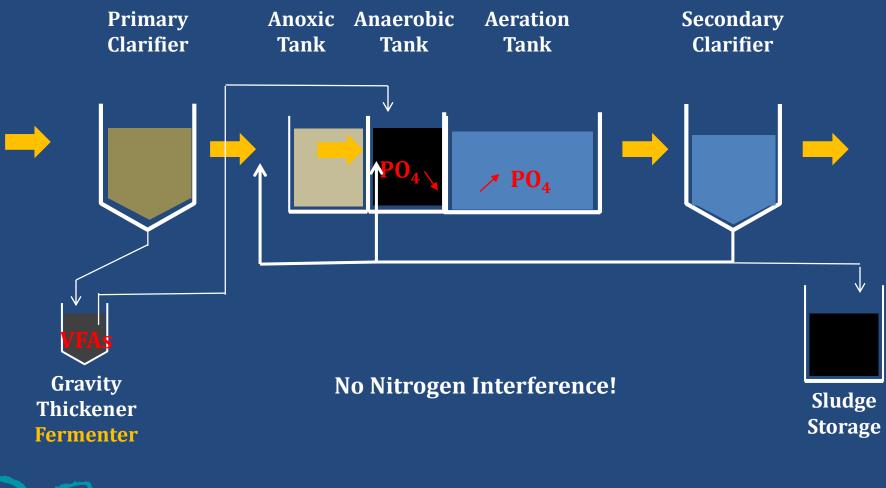

Sidestream Biological-P Removal: Gravity Thickener



Sidestream Biological-P Removal: Sludge Storage

Sidestream Biological-P Removal: Sludge Storage




Create Both Mainstream & Sidestream Fermentation Zones

Sidestream & Mainstream Bio-P Removal

Sidestream & Mainstream Bio-P Removal

Optimizing Fermentation: Mainstream or Sidestream

<u>Anaerobic Tank</u>

~1 hour HRT* ORP of -200 mV* 25* times as much BOD as influent ortho-P ortho-P release (3-4 times influent ortho-P)*

Aeration Tank

DO of 2.0 mg/L* pH of 6.8+* ortho-P concentration of 0.05 mg/L*

*Approximate: Every Plant is Different

Summary

Operational changes allow many (most) Activated Sludge Plants to biologically remove phosphorus - and - as a bonus create a biological selector for filament control.

Find opportunities for mainstream as well as sidestream fermentation zones.

Recognize that two things occur in the anaerobic tanks: VFA formation (hard to digest compounds converted to easy-to-eat molecules) PAOs use volatile fatty acids as an energy source (food)

Aeration Tank habitat is important: DO & pH

Bio-P converts soluble-P to an effluent TSS rich in P ... TSS control is critical!

Minimize VFA use by Nitrate (NO₃)

Monitor and Adjust DAILY for the rest of your life!

Case Studies

Massachusetts

Palmer: complete mix activated sludge **Westfield**: plug-flow activated sludge

<u>New Hampshire</u>

Keene: plug-flow activated sludge

Connecticut

East Haddam: SBR (sequencing batch reactor) **Plainfield**: mechanical aeration activated sludge **Suffield**: oxidation ditch

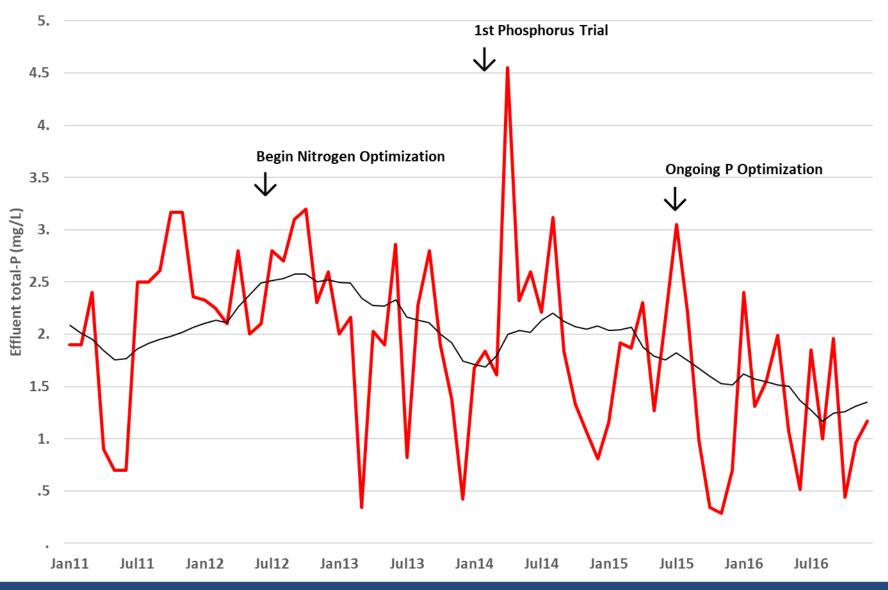
<u>Montana</u>

Chinook: oxidation ditch **Conrad**: extended aeration **Helena**: MLE activated sludge

Tennessee

Athens: oxidation ditch & orbital ditch Bartlett: oxidation ditch Cookeville: oxidation ditch Crossville: plug-flow activated sludge LaFollette: oxidation ditch Livingston: SBR (sequencing batch reactor)

	total-Phosphorus (mg/L)		
	before	after	
Conrad, Montana	2.1	0.15	
Keene, New Hampshire	1.0	0.20	50% less chemicals
Chinook, Montana	2.8	0.30	
East Haddam, Connecticut (2 month trial)	3.5	0.35	
Palmer, Massachusetts	0.5	0.50	25% less chemicals
Westfield, Massachusetts	0.5-2.5	0.50	50% less chemicals
Athens, Tennessee: Oostanaula	0.5	0.50	100% less chemicals
Plainfield, Connecticut: Village Plant	2.5	0.70	
Suffield, Connecticut	3.0	0.70	
Cookeville, Tennessee	2.0	1.4	
Helena, Montana	2.9	0.5-2.0	
Athens, Tennessee: North Mouse Creek	2.8	0.3-3.0	

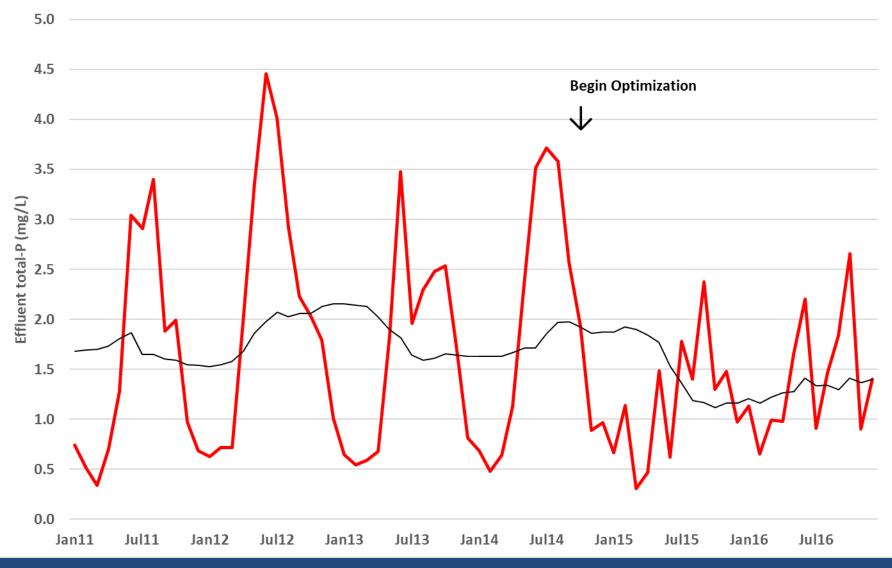

Chinook, Montana (0.5 MGD: 1,200 people)

10

Chinook, Montana

Effluent total-P (Daily Composite results collected once per Month)

2010-2016

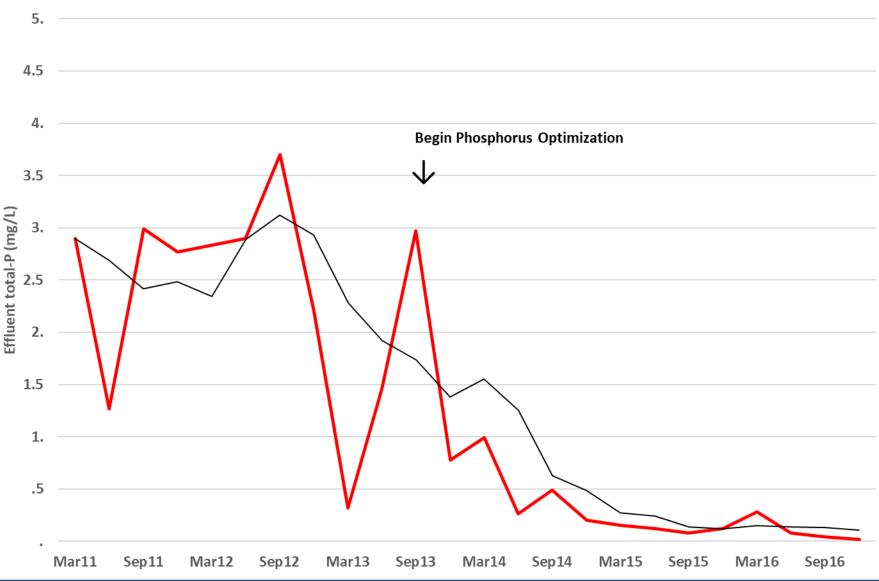

Cookeville, Tennessee 14 MGD (31,000 people)

Cookeville, Tennessee

Effluent total-P (Daily Composite samples collected Weekly and averaged Monthly)

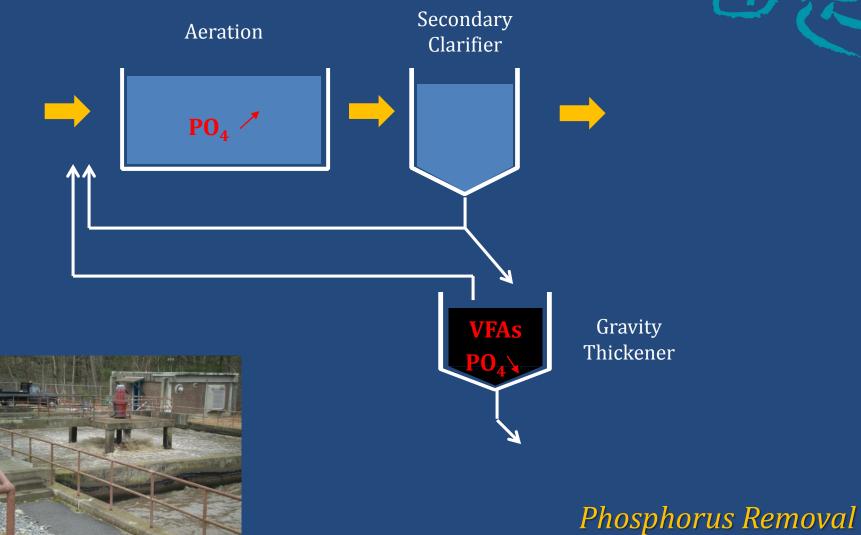
2011-2016

with 12-month rolling average shown in black



Conrad, Montana (0.5 MGD: 2,600 people)

67


.0.

Conrad, Montana Effluent total-P (Daily Composites collected Quarterly) 2010-2016

Plainfield, Connecticut – Village Plant 0.5 MGD (15,000 people)

Plainfield Village

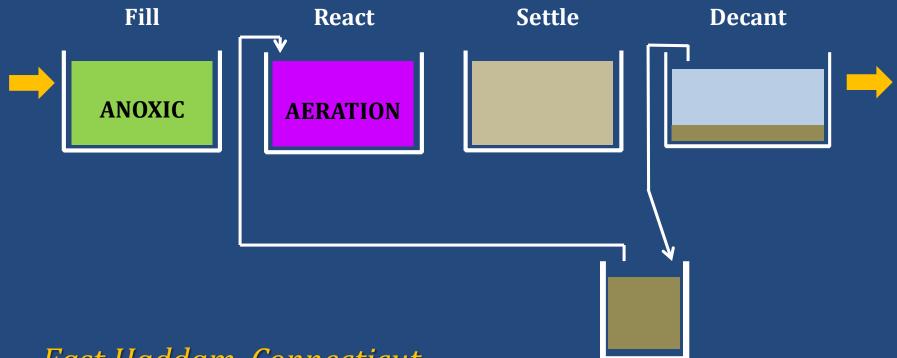
Palmer, Massachusetts (5.6 MGD: 12,000 people)

-

Palmer, Massachusetts Effluent total-P (Daily Composite samples collected Weekly and averaged Monthly) 2010-2016 5.0 4.5 4.0 3.5 Effluent total-P (mg/L) 0.5 0.5 0.5 1.5 **Begin Optimization** 1.0 0.5 0.0 Jul16 Jan11 Jul11 Jan12 Jul12 Jan13 Jul13 Jan14 Jul14 Jan15 Jul15 Jan16

Case Study – Phosphorus Removal East Haddam, Connecticut

Design Flow:0.055 MGDActual:0.015 MGD



Before & After: 6.5 mg/L (2 TKN, 0.5 Ammonia, 3.5 Nitrite + Nitrate)

Effluent total-P Before Changes: 3-4 mg/L After Changes: 0.35 mg/L

East Haddam, Connecticut

Keene, New Hampshire 6.0 MGD (23,000 people)

43

13

Optimizing Phosphorus removal in Oxidation Ditches

Suffield, Connecticut 2.0 MGD (16,000 people)

E EE 110

Suffield, Connecticut

Design Flow:2.0 MGDActual:1.0 MGD

Effluent total-N Before Changes: 7 mg/L (3 TKN, 0.5 Ammonia, 4 Nitrite + Nitrate) After Changes: 1.0-2.0 mg/L (1 TKN, 0.1 Ammonia, 1 Nitrite + Nitrate)

Effluent total-P Before Changes: 3.0 mg/L After Changes: 0.7 mg/L

Bartlett, Tennessee 2.2 MGD (58,000 people)

FT

16

3

Athens - North Mouse Creek 1.2 MGD (13,600 people)

LaFollette, Tennessee 1.875 MGD (7,300 people)

11E

the set

9%e

Optimizing Phosphorus removal in Orbal Oxidation Ditches

Athens – Oostanaula 6.0 MGD (13,600 people) *Optimizing Phosphorus removal in Activated Sludge*

Westfield, Massachusetts (6.1 MGD: 41,000 people) Optimizing Phosphorus removal in Sequencing Batch Reactors

Livingston, Tennessee 1.62 MGD (4,100 people)

Livingston, Tennessee 1.62 MGD (4,100 people)

1111

m

2

Tow nC reek

Making sustainably clean water

Grant Weaver g.weaver@cleanwaterops.com

~	~ •	R		
<u>Cheapest</u>	<u>Good</u>	<u>Better</u>	Best	<u>Ideal</u>

DO	hand held membrane DO meter	hand held LDO meter	hand held LDO with thumb drive	in-line DO probe	in-line connected to SCADA
ORP	pen/stick measure	hand held ORP meter	hand held ORP meter with thumb drive	in-line ORP probe	in-line connected to SCADA
pH	test strips	pen/stick measure	benchtop pH	in-line pH probe	in-line connected to SCADA
Alkalinity	test strips	test strips	spectrophotometer	benchtop pH w/ titration	benchtop pH w/ titration

Nitrogen

TKN	estimate: Ammonia + 2.0 mg/L	estimate: Ammonia + 2.0 mg/L	spectrophotometer	spectrophotometer	spectrophotometer
Ammonia	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrate	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrite	test strips	test strips	spectrophotometer	spectrophotometer	spectrophotometer

total-P	estimate: TSSx0.05 + test strips	estimate: TSSx0.05 + test strips	spectrophotometer	spectrophotometer	spectrophotometer
ortho-P	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)

<u>Cheapest Good Better Best Ideal</u>	
Cheapest Good Better Best Ideal	

Alkalinity	test strips	test strips	spectrophotometer	benchtop pH w/ titration	benchtop pH w/ titration
рН	test strips	pen/stick measure	benchtop pH	in-line pH probe	in-line connected to SCADA
ORP	pen/stick measure	hand held ORP meter	hand held ORP meter with thumb drive	in-line ORP probe	in-line connected to SCADA
DO	hand held membrane DO meter	hand held LDO meter	hand held LDO with thumb drive	in-line DO probe	in-line connected to SCADA

Nitrogen

TKN	estimate: Ammonia + 2.0 mg/L	estimate: Ammonia + 2.0 mg/L	spectrophotometer	spectrophotometer	spectrophotometer
Ammonia	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrate	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrite	test strips	test strips	spectrophotometer	spectrophotometer	spectrophotometer

total-P	estimate: TSSx0.05 + test strips	estimate: TSSx0.05 + test strips	spectrophotometer	spectrophotometer	spectrophotometer
ortho-P	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)

<u>Cheapest</u>	<u>Good</u>	<u>Better</u>	<u>Best</u>	<u>Ideal</u>

DO	hand held membrane DO meter	hand held LDO meter	hand held LDO with thumb drive	in-line DO probe	in-line connected to SCADA
ORP	pen/stick measure	hand held ORP meter	hand held ORP meter with thumb drive	in-line ORP probe	in-line connected to SCADA
рН	test strips	pen/stick measure	benchtop pH	in-line pH probe	in-line connected to SCADA
Alkalinity	test strips	test strips	spectrophotometer	benchtop pH w/ titration	benchtop pH w/ titration

Nitrogen

TKN	estimate: Ammonia + 2.0 mg/L	estimate: Ammonia + 2.0 mg/L	spectrophotometer	spectrophotometer	spectrophotometer
Ammonia	test strips	test strips		in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrate	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrite	test strips	test strips	spectrophotometer	spectrophotometer	spectrophotometer

total-P	estimate: TSSx0.05 + test strips	estimate: TSSx0.05 + test strips	spectrophotometer	spectrophotometer	spectrophotometer
ortho-P	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)

<u>Cheapest</u>	Good	<u>Better</u>	<u>Best</u>	<u>Ideal</u>

DO	hand held membrane DO meter	hand held LDO meter	hand held LDO with thumb drive	in-line DO probe	in-line connected to SCADA
ORP	pen/stick measure	hand held ORP meter	hand held ORP meter with thumb drive	in-line ORP probe	in-line connected to SCADA
рН	test strips	pen/stick measure	benchtop pH	in-line pH probe	in-line connected to SCADA
Alkalinity	test strips	test strips	spectrophotometer	benchtop pH w/ titration	benchtop pH w/ titration

Nitrogen

TKN	estimate: Ammonia + 2.0 mg/L	estimate: Ammonia + 2.0 mg/L	spectrophotometer	spectrophotometer	spectrophotometer
Ammonia	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrate	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)
Nitrite	test strips	test strips	spectrophotometer	spectrophotometer	spectrophotometer

total-P	estimate: TSSx0.05 + test strips	estimate: TSSx0.05 + test strips	spectrophotometer	spectrophotometer	spectrophotometer
ortho-P	test strips	test strips	spectrophotometer	in-line instrument (\$\$)	in-line connected to SCADA (\$\$)