Aegion's Pressure Pipe Technologies

OTCO Procrastinator's Workshop

Stronger. Safer. Infrastructure."

Infrastructure Solutions Underground Solutions, Inc. Introductory Capabilities

AEGION°

Stronger. Safer. Infrastructure.[∞]

AEGION Maintains Infrastructure

Aegion provides services and solutions to protect, strengthen and maintain pipelines, refineries, bridges, and other infrastructure.

AEGION includes Three Platforms

INFRASTRUCTURE
SOLUTIONS

Replace, rehabilitate and strengthen municipal and industrial pipelines, as well as public and commercial structures worldwide.

CORROSION PROTECTION Safeguard the world's water, oil, gas and mining resources, including the integrity of the pipelines and other structures.

ENERGY SERVICES Deliver engineering, procurement, construction maintenance and turnaround services to oil and gas facilities with a best-inclass safety culture.

AEGION

Pipeline Infrastructure

Infrastructure Solutions

Water & wastewater pipeline rehabilitation Structural strengthening

Corrosion Protection

Pipeline corrosion prevention Oil, gas and mining

Energy Services

Facility maintenance services

MARKETS & APPLICATIONS

Oil & Gas

Crude oil and oil emulsion Sour and wet Water injection and disposal systems Offshore CO2 production and injection

Mining

Tailings Concentrate Acid lines Water lines

Chemical slurries Sodium carbonate Corrosive effluents Caustics Brine *Municipal* Pressure sewer mains Raw water transmission Potable water transmission*

Industrial

Pressure Pipe Capabilities

- ANSI/NSF 61 certified
 - New construction

Minimally disruptive

Solutions?

INFRASTRUCTURE SOLUTIONS

an **AEGION** company

Insituform - Cured-In-Place Pipe

- Developed in 1971 by Insituform, cured-in-place pipe (CIPP) is a trenchless technology
 - Initially used in sewers
 - InsituMain[®] CIPP uses modified properties to make it suitable for the drinking water market
 - End product is a joint less, pipe-within-a-pipe that protects against spills, breaks and pipe leakage
- The InsituMain[®] system is suitable for the following applications:
 - Distribution and transmission mains
 - Cooling water lines
 - Fire water mains
 - Industrial pressure applications
 - Sewage force mains

Over 25,000 miles of CIPP have been installed by Insituform crews around the world

CIPP Fiber-reinforced composite structure

- Epoxy/fiberglass structure
 - Provides high tensile strength
 - Number of layers vary depending on diameter and internal pressure
- Epoxy/polyester felt structure
 - Provides for external load capacity
 - Layer thickness can be varied depending on loading conditions
- PP/TPU coating
 - Water contact su
 - Coating also prov

processes

Resin / Fiberglass layer(s)
1
6" to 72"
Up to 130°F
Up to 250 psi (safety factor of 4)
Up to 45°
All materials
Exceeds ASTM F1216 and ASTM F1743

InsituMain[®] CIPP installation

Step 1:

If required, setup bypass and excavate pits to provide access to the existing pipeline. Clean the pipeline and inspect using closed circuit TV (CCTV).

Step 2:

Install the InsituMain-system liner into the host pipe using water pressure. After curing with hot water, the pipe is cooled and the ends are cut. Following hydrostatic pressure testing, postinstallation CCTV inspections are also completed.

Step 3:

Reconnect lined sections to the existing system using standard pipe fittings. Finally, restore excavation pits and remove temporary bypass, if applicable.

InsituMain[®] CIPP installation

West Palm Beach 48" Force Main project

- 5,800 LF of 48-inch PCCP
- Location: Near Canal and Country Club
 - High-end residential area
- Operating pressure: 30 psi
- Solution: InsituMain[®] Class IV fullystructural CIPP
- Completed six sections; averaged about 1000', longest shot 1145'
- Tube delivered to the site wetted
- Completed late summer, 2016

West Palm Beach 48" Force Main project – Installation Site

West Palm Beach 48" Force Main project – Completed Liner Shot

West Palm Beach 48" Force Main project – Connected and Tested

United Pipeline Systems - HDPE (Thermoplastic) Lining Systems

- Tight-fit or Close-fit (not slipline)
 - Custom engineered & manufactured
 - Maximizes flow over standard IPS
 - Installed by compression or deformation
 - Allows flexibility for challenging installations
 - Usually <1" of "gap" is all that is needed
 - 2" to 54" diameter
- Non-structural liners
 - Liner relies on host pipe
 - Thin-wall; < DR32.5
 - Eliminates leaky joints and/or internal corrosion
- Structural liners
 - For use where host pipe is NOT structurally sound
 - > DR32.5, up to DR 17
 - Sections of host can be removed
 - Solves internal and external corrosion

HDPE Lining Installation methods

Radial Compression

- Diameter is <u>temporarily</u> reduced by radial compression
- Timing is important as the liner will begin to grow back once tension is released
- Can be used for structural or non-structural
- Entire liner section is installed in a single and continuous "pull"

Elastic Deformation

- Achieves significant cross sectional reduction
- Wall thickness limitations—maximum w.t. of 1" is limitation
- Not suitable for structural loading
- "Fuse and fold" method facilitates small worksite footprint
- Only moderate collapse resistance
- Re-rounded after installation

Tite Liner[®] system in Valley Forge allows for new pipeline in environmentally sensitive area

- 30-inch force main traveling directly through Valley Forge National Historic Park along the Schuylkill River
- Over 40 years old
 - 3 separate failures precipitated need for repair/replacement
- 18,000 linear feet
- Aegion's Tite Liner[®] system was chosen to rehabilitate the pipeline
- Worked closely with CH2M Hill and general contractor, PACT, to complete the project
- Completed in 6 months
- Pressure tested at 60 psi

TYFO - Carbon/Glass Fiber (FRP) Systems

- High-strength, lightweight, low profile characteristics provides a less intrusive value engineering solution; adds minimal weight/area and <u>maintains hydraulics</u>
- Installed without removal and replacement of many existing obstacles...<u>trenchless</u>
- Small project site footprint...<u>low impact and rapid</u> installation
- Proven <u>long term durability</u> and excellent resistance to corrosion
- Can be applied onto <u>complex shapes</u> (tees, elbows, etc.)

Independent/stand alone or an interactive/composite system

Diameter range	36" & Above
Effluent temperature	Up to 150°F
Internal pressure capability	Up to 450 psi
Bends	Any
Host pipe material	All materials
Mechanical properties	Specifically designed as conditions require

Capabilities of internal or external wrapping with FRP

- Restore pipeline to original hydrostatic pressure capacity
- Accommodate increased internal pressure requirements
- Re-establish flexural loading capabilities
- Restore original **external loading capacity** of pipeline
- Upgrade external loading capability due to higher live load/traffic requirements
- Provide watertight rehabilitation at joints/couplings or transition zones

Tyfo[®] Fibrwrap[®] system installation

Installation of Tyfo[®] Fibrwrap[®] system allows pipe to withstand operating and transient pressures as well as gravity loads

- Washington Suburban Sanitary Commission discovered numerous sections of its 66-inch pipeline had broken pre-stressed wires and were structurally unsound
- WSSC determined traditional remove and replace method was not practical
- Tyfo[®] Fibrwrap[®] system allowed for a shortened construction schedule, minimal curing time and immediate return to service

Underground Solutions – Fusible PVC Pipe Systems

- Fusible PVC[®] Pipe Leak free, restrained joint, PVC pipe system
 - Trenchless installations that reduce contractor costs
 - Rehabilitation capabilities for pressure pipe applications
- Over 10,000,000 feet in service
 - In 50 states, Canada, Latin America, New Zealand, Australia
 - Over 10,000 Projects (HDD, Slipline, Pipe Burst, Open-Cut)
- Pipe meets relevant industry pipe standards
 - AWWA C900, C605, NSF-61, PPI-TR2, ASTM Cell Class 12454
 - Utilizes standard waterworks fittings

Fusible PVC Pipe Applications

Fusible PVC Fusion Process

The Fusible PVC[®] Fusion Process Is Tightly Controlled

- Qualified fusion technicians are trained and re-trained every year by Underground Solutions
 - Initial 3 day course
- Fusion equipment must meet minimum company standards to be approved for PVC fusion
- Data loggers record critical fusion data for each joint
 - Provide real time feedback on joint integrity
 - Provide record of entire project for proof of system integrity
 - Joint data reviewed off-line as well by QA/QC
- Fusion conditions logged by technician and "as-built" fusion joint record is developed for owner as necessary

Fusible PVC Pipe Mechanical Property Advantages

Property	Specification	PVC	HDPE 3408/3608 ¹	HDPE 4710 ²	
Tensile Strength psi	ASTM D638	7,000	3,000	3,500	
Specific Gravity	ASTM D1505	1.40	0.94	0.95	
ASTM D3350 Cell Class	ASTM D3350	NA ³	345464	445574	
Hydrostatic Design Basis At 73° F, psi	ASTM D2837	4,000	1,600	1,600	
Modulus of Elasticity psi (Short Term)	ASTM D638	400,000	110,000 ⁴	130,000 ⁴	
Hardness (Rockwell R)	ASTM D785	117	52	NA	
Coefficient of Linear Expansion In./In. deg F	ASTM D696	0.3 x 10⁻⁴ .36"/ 100'/ 10°F	1.2 x 10⁻⁴ 1.44"/ 100'/ 10°F	1.2 x 10 ⁻⁴ 1.44"/ 100'/ 10°F	
Water Disinfectant Induced Oxidation ⁵		Highly Resistant	Low Resistance	Low Resistance	
Hydrocarbon Permeation ⁶		Highly Resistant	Highly Permeable	Highly Permeable	

- 1. HDPE 3408/3608 also referred to as PE80
- 2. HDPE 4710 also referred to as PE100
- 3. PVC Pipe Cell Class per ASTM D1784 (12454)
- 4. PPI PE Handbook Long Term Modulus of Elasticity is 28,200 psi
- 5. Carollo Engineers 2008, Choi 2008, Chung 2008, Fumire 2008, Rozental 2008, Castegnetti 2007, Audouin 2007, Dear 2006,
- 6. Lundback 2005, Hassinen 2004
- 7. Water Research Foundation (formerly AWWA Research Foundation 2008)

PVC is Stronger and Requires Less Wall Thickness

Important to Design with both DR and Safety Factor

Dimension Ratio - Pressure Class Rating									
P۱	/C	HDPE 3608 / 3408			HDPE	4710			
SF :	= 2.0	SF :	SF = 2.0			1.59			
DR	Pressure Rating (PSI)	DR	Pressure Rating (PSI)		DR	Pressure Rating (PSI)			
DR 14	305	DR 7.3	DR 7.3 255		DR 7.3	317			
DR 18	235	DR 9	200		DR 9	250			
DR 21	200	DR 11	160		DR 11	200			
DR 25	165	DR 13.5	128		DR 13.5	160			
DR 32.5	125	DR 17	100		DR 17	125			
DR 41	100	DR 21	80		DR 21	100			

Lower Design Factors Increases Risk of Failure and Lowers Life Expectancy

Fusible PVC is Compatible with Standard Fittings

Pictures from various manufacturers of fittings: JCM, Smith Blair, EBAA Iron, Romac Industries.

HDD Trenchless Installation Method

Horizontal Directional Drilling

- Guided pilot hole is drilled along a bore path
- Drilling fluids are injected into the hole to stabilize and lubricate
- Back reamer is used to enlarge the pilot hole
 - Multiple passes are required to accommodate pipe OD
 - Drilled bore hole is typically enlarged to 1.5 x OD of new pipe
 - Fusible PVC® is pulled through the bore hole

HDD Installation – Florida Power & Light

- 2 -7,020 LF HDD installs of 30" DR21 Fusible PVC Casing
- St. Lucie, FL 230kV
 Underground
 Transmission
 Project
- Design Engineer Power Engineering, St. Louis, MO
- HDD Contractor -Mears Group, Houston, TX
- 2016 Trenchless Project of the Year

Perrysburg: 16" Force Main; HDD

Fusible PVC® Maximizes Flow for Structural Slipline Installations

Fusible PVC® Advantages for Sliplining

- Utilizes same utility alignment
- Increased flow area for a given host pipe ID compared to similar pressure class HDPE Industry standard connections
- Simple, fast, inexpensive trenchless method

Newport, RI – Emergency Forcemain Slipline – 30-inch into 36-inch PCCP

Sliplining Process:

Sliplining

- Video inspection of host pipe condition, deflections, vertical profiles and stranded appurtenances
- Layout area for fused pipe as well as entrance pit constraints possibility for "fuse & pull" or in pit fusion
- Recommended difference between ID of host pipe and OD of Fusible PVC® pipe is about 2"
- Ability to dig out connections before sliplining
- Effect of abrasion on pipe surface plastic 10% gouge depth before de-rating, steel corrosion coating degradation due to friction
- Traffic management night activity or "fuse & pull" in tight areas

City of Hamilton: 20" Water Main; Slipline of Existing 24" Line

Fusible PVC® pipe is a Proven for Potable Water Pipe Bursting

Pipe Bursting Process:

Fusible PVC® Advantages for Pipe Bursting

- PVC pipe is a common, accepted small diameter water pipe material:
 - Same fittings, taps, and connections
 - Same labor skillset
 - Same operation and maintenance requirements
- Reduced upsize bursting effort required compared to similar ID/Pressure HDPE

CMW, Lakewood, CO – Over 30 miles of Potable Water Pipe Bursting

Pipe Bursting

Considerations and Fusible PVC® Pipe

Pipe Bursting

- Ductile iron, cast iron, asbestos-concrete and steel are typical water pressure pipe materials that are burst – high production rates are possible (project in Florida -500 LF in 1 hour)
- Static hydraulic bursting/splitting method is used vs. pneumatic method (typically used in sewer work)
- High density of Fusible PVC® results in excellent scratch and abrasion resistance
- Isolation of pipe from burst hardware prevents rebound when force changes rapidly

Pipe Bursting Installation – City of Lee's Summit, MO

- Static Hydraulic Method for over 50,000 LF 6"DR18 & 5,100 LF 8"DR18 Fusible PVC® pipe
- Replaced 4" and 6" cast iron and ductile iron installed in the mid 1980's 4" was upsized to 6" with 8" installed in some areas.
- Use of standard DI fittings to reconnect lines
- Significant savings versus previous open-cut replacement projects (>20% or more)

McCandless Twp.: 12" FPVC®; Static pull water main pipe burst

AEGION PRESSURE PIPE CAPABILITIES

	Applications								Max.		AWWA Classification		
Product	Potable Water	Wastewater	Irrigation/ Raw Water	Fire Suppression	Industrial	Electric/ Fiber	Casing	Diameter	Continuous Install Length	Max. Pressure	Class	Class IV	Bends
InsituMain®	Х	х	Х	х	Х		Ŭ	06" - 72""	1,200'	250 psi	Х	Х	up to 45°
Tite Liner®	* X	Х	X	х	Х	Х		02" - 52"	5,000'	140 psi	х	Х	up to 11.25°
Tyfo® Fibrwrap®	X	Х	X	х	X			30" & Above	Unlimited	450 psi	Х	Х	Any
Fusible PVC®	Х	Х	Х	х	Х	Х	Х	04" - 36"	7,000'	305 psi		х	N/A

Note: Pipe size and operating temperature may limit maximum pressure for a given application

* To be evaluated on a case by case basis

InsituMain[®] – Slight bends or offsets Tite Liner – Long, straight runs Tyfo[®] Fibrwrap[®] – Limited or problematic access Fusible PVC[®] – Decreased capacity (sliplining), increased capacity (pipe bursting)

Aegion Pressure Pipe Capabilities

- 30,000 miles of installed pipe around the world
- Professional engineers involved in every project
- Mobile installation crews
- 80+ years of combined experience in rehabilitation
- Industry-leading safety record
- Certified to ISO 9001:2008 standards

