Process Chemistry Relationships for Precipitative Softening and Recarbonation
Marvin Gnagy, P.E. President
OTCO 50 th Anniversary Conference & Expo August 6, 2014

Agenda

- Alkalinity Species and Distribution
- Alkalinity / pH Relationships
- Titration Equation
- Calcium / Magnesium Solubilities

Agenda

- Magnesium Fouling Issues
- Softening Demand Curves
- CO₂ Determinations

Agenda

- Coagulant Reaction Byproducts
- Recarbonation Chemistry
- CO₂ Dosage Determinations

Distribution Alkalinity

- Bicarbonate Alkalinity (HCO₃⁻)
- Low pH range
- Carbonate Alkalinity (CO₃⁻²)
- Mid pH range
- Hydroxide Alkalinity (OH⁻)
- High pH range
- Only two species can exist at same time
- Restricted by equilibrium and pH

LOG CONC. CO₃ SPECIES

- Investigation of lower pH range demonstrates relationship between HCO_3 alkalinity and CO_3 alkalinity species
- Нd Defines percentage of each species based on equilibrium
- Mirror images decrease in HCO_3 reveals proportional increase in CO_3

Process Chemistry Relationships for Precipitative Softening and Recarbonation

pH Relationships

- Nearly equal alkalinity species
- At about pH 9.23
- Equilibrium pH defines percentage of species in solution
- Percentages obtained at any pH in the range of the curve

- Investigation of higher pH range demonstrates relationship between CO_3 alkalinity and OH alkalinity species
- Нd Defines percentage of each species based on equilibrium
- Mirror images decrease in CO_3 reveals proportional increase in OH

pH Relationships

- Nearly equal alkalinity species
- At about pH 10.95
- Equilibrium pH defines percentage of species in solution
- Percentages obtained at any pH in the range of the curve

TA/PA Ratio Defines Equilibrium pH

- J.M. Montgomery (1954)
- Equilibrium pH established once equilibrium alkalinity concentrations occur
- TA/PA Ratio is related to specific pH values

TA/PA Ratio Defines Equilibrium pH

- Example
- TA 60 mg/L
- PA 24 mg/L
- TA/PA Ratio is 2.50
- Equilibrium pH is

WATER pH, s.u.

TA/PA Ratio Defines Equilibrium pH

- Example
- TA 60 mg/L
- PA 24 mg/L
- TA/PA Ratio is 2.50
- Equilibrium pH is
 9.63

- Montgomery's work has been placed into table format
- Knowing TA/PA Ratio, pH easily found
- -Used for predictive analyses and troubleshooting
- -Check accuracy of lab tests

	Exce	rpt from Table	
Relati	ionship Between T	A/PA Ratio and Equilib	prium pH
TA/PA Ratio	Water pH	TA/PA Ratio	Water pH
2.54	9.60	2.44	9.67
2.53	9.61	2.43	9.68
2.51	9.62	2.41	9.69
2.50	9.63	2.40	9.70
2.49	9.64	2.39	9.71
2.47	9.65	2.39	9.72
2.46	9.66	2.38	9.73

- Defines the distribution of alkalinity species and carbonic acid in solution
- Illustrates separation of phenol alkalinity and total alkalinity -Demonstrates alkalinity species and where found from

titration

$TA = H_2 CO_3 + HCO_3 + 2CO_3^{-2} + OH^{-1}$

$TA = H_2 CO_3 + HCO_3 + 2CO_3^{-2} + OH$

Phenol alkalinity $PA = OH + \frac{1}{2}CO_3$ -Phenolphthalein endpoint (clear) pH 8.3±

 $TA = H_2 CO_3 + |HCO_3 + 2CO_3| + 2HOH$

- Phenol alkalinity $PA = OH + \frac{1}{2}CO_3$ -Phenolphthalein endpoint (clear) pH $8.3\pm$
- Total alkalinity $TA = PA + \frac{1}{2}CO_3 + HCO_3$ -Total alkalinity endpoint (red / orange) pH $4.5\pm$

Alkalinity Calculations Matrix

- Titration equation helps develop calculation matrix
- Matrix equations define concentrations of CO_3 alkalinity, OH alkalinity, and HCO_3 alkalinity
- Matrix is based on TA and PA relationships

Alkalinity Calculations Matrix

Forms simply	Only one or t	2PA <ta< th=""><th>2PA>TA</th><th></th><th></th></ta<>	2PA>TA		
difference between total a	wo forms of alkalinity can	2PA	2(TA-PA)	Carbonates	
lkalinity and CO ₃ species	exist in the water, third fo	0	TA-CO ₃	Hydroxides	
	rm is zero	TA-CO ₃	0	Bicarbonates	

• 2PA=TA all alkalinity is CO_3

• 2PA=0 all alkalinity is HCO_3

- Solubility of specific compounds help define how precipitative softening works
- Calcium carbonate (CaCO₃) solubility equation shows solubility product (K_{sp}) as a function of temperature

 K_{sp} , $CaCO_3 = 10^{\left[13.870 - \left(\frac{3059}{TK}\right) - 0.04035 TK\right]}$

Magnesium hydroxide [Mg(OH)₂] solubility equation also shows solubility product (K_{sb}) as a function of temperature

 $K_{sp}, Mg(OH)_2 = 10^{[-0.0175TC-9.97]}$

- K_{sp} determines soluble limit of CaCO₃ and Mg(OH)₂ in water (temperature dependent)
- -Concentration that will remain soluble after precipitation occuts
- pH defined as $-\log(H+)$ concentration

- K_{sp} determines soluble limit of CaCO₃ and Mg(OH)₂ in water (temperature dependent)
- -Concentration that will remain soluble after precipitation occurs
- pH defined as $-\log(H+)$ concentration
- pK_{sp} is $-\log(K_{sp})$
- -Defines relative pH needed to force precipitation based on water temperature
- on water temperature

and Mg^{+2} follows once calcium precipitation is completed pK_p defines pH necessary to precipitate solids, demonstrates that Ca^{+2} is removed first

Magnesium Fouling Issues

- Magnesium hydroxide $[Mg(OH)_2]$ tends to foul hot water systems with scale
- Temperature and pH determine scale-forming tendencies of $Mg(OH)_2$
- Helps establish how much magnesium can be in solution

Process Chemistry Relationships for Precipitative Softening and Recarbonation

Softening Demand Curves

- Demonstrate relationships presented
- Illustrate precipitation of alkalinity and calcium
- Show magnesium precipitation occurrence as function of Hd
- Depict solubility characteristics for Ca^{+2} and Mg^{+2}

Softening Demand Curves

Process Chemistry Relationships for Precipitative Softening and Recarbonation

Softening Demand Curves

Process Chemistry Relationships for Precipitative Softening and Recarbonation

Process Chemistry Relationships for Precipitative Softening and Recarbonation

Hardness or Alkalinity, mg/L

Alkalinity or Magnesium, mg/L

Softening Demand Curves

Softening Demand Curves

Relationships Demand

- Calcium and alkalinity precipitate first At pH ≥8.49
- Magnesium precipitation occurs after calcium completed
- At pH ≥10.59
- Can reduce hardness/alkalinity to soluble limits

Softening Demand Curves

Demand Relationships

- Beyond minimum point - hardness, alkalinity, calcium increase
- Soluble limit ranges from 800 mg/L to 1,600 mg/L
- Minimum turbidity often occurs near bottom of curve
- Soluble limits for calcium
- Magnesium reduced to soluble limits only

CO₂ Determinations

$CO_2 + Ca(OH)_2 \Rightarrow CaCO_3 + H_2O$

- CO₂ creates demand for lime
- High CO_2 should be removed with aeration $->10 \text{ mg/L } \text{CO}_2$ aeration more cost effective
- Calculation in Standard Methods

$$CO_2, mg / L = 2HCO_3 * 10^{(6-pH)}$$

Nomograph method also available

Coagulant Reaction Byproducts

$AI_2(SO_4)_3 + 3Ca(HCO_3)_2 \Rightarrow 2AI(OH)_3 + 3CaSO_4 + 6CO_2$

- Alkalinity consumed during coagulation reactions
- Alkalinity essentially converted to *noncarbonate* hardness, soda ash or caustic soda needed for removal
- CO_2 creates additional lime demand

Coagulant Reaction Byproducts

0.31	0.36	Polyaluminum Chlorosulfate (PACS)
0.62	0.71	Polyaluminum Chloride (PACl)
0.25	0.29	Aluminum Chlorohydrate (ACH)
0.23	0.53	Ferric Sulfate
0.40	0.46	Ferric Chloride
0.44	0.5	Alum
Dissolved CO_2 Formed, mg/L	Alkalinity Consumed, mg/L	Coagulant

$CO_2 + H_2O \Rightarrow H_2CO_3$

- Carbonic acid shifts alkalinity species due to chemical reactions
- -Total alkalinity often remains unchanged
- $TA = PA + \frac{1}{2}CO_{3} + HCO_{3}$
- -Phenol alkalinity changes due to change in alkalinity species
- $\bullet PA = OH + \frac{1}{2} CO_{3}$
- Equilibrium conditions force shift in pH

• **OH** alkalinity reacts to form CO_3 alkalinity

$$Ca(OH)_2 + H_2CO_3 \Rightarrow CaCO_3 + 2H_2O_3$$

• CO_3 alkalinity reacts to form HCO_3 alkalinity

$$CaCO_3 + H_2CO_3 \Rightarrow Ca(HCO_3)_2 + H_2O$$

Author's equation

$$CO_2, mg / L = \left[OH + \left(\frac{CO_3 - HCO_3}{2}\right)\right] * 0.44$$

- If **OH** present, two iterations determines CO_2 dosage
- If **OH** absent, one iteration needed

Process Chemistry Relationships for Precipitative Softening and Recarbonation

pmgconsulting@bex.net

419.450.2931