

2014 Water Workshop

REDUCING ENERGY CONSUMPTION IN WATER PUMPING STATIONS

Tom Sherman CEM, CDSM

President

Sustainable Energy Services, Inc.

440.773.5044 Tom@Sustainable-Energy-Services.com

THE ROAD TO ENERGY EFFICIENCY STARTS WITH AN ENERGY AUDIT

- Encompass Whole Facility
 - Find all the savings possibilities
- Insist on ASHRAE Level 2 Energy Audit
 - American Society of Heating, Refrigeration and Air Conditioning Engineers
 - Level 2 ensures technical and financial analysis for decision making
- Use Independent Qualified Firm
 - Look for PE, CEM or CEA certification
 - Independent: No tie to any equipment supplier or contractor
- Utilities Offer Energy Audit Incentives
 - Some utilities pay up to 50% of the energy audit fee

TYPICAL ENERGY AUDIT FINDINGS

- Lighting
- HVAC
- Motors
- Pumps
- Equipment
- Building Envelope
 - Windows
 - Insulation
 - Infiltration

LARGEST ENERGY SAVINGS OPPORTUNITY IN PUMPING STATIONS

- Lighting
- HVAC
- Motors
- Pumps
- Equipment
- Building Envelope
 - Windows
 - Insulation
 - Infiltration

Motors and

Pumps

WHY MOTORS AND PUMPS?

- Motors consume 90% of the energy in pumping stations
- Motors are the largest opportunity for savings money
- Running a motor costs more than 10 times its purchase price each year in energy costs alone
- Over life of motor, 98%+ of cost of ownership is operating cost

IF OWNING A CAR WAS LIKE OWNING A MOTOR

- Purchase price = \$30,000
- Annual operating cost = \$500,000
- Operating cost over life of car = \$4,000,000

What would you be willing to do to make your car run more efficiently?

How important is purchase price to you now?

WHAT IT COSTS TO RUN A MOTOR

- Rating = 100HP
- Hours of Operation = 8,760
- Cost per kWh = \$0.09
- Demand kW = \$7
- Purchase Price = \$6,000
- Load Factor = 100%
- Motor Eff. = 92%

Annual Energy Cost =
$$\frac{100 \times .746 \times 8760 \times 1 \times .09}{.92} + \frac{100 \times .746 \times 1 \times 7 \times 12}{.92}$$

Annual Energy Costs = \$63,929 + \$6,811 = \$70,740

Purchase Price = \$6,000

Then must add maintenance costs & operating losses!

CHANGING A STD. EFF. WITH PREMIUM EFF.

$$kWSaved = \frac{HP \times 0.746 \times LF}{Eff_{std}} - \frac{HP \times 0.746 \times LF}{Eff_{EE}}$$

 $kWh\ Saved = kW\ x\ Oper.Hours$

\$Saved = kWh x cost/kWh + kW x cost/kW x 12

CHANGING A STD. EFF. WITH PREMIUM EFF.

- Rating = 100HP
- Hours of Operation = 7400
- Cost per kWh = \$0.09
- Demand kW = \$7
- Purchase Price = \$4,200
- Load Factor = 90%

$$kW = \frac{100 \times .746 \times .9}{.83} - \frac{100 \times .746 \times .9}{.94} = 9.6 \ kW$$

$$kWh = 9.6 \ kW \ x \ 7400 = 71,040 \ kWh$$

 $Cost\ Savings = (71,040\ x\ .09) + (9.6\ x\ 7\ x\ 12) = \$7,200/year$

DO VFD DRIVES MAKE SENSE?

Standard Motor	NEMA Prem Eff Motor	With VFD
\$221,867	\$203,378	\$126,184

Save \$18,489 annually with a more efficient motor

OR...save \$95,683 annually by adding a VFD to the same more efficient motor

INVESTING IN A 300HP MOTOR WITH VFD

Item	Amount
Cost of Motor	\$15,000
Cost of VFD	\$16,000
Ship/Install cost	\$5,000
Rebate	(\$18,000)
Total Investment	\$18,000
Annual Energy Savings	\$126,184
Simple Payback	0.14 Years
Return on Investment	700%

VFD TECHNICAL CONSIDERATIONS

- Requires a varying load
- Requires inverter grade motor
- Limit VFD-Motor distance to 50 feet or less
- Preventive Maintenance critical for long term success
 - VFDs cause leakage current through bearings
 - 5th and 11th harmonic generate reverse torque
 - Current imbalance between phases < 10%
 - Voltage imbalance between phases < 3%
 - Watch for dV/dT exceeding CIV (corona inception voltage)
 - Thermal imaging should be compared every 3 to 6 months

VFD CAUSED BEARING WEAR

- Capacitive coupled leakage current
- Static electricity from load

FLUTING IN BEARING CHASE CAUSED BY LEAKAGE CURRENT

WHAT BEARING WEAR LOOKS LIKE

THERMAL IMAGING - EXTREMELY HELPFUL!

VFD OUTPUT VOLTAGE – INSULATION FAILURE

NEGATIVE SEQUENCING

MOTOR MANAGEMENT, PREVENTIVE MAINTENANCE (PM)

- Well planned PM is key to dependable, long-life operation of motors, pumps and generators
- Unscheduled stoppage and long repairs are intolerable
- Leadership often sees value of PM but resists investment for proper tools, resources and training
- PM often needs to be pitched as a business case
- Case studies of prior breakdowns and resulting costs will help
- Once budget approved, develop a plan for each motor category

MOTOR MANAGEMENT PROGRAM

- Survey motors. Gather nameplate information (HP, RPM, enclosure, voltage, amps, etc.)
- Initially focus on motors that exceed minimum size and operating hours
 - 50 HP and above
 - 6,000 hours/year of operation minimum
- Collect info re Standard, EPAct and NEMA Prem. Eff.
- Constant load (not intermittent, cycle or fluctuating)
- Older or rewound motor

MOTOR MANAGEMENT PROGRAM

- Conduct Motor Replacement Analysis by the following three categories:
 - 1. Motors Offering Rapid Payback through Energy Savings. Motors that run continuously (8,000 or more hours/year.)
 - 2. Improved Reliability Oversized Motors
 - 3. Utility Rebate Program utility pays end-user to replace older inefficient motor with new NEMA Premium Motor.

AREAS TO COVER FOR GOOD PM PROGRAM

- Thermal Imaging
 - Over-heating (insulation class, impact on life)
 - Overloads
 - Imbalances
- Vibration Analysis
 - Included load on shaft (pump bearing)
- Load Analysis
 - Tachometer and slip equations
- Power Analysis
 - Phase imbalance
 - Overload
 - Harmonics
 - Power Factor
 - Power Quality

NEEDED - GOOD TOOLS AND EXPERTISE!

Create a Record for Each Motor

M-13

Motors

General Information

Site Name	
Motor ID/ Tag	
Location/Service	
Year Built	2011

Motor Data	Nameplate		
Manufacturer	MARATHON		
Model Number	EVD 256TTFNA60		
Serial Number	A & R140		
Motor Type	TEFC AC Premet		
Motor Efficiency	92.4%		
Full-Load HP	20		
Frame Size			
Frame Style	256 T		
Full-Load RPM	33 3537		
Synch RPM	3600		
Volts	460		
Phase	3		
Full-Load Amps	23.4		
Power Demand (kW)	18		
Connection Type			

Motor Control

ON/OFF	Yes
VFD	1/0
Soft-start	No
Multiple Speed Settings	No

Operating Schedule

Time of Day Scheduling	M-F 530A-10p Sat 7A-3p
Annual Oper. Hours	4654

Design/Operating Conditions

	Design	Measured
Ambient Temp	129 F	1361=
Load on shaft	Blowe	

Medadiments	
Voltage A	476.1
Voltage B	472.4
Voltage C	474.6
Current A	21.7
Current B	22.9
Current C	22.4
Shaft RPM	3541
Frame Temp Range	class H
Hotspot Temp	164.2 F

Convert Collected Data into Database

2	ID	Location	Make and Model	HP	Photo	Vibration	IR	Power	Condition	Comments
3	M1	806 Erema Cutter/Compactor	WEG Lenze 06AG008	22.8	Yes	Yes	Yes	Yes		Excessive bearing wear, severe current unbalance
4	M2	806 Erema Extruder	WEG LENZE TEO1FOXOXOXO00091180	22.8	Yes	Yes	Yes	Yes		Severe bearing wear, excessive heating at power connection, overloaded
5	M3	2 1/2 - Extruder	RELIANCE 01KL517389DFT1	150	Yes	Yes	Yes	Yes		Excessive bearing wear; severe 5th and 11th harmonic
6	M4	3 Layer 1 - Extruder C				No	No	No		Machine down
7	M5	3 Layer 1 - Extruder B				No	No	No		Machine down
8	M6	3 Layer 1 - Extruder A				No	No	No		Machine down
9	M7	5 Layer - Extruder D	CONTRAVES 2190B450B03	10	Yes	Yes	Yes	No		Moderate bearing wear; non-std
10	M8	5 Layer - Extruder E	CONTRAVES N058/0413-FN112	10	Yes	Yes	Yes	No		Excessive bearing wear
11	M9	5 Layer - Extruder C	BALDOR P28800450035000	25	Yes	Yes	Yes	No		Moderate bearing wear
12	M10	5 Layer - Extruder B	CONTRAVES 2190B450B02	10	Yes	Yes	Yes	No		Excessive bearing wear
13	M11	5 Layer - Extruder A	BALDOR 59084771-001001-JN	50	Yes	Yes	Yes	No		Moderate bearing wear; non-std
14	M12	2 1/2 - Grinder	LEESON M286TDB10B	30	Yes	Yes	Yes	No		
15	M13	9 Layer - IBC Exhaust Blower	MARATHON EVD 256TTFNA6001	20	Yes	Yes	Yes	No		
16	M14	3 Layer 2 - Air Ring Exhaust	MARATHON DUB 215TTFS6001GWR140	10	Yes	Yes	Yes	No		
17	M15	9 Layer - Air Ring Blower	MARATHON EVD286TSTFN6001BHR1401	30	Yes	Yes	Yes	No		
18	M16	9 Layer - IBC Supply	MARATHON EVD286TSTFN6001BHR1402	20	Yes	Yes	Yes	No		Slight looseness
19	M17	9 Layer - Extruder A	RELIANCE 73424318-00-DR-T1	60	Yes	Yes	Yes	No		-
20	M18	9 Layer - Extruder B	RELIANCE 7350638-001-CK-T2	40	Yes	Yes	Yes	No		
21	M19	9 Layer - Extruder C	RELIANCE 7350638-001-CK-T3	40	Yes	Yes	Yes	No		
22	M20	9 Layer - Extruder D	RELIANCE 7350638-001-CK-T4	40	Yes	Yes	Yes	No		
23	M21	9 Layer - Extruder E	RELIANCE 7350638-001-CK-T5	40	Yes	Yes	Yes	No		
24	M22	9 Layer - Extruder F	RELIANCE 7350638-001-CK-T6	40	Yes	Yes	Yes	No		
25	M23	9 Layer - Extruder G	RELIANCE 7350638-001-CK-T7	40	Yes	Yes	Yes	No		
26	M24	9 Layer - Extruder H	RELIANCE 7350638-001-CK-T8	40	Yes	Yes	Yes	No		
27	M25	9 Layer - Extruder I	RELIANCE 7342431A-00-DKT1	60	Yes	Yes	Yes	No		
28	M26	3 Layer 2 - Extruder A	SAFTRONICS 5CD184TA096B017	60	Yes	Yes	Yes	No		
29	M27	3 Layer 2 - Extruder B	SAFTRONICS CD203PA097A151	50	Yes	Yes	Yes	No		
30	M28	3 Layer 2 - Extruder C	GE 5CD84TA096B032	60	Yes	Yes	Yes	No		
31	M29	605 Erema - Extruder	SIEMENS ILE10011DC434AB4Z	15	Yes	Yes	Yes	No		Moderate bearing looseness
32	M30	605 Erema - Cutter/Compactor	SIEMENS ILA91866	20	Yes	Yes	Yes	No		
33	M31	Macchi reclaim				No	No	No		motor not accessible
34	M32	3 Layer 1 - IBC Suply				No	No	No		Machine down
35	M33	2 /12 - Air Ring Supply	BALDOR M3314T	15	Yes	Yes	Yes	No		
36	M34	3 Layer 1 - IBC Exhaust				No	No	No		Machine down
37	M35	3 Layer 1 - Air Ring Supply				No	No	No		Machine down
38	M36	5 Layer - Air Ring Blower	TOSHIBA B02020LF2UMH01	20	Yes	Yes	Yes	No		
39	M37	3 1/2 - Extruder	RELIANCE 7135052-001-DJT1	150	Yes	Yes	Yes	No		
40	M38	3 1/2 - IBC Suply Blower	MARATHON DVF 254TTFNA6001 AER1401	15	Yes	Yes	Yes	No		
41	M39	3 1/2 - IBC Exhaust	RELIANCE P21G3319H	10	Yes	Yes	Yes	No		Moderate bearing looseness
42	M40	6" Extruder	POWERTEC A32EYS1000100000	250	Yes	Yes	Yes	No		Bearings at both ends have moderate wear
43	M41	6" - Air Ring Supply	BALDOR M4107T	25	Yes	Yes	Yes	No		Moderate bearing wear and looseness
44	M42	2" Extruder	GE 50D363NA001A015	30	Yes	Yes	Yes	No		
45	M43	6" - Grinder	LEESON C324T17FB7D	30	Yes	Yes	Yes	No		
46	M44	6" - Grinder	DELCO 1V9716L1	40	Yes	Yes	Yes	No		
47	M45	3 1/2 - IBC Exhaust Blower	MARATHON DVA 215TTFS6001GWR1401	10	Yes	Yes	Yes	No		
48	M46	GD VS-40 Air Compressor	RELIANCE 89864009	54.4	Yes	Yes	Yes	No		
49	M47	3 Layer 2 - Air Ring Supply	MARATHON BVA254TTFNA6001AER140	15	Yes	Yes	Yes	No		Slight bearing wear

UTILITY REBATES FOR MOTORS AND VFD'S – FIRSTENERGY

 Motors and VFD's fall under their custom program and pay \$0.08/kWh saved, caped at 50% of project cost.

UTILITY REBATES FOR MOTORS AND VFD - AEP

NEMA Premium™ Efficiency Criteria Qualifying Motors Exceed NEMA Premium™ Efficiency							
Horse-	3600 RPM		1800	RPM	1200 RPM		Incentive
power	Open	Closed	Open	Closed	Open	Closed	/Motor
1	77.0%	77.0%	85.5%	85.5%	82.5%	82.5%	\$8
1.5	84.0%	84.0%	86.5%	86.5%	86.5%	87.5%	\$10
2	85.5%	85.5%	86.5%	86.5%	87.5%	88.5%	\$13
3	85.5%	86.5%	89.5%	89.5%	88.5%	89.5%	\$20
5	86.5%	88.5%	89.5%	89.5%	89.5%	89.5%	\$25
7.5	88.5%	89.5%	91.0%	91.7%	90.2%	91.0%	\$40
10	89.5%	90.2%	91.7%	91.7%	91.7%	91.0%	\$45
15	90.2%	91.0%	93.0%	92.4%	91.7%	91.7%	\$60
20	91.0%	91.0%	93.0%	93.0%	92.4%	91.7%	\$75
25	91.7%	91.7%	93.6%	93.6%	93.0%	93.0%	\$80
30	91.7%	91.7%	94.1%	93.6%	93.6%	93.0%	\$90
40	92.4%	92.4%	94.1%	94.1%	94.1%	94.1%	\$100
50	93.0%	93.0%	94.5%	94.5%	94.1%	94.1%	\$120
60	93.6%	93.6%	95.0%	95.0%	94.5%	94.5%	\$130
75	93.6%	93.6%	95.0%	95.4%	94.5%	94.5%	\$140
100	93.6%	94.1%	95.4%	95.4%	95.0%	95.0%	\$190
125	94.1%	95.0%	95.4%	95.4%	95.0%	95.0%	\$238
150	94.1%	95.0%	95.8%	95.8%	95.4%	95.8%	\$285
200	95.0%	95.4%	95.8%	96.2%	95.4%	95.8%	\$380
250	95.0%	95.8%	95.8%	96.2%	95.4%	95.8%	\$475

VFD Application	Incentive Amount
Supply/ Return Fan	\$60/HP
Chilled Water Pump/ Condenser Water Pump	
Hot Water Pump	
Cooling Tower Fan	
Other HVAC Motor (Fan/ Pump)	
Process Fan and Pump Motor	

Pool Pump & Compressor Prescriptive Incentives						
VFD Application	Size Requirements	Incentive Amount				
Pool Pump	N/A	\$100/HP				
New Compressor	≤ 150 HP	\$100/HP				

Installing VFDs on Existing Equipment

Incentives qualify for new VFDs, not replacement VFDs.

Prescriptive Incentives for VFD applications ≤ 200 HP*

(For motors >100 HP custom analysis is completed, but prescriptive incentives are paid.)

Installing VFDs on New Equipment

Subject to ASHRAE 90.1-2007 standards. If a VFD is required it is not eligible for incentives.

The following are the most common applications not eligible for incentives:

VFD Application	Required by ASHRAE 90.1-2007	Notes
Variable Air Volume (VAV) Fan Control	Motor ≥ 10 HP	Supply/ return fans
Hydronic Variable Flow Systems	Motor > 50 HP & Pump Head > 100 ft	Variable fluid flow pumps
Heat Rejection Equipment, Fan Speed Control	Motor ≥ 7.5 HP	Cooling towers, condensing units, etc.

UTILITY REBATES FOR MOTORS AND VFD'S – DUKE ENERGY

VARIABLE FREQUENCY DRIVES

For all VFD operations >2000 hours per year applied to HVAC fans and pumps and process pumps

HP	INCENTIVE/HP
From 1.5 hp to 50 hp	Up to \$100.00/hp

Visit www.duke-energy.com for required efficiency levels.

UTILITY REBATES FOR MOTORS AND VFD'S – DP&L

Premium Motors	
Measure	Rebate (per HP)
1.0 - 5.0 HP	\$25.00
7.5 - 20.0 HP	\$15.00
25.0 - 250.0 HP	\$10.00

Variable Frequency Drives

Measure	Rebate (per HP)
1.0 - 250.0 HP	\$40.00

Tom Sherman

440-773-5044

Tom@Sustainable-Energy-Services.com