Twinsburg, Ohio

TREATING DIE CASTING WASTEWATER CASE HISTORY

Presentation Overview

- \diamond Twinsburg die casting facility
- \diamond Waste water treatment methods
- ♦ ZenoGem MBR
- \diamond Operation problems
- ♦ D.O.E. Project
- ♦ Koch S1UF
- \diamond Conclusions

Twinsburg Die Casting Facility

• Forced molten aluminum into a steel die under 3000 psi

Twinsburg Die Casting Facility

• Lester: segmented die

Solenoid Body: Die Cast & Finish Machined

Valve Body: Die Cast & Semi-Finish Machined

Twinsburg Die Casting Facility

o 1992- First fully automated die casting facility

• Specifically for valve bodies

Wastewater Treatment

• Physical-Chemical

- ♦ Waste water : 80% die lube, 10% trim lube, 9% washwater, 1% glycol
- ♦ COD: 15000 die lube, 12000 trim lube, 1000 washwater, 1,000,000 glycol
- \diamond Firm when out of business, hired the foreman to operate system
- ♦ Batch mode problems
- \diamond Could not remove glycol
- \diamond COD limit = 10,000 mgl

Zenon (GE Water)

- Hire environment consultant
- Recommended Zeno-Gem MBR with Reverse Osmosis (RO)
- Zero discharge
- Hired Nov. 1994 to manage the install and operate
- Consulting firm quit
- Started new system 30 days ahead of compliance schedule

OUltra Filter

♦ Tubular

OUltra Filter

♦ Tubular

Issues & Problems (Opportunity's for Improvement)

- ♦ FOAMOVER!!
- ♦ Defoam
- \diamond Installed conductance probes
- \diamond Installed Ultra sound probes
- ♦ EPA spill
- \diamond Hired people to sit and watch 24/7
- ♦ Built containment room 400+ foamovers

Temperature

 \diamond Uncontrolled temperature from 90 to 140 degree F

Installed heat exchangers to maintain temp @ 90 F

Dissolved Oxygen

 \diamond Unable to maintain and control Dissolved Oxygen (DO)

o Installed Variable speed drives on Blowers control by DO level

• Weekend Upsets

 \diamond One day Influent tanks

 \diamond Run out of Biofeed water = foam

O Switched Die Lube

- ♦ Fouling & irreversible UF membranes
- ♦ Frequent cleaning
- \diamond Golden oil
- \diamond Replacing 3 weeks to 3 months
- \diamond Slime in UFP

O Switched Die Lube

- \diamond High COD in RO permeate
- \diamond Fouling RO membranes
- ♦ Frequent cleaning

O Switched Die Lube

- ♦ Poor tower make-up
 - Tower cleanings
 - Problematic treatment
- \diamond Uncontrolled wasting of Bioreactor
 - Non-homogeneous biomass
 - Bio-balls
- ♦ Increased Foaming

New vs. Old (Die Lube)

o 50 /50 study

 \odot New lube worked 40% better in production with Silicone Oil

Management instructed to find a way to treat new die lube

MBR Pretreatment Options

- Phys/Chem- polymers, clay
- Evaporator
- **O Thermal Oxidizer**
- Centrifuge
- **OUF polymer and ceramic**
- o 26 companies & 3 consulting firms in 10 years

MBR + RO Performance

o RO Permeate Poor Quality

- \diamond Poor MBR performance
- ♦ Glycol

• Very Poor Tower Make-Up

- ♦ Sludge in basin
- \diamond Poor treatment control
- ♦ Added \$
- \diamond ROC hauling cost increased

City of Twinsburg

O Applied for Discharge Permit

- \diamond RO Permeate suitable for discharge
- ♦ Cod limit 1000 mgl
 - \odot Surcharge over 500 mgl
- \diamond Foam in POTW outfall into park
 - \odot COD limit lowered to 500 mgl

MBR + RO Performance

Department of Energy

Department of Energy

• Office of Industrial Technologies

- \diamond Production employed 8 technology's they helped develop
- ♦ Facility Showcase
- \diamond \$250 k grant for WW

Idaho National Engineering and Environmental Laboratory (INEEL)

- \diamond Dr. Eric S. Peterson
- ♦ Researched different technologies

SpinTek Filtration, LLC

♦ Awarded grant to R&D possible solution

SpinTek Filtration, LLC

OST-11 Speedy Rotary Membrane System

SpinTek Filtration, LLC

o ST-11 Speedy Rotary Membrane System

- ♦ Employs centrifugal force
- \diamond Trialed polymeric and ceramic membranes at different pore sizes
- ♦ Concentrated from 20X to 50X. Target 25X optimal performance

\diamond Die lube reuse

- \circ Infra-Red fingerprinting
- \circ 50/50 mix
- \odot 30 day trail, over 10,000 castings

SpinTek Filtration, LLC

• Conclusions of SpinTek Project

- \diamond SpinTek was primarily R&D
- ♦ Labor intense, hard to manage, hire 3 operators
- \diamond Possibly jeopardize quality

♦ Electric cost

♦ Not economical or practicable

Koch Membranes Systems

OULTRA FILTRATION FOR MBR pretreatment

- \diamond Dr. Paul Sutton- Retry Koch UF
- \diamond Pilot tested several membranes
- \diamond Run to failure; then clean

♦ S1UF

Wastewater Upgrade Project

• Koch Konsolidator 150

Wastewater Upgrade Project

- Koch Konsolidator 150
- Add 3 days Equalization tanks
- **OS1UF** in weekly modified batch mode
- **OMBR reaction unknown**

Reaction to S1UF

- \diamond No TSS in Biofeed water
- ♦ Reduced loading
- ♦ Reduced wasting
- \diamond COD continuous decline from 500- 2000 range to >100
- \diamond DO and Temp easily maintained
- \diamond Foam changed to light and bubbly; continuous decline
- \diamond Defoam effective
- \diamond Membrane fouling and cleaning continuous decline
- \diamond Slime disappeared
- ♦ RO Shutdown

• Cost Reductions

- ♦ Biomass wasting: \$240K to \$80K
- ♦ ROC: \$90K to \$0
- \diamond RO Chemicals: \$5K to \$0
- ♦ RO membrane replacement: \$12K to \$)
- \diamond UF membrane replacement: \$140K to \$8K
- ♦ Total \$400K
- ♦ Addition S1UF cost: UFC \$50K
- \diamond Addition S1UF membrane: \$10K
- Total Savings = \$340K per year

- **OMLSS Unchanged**
- No Wasting for 8 Months
- Biomass Became Jelly-Like
- Poor Flux
- Poor Pump Performance
- **•** Timed Drip Test to Determine Wasting Frequency

O Koch S1Uf Effective Pretreatment for MBR

- ♦ S1Uf reliable 98%- bad batch- emulsion break liberates oils
- \diamond No issues with discharge- COD >100
- ♦ Controlled wasting
- ♦ Recycle UFC
- ♦ RO shutdown
- ♦ Foam 98% gone
- ♦ MBR membranes life 8 Yrs; cleaning twice per year
- \diamond S1UF membrane life 4 yrs

Questions

