

By: Darrel A. Blanchard Sr. Operations Specialist CH2M HILL

"Where Do I Start?"

Treatment Plant Optimization

Define Optimization:

something as fully perfect, specifically as it An act, process, or methodology of making relates to treatment processes, pumping

systems and energy use

Why Should You Optimize Your Treatment Processes

- Because it is the smart thing to do
- Because it is the ecological thing to do
- Because it is the economical thing to do
- Because it is the sustainable thing to do

Where Are Your Operating **\$\$\$ Being Spent**

- Labor
- Electricity
- Chemicals

Where Do You Start?

- Start by selecting the low-hanging fruit
- Where are you most likely to see an immediate impact
- Where will you see the most immediate savings
- Take an inventory of where your \$\$\$ are being spent

Most Likely Processes

- Filter Backwash
- Pumps Systems
- Energy Demand
- Chemical Feed
- Aeration Basins
- Residuals Managements

Pumping Systems

- Reduce starting and stopping pumps
- Use of VFDs
- Vary the sizing of pumps
- Install soft starts
- Consult you electrical provider for suggestions

03/25/2014

Santa Fe County, NM 03/02/2011

Hydraulic Mixing

Hydraulic Treatment

Filter Backwash

- Evaluate filter backwash protocol
- Reduce backwash volume
- Reduce filter to waste time
- Maximize filter runtime
- Capture filter backwash and recycle
- Consider a filter aid polymer

Over Backwashing

Backwash to 20 - 30 NTU

Chemical Feeding Systems

- Verify the accuracy of the chemical feeders and the chemical metering pumps
- Verify the concentration of the liquid chemicals
- dosages Perform numerous jar tests to verify optimal coagulant
- Evaluate alternate coagulants
- Perform determine the filterability index on each sample

Use Calibration Columns

Residuals Management

- Optimize sludge blowdown cycles
- Thicken or concentrate the sludge before discharge to dewatering facility
- Evaluate polymers used
- Consider beneficial reuses

Dewatered Sludge

Dewatered Sludge

Plate and Frame Filter Press

Sludge Lagoons

Clean Sludge Lagoons

El Yunque WTP, PR

Centrifuges

So What Did We Learn

- Determine what can be optimized (The low hanging fruit)
- Determine the cost of each process to be optimized
- Make a plan, and document the results
- Optimize one thing at a time
- Calculate the savings on a monthly, yearly, life cycle basis
- How will these changes affect the finished water quality or effluent quality
- Determine if capital expenditures are needed to optimize a process
- Re-adjust you budget projections

