TURBIDITY

What is Turbidity?

- A measure of relative water <u>clarity</u>
- A measure of suspended solids
- An indicator of water quality

What is Turbidity?

- Suspended particles may include
- Silt
- Clay
- Algae and Other Microorganisms
- Organic Matter
- Other Minute Particles

What is Turbidity?

- Solids in Water:
- Support growth of harmful microorganisms
- Reduce effectiveness of chemical disinfection
- Interfere with chemical and biological analysis
- Have poor aesthetics
- Are unacceptable for most industrial applications

What is Not Turbidity?

- Turbidity is NOT:
- A direct measure of total suspended solids (TSS) concentration
- Able to identify the type of particles
- A spectrophotometric analysis

Drinking Water

- Requires low turbidity
- Solids in drinking water
- Reduce effectiveness of
- disinfection
- May support microorganisms
- Poor aesthetics

Measurement Strategies

- Historical progression of turbidity measurement
- Jackson Candle visual extinction
- Photometer light transmission
- Nephelometry 90° light scatter

Photometers

Once photometers were developed, light transmission was used to measure turbidity.

Photometer Problems

- Low turbidity (drinking water levels)
- Transmittance changes too small to measure
- High turbidity
- Light scattering by many particles interferes with light absorption

Nephelometers

- Use a 90° design in their optical system
- Detector 90° from light source
- Results are reported as Nephelometric Turbidity Units (NTU).
- Required for EPA reporting

sample How do Nephelometers Work? Measure the amount of light <u>scattered</u> by a Photometer Nephelometer

Scattered light

Basic 90° Nephelometer

Why 90 Degrees?

- Many factors affect light scattering:
- Particle Size
- Particle Shape
- Refractive Index
- Color of Particles and Fluid
- Particle Concentration
- Nephelometers attempt to minimize the effects of accuracy. these factors while maximizing measurement

Measure light scattering at 90 degrees to minimize the effect of particle size

Even Larger Particles

Larger Particles

Small Particles

Why 90 Degrees?

Color of Particles and Solution

- Colored substances <u>absorb</u> light.
- If light is absorbed, then less light reaches be lower the detector and the measured turbidity will

Color of Particles and Solution

- Correct for this with a ratio nephelometer.
- correction light absorbed by sample and performs Additional detector measures amount of

Ratio Nephelometer

Particle Concentration

- A few large particles may scatter as much light as many small ones.
- A direct comparison from NTU to mg/L solids may not always be possible

Particle Concentration

- Extremely high particle concentrations can particles. cause the same light to be scattered by large
- It may reach the point where accurate measurement
- is impossible.

Nephelometers - Stability and

Kange

- Additional detectors increase the range of measurements and add stability
- Forward scatter
- Back scatter

Additional Detectors

Nephelometers - USEPA Kequirements

- Tungsten-halogen lamp operated at a filament color temperature of 2200-3000K
- Light path through sample ≤ 10 cm
- Scattered light detected at $90 \pm 30^{\circ}$
- Detector and filter system response peaks between 400-600nm

Turbidity Measurement

Measuring Turbidity

- Turbidity is just plain different than colorimetry
- No zero (impossible to measure zero turbidity)
- Not a comparison measurement
- Requires calibration on a regular basis

Measuring Turbidity

- In *theory*, relatively simple to understand
- In *practice*, an accurate measurement is not so simple - especially <1.0 NTU
- Recognize potential error sources
- Techniques to minimize error

Sources of Error

- Stray Light Excess light in the system (from any source) contributing to a high turbidity measurement
- Sample Cells
- Gas Bubbles
- Improper Calibration

Sample Cells

- Contaminated cells
- Dirty sample cells can give a false positive reading
- Scratched cells
- Scratched cells may scatter light and give a false positive reading

Sample Cells - How to Improve

- Contaminated cells
- Cells must be meticulously clean
- Wash with detergent, acid
- Ultrasonic bath
- Rinse with filtered deionized water

Sample Cells - How to Improve

- Make the cell as *invisible* as possible
- Scratched cells
- Hide or minimize effects of scratches
- Silicone oil to mask scratches
- Index sample cells

Gas Bubbles - How to Improve

- reading Bubbles scatter light and will give a high
- Degas Sample
- <u>Time</u> let sample sit for a few minutes
- Ultrasonic bath
- Draw vacuum

Stray Light - How to Improve

- Stray light allows more light to reach detector = false high turbidity reading
- Keep sample compartment and optics clean

Calibration - How to Improve

- Improper calibration can lead to inaccurate measurements
- Calibrate regularly with primary standards at the values recommended by the manufacturer
- Hach recommends standards no less than 20 NTU - even if measurements are <1.0 NTU

Why Calibrate at 20NTU? Calibration

- Typical error in standard preparation estimated at about 0.23NTU
- Small amounts of error (0.23) in a 20NTU standard will not affect accuracy of low level measurements
- The same amount of error (0.23) in a 0.5NTU standard will greatly affect accuracy of low level measurements

Hach's Calibration Recommendations

- Do not prepare a low concentration standard for calibration
- Calibrate with recommended standards certified low-level StablCal standards. (20NTU) and verify calibration with
- Certified 0.3, 0.5, and 1.0NTU StablCal standards

Turbidity Measurements

- <u>Clean</u> sample cells
- Use silicone oil
- <u>Degas</u> sample
- Maintain instrument
- Follow proper calibration procedure

TURBIDITY

What have we learned?

light

a sample scatters

Turbidity measures the amount of

suspended solids

Turbidity is not a direct measure Of concentration

nephelometer, 90

degree light scatter and uses a

Turbidity is measured with a

degree scatter technique to Nephelometers use a 90 minimize the effects of varying particle

size

A ratio turbidimeter compensates for absorbance loss caused by sample

calibrated, verified

quarterly, and can be Turbidimeters should be secondary standards daily using

sample cells be For an accurate turbidity reading, it is critical that free of and

clean, scratches

scratches on sample cells Silicon reduce the affects of is used to

oil

Ted Simmons Hach Company 800-227-4224 x2113 tsimmons@hach.com

Be Right[™]

HACH