Valve Exercising, Tools & Data Collection

Presented by:

Kevin Waugh, Manufacturer Representative US Saws, Kupferle, RyMar Innovative Products

*Valve Exercising, Tools & Data Collection

*Agenda

*Why exercise a valve

*Planning for an Exercise Program

*What Counts as an Exercised Valve

*Tools of an Exercise Program

*Collecting The Data

*Questions

*Working Knowledge of Distribution System

*Asset Management

- General Maintenance
- Location of Assets
- Emergency Use
 - Leaks, Breaks, Fires, Illegal Access containment

Why exercise a valve

In May 2007, The department of homeland security and EPA jointly published the "Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan"

Which specifically states to: Identify Assets, Systems, Networks, and Functions

In other words,

"know where your assets are!"

Why exercise a valve

*Working Knowledge of Distribution System

*Asset Management

- General Maintenance
- Location of Assets
- Emergency Use
 - Leaks, Breaks, Fires, Illegal Access containment

*Identify problems

- Closed Valves
- Non-working valves
- Replace / Repair
- *EPA REQUIREMENT

Why exercise a value

Valve Exercising Program Guidance Division of Drinking and Ground Waters

Per AWWA G200-15 Distribution Systems Operation and Management, section 4.2.5, a valve exercising program is to follow AWWA Manual M44 and the manufacturer's recommended procedure and include at least the following elements:

- A goal for the number of transmission valves to be exercised annually based on the percentage of the total valves in the system.
- 2) A goal for the number of distribution valves to be exercised annually.
- A goal that 100% of the valves are tested within a certain time frame (recommend 1x/5 years).
- 4) Measures to verify that the goals are met and written procedures for action if the goals are not attained.
- 5) Critical valves in the distribution system shall be identified for exercising on a regular basis. Potential water quality and isolation concerns shall be recognized. The program shall track the annual results and set goals to reduce the percent of inoperable valves.
- 6) The valve-exercising program may be implemented in conjunction with the systematic flushing program.
- A goal of replacing the inoperable valves identified during the operation and maintenance process shall be established as part of the exercising program.

Determining which valves are critical

- Transmission mains affecting service to large groups of customers
- Distribution valves necessary to maintain service to critical customers such as: hospitals, dialysis centers, nursing
 homes, medical facilities, manufacturing facilities, downtown/high density areas, and service connections where loss of
 flow could impact human health due to catastrophic events (Waste water treatment plant critical processes or loss of
 cooling water to processes where it is critical)
- Areas prone to main breaks
- Areas of infrastructure approaching the end of its useful life
- Areas around road or other utility re-construction areas

Frequency of exercising

- Critical valves annually
- Non-critical valves:
 - Rate of deterioration known to occur in the distribution system.
 Systems should operate a representative sample annually to determine rate of deterioration
 - o Consequence of failure or delays in being able to close the valve

September 7, 2018

September 7, 2018

File of half of the of half of half of the of half o

<u>Goals</u>

Per AWWA G200-15 Distribution Systems Operation and Management, section 4.2.5, a valve exercising program is to follow AWWA Manual M44 and the manufacturer's recommended procedure and include at least the following elements:

- * 1) A goal for the number of transmission valves to be exercised annually based on the percentage of the total valves in the system.
- * 2) A goal for the number of distribution valves to be exercised annually.
- * 3) A goal that <u>100%</u> of the valves are tested within a certain time frame (recommend <u>1x/5 years</u>).
- * 4) Measures to verify that the goals are met and written procedures for action if the goals are not attained.
- * 5) Critical valves in the distribution system shall be identified for exercising on a regular basis. Potential water quality and isolation concerns shall be recognized. The program shall track the annual results and set goals to reduce the percent of inoperable valves.
- * 6) The valve-exercising program may be implemented in conjunction with the systematic flushing program.
- * 7) A goal of replacing the inoperable valves identified during the operation and maintenance process shall be established as part of the exercising program.

Valve Exercising Program

Determining which valves are critical

- * Transmission mains affecting service to large groups of customers
- Distribution valves necessary to maintain service to critical customers such as:
 - * hospitals, dialysis centers, nursing homes, medical facilities, manufacturing facilities, downtown/high density areas, and service connections where loss of flow could impact human health due to catastrophic events (Wastewater treatment plant critical processes or loss of cooling water to processes where it is critical)
- *• Areas prone to main breaks
- *• Areas of infrastructure approaching the end of its useful life
- *• Areas around road or other utility re-construction areas

*EPA Valve Exercising Program

Frequency of exercising

- *Critical valves annually
- *Non-critical valves:
 - * Rate of deterioration known to occur in the distribution system. Systems should operate a representative sample annually to determine rate of deterioration
 - * Consequence of failure or delays in being able to close the valve

Exercising Extends the life of moving parts for:

Valves Hydrants Gates Pumps

Why exercise a valve

What you really need to get started: <u>The Big Picture</u>

A valve exercising program is more than just a T-handle and spare time.

Very specific tools and resources will need to be allocated to properly implement an exercising program

*Start Small and Collect the DATA

*Mapping out your system

*Create Zones

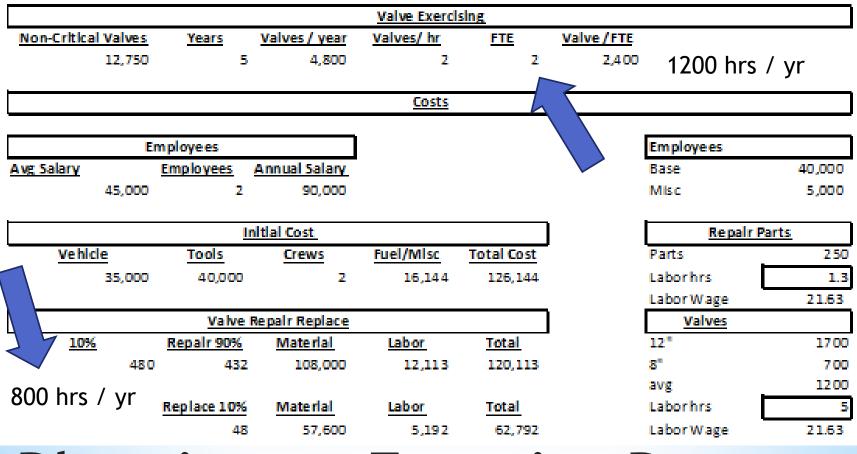
* Old Meter Read Routes

* Hydrant Flushing program

* Snowplow routes

*Identify Critical vs. Non-Critical

*Separate non-Critical into 5 zones (years)


*Budgeting

- *Labor needs
- * Tool needs
- * Time Needed

*Budgeting

	<u>Valves</u>	Crititcal %	Critical	Valves / Hour	Avg Salary
\geq	15,000	15%	2,250	2	40,000

*Budgeting

			Annual Co	osts		
	<u>Year 1</u>				Year Z	
Upfront Costs	135,304	Valves		Annual Costs	16,144	
Salary	90,000			Salary	90,000	Valves
Repair	120,113	432		Repair	91,580	329
Replace	62,792	48		Replace	47,876	37
	408,209	-			245,600	
	Year 3				Year 4	
Annual Costs	16,144		l	Annual Costs		
Salary	90,000	Valves		Salary	90,000	Valves
Repair	69,825	251		Repair	53,238	191
Replace	36,503	28		Replace	27,832	21
	212,472	-			187,214	
			Year 5			
		Annual Costs	16,144			
		Salary	90,000	Valves	Total Valves	
		Repair	40,591	146	1,3 50	
		Replace	21,220	16	150	
		-	167,955	-	1,5 00	
		-		_		
		Total	1,221,450	=		
				•		
rian	ning	an	LXE	PLC1	se P	rogr
Ligili			FV2		52 L	1 2 3

	Valves	Crititcal %	Critical	Valves / Hour		,			
	300,000	15%	45,000	2	40,000	J			
Valve Exercising									
Non-Critical Valves	Years	Valves / year	Valves/ hr	FTE	Valve / FTE				
255.000	5		48	24	4,000				
,	-	,		-	-,				
			Costs						
						Employees			
	mployees	Annual Calani				Employees	40,000		
Avg Salary	Employees 24	Annual Salary				Base	40,000		
45,000	24	1,080,000				Misc	5,000		
	<u> </u>	nitial Cost				Repair Pa	arts		
Vehicle	Tools	Crews	Fuel/Misc	Total Cost		Parts	250		
35,000	480,000	24	193,728	1,513,728		Laborhrs	2		
		_				Labor Wage	21.63		
	valve	Repair Replace				Valves			
10%	Repair 90%	Material	Labor	Total		12"	1700		
9600	8640	2,160,000	373,846	2,533,846		8"	700		
						avg	1200		
	Replace 10%	Material	Labor	Total		Laborhrs	6		
	960	1,152,000	124,615	1,276,615		Labor Wage	21.63		
			Annual Co	ists					
	Year 1			T	Year 2				
Upfront Costs	1,623,648	Valves		Annual Costs	193,728				
Salary	1,080,000			Salary	1,080,000	Valves			
Repair	2,533,846	8640		Repair	1,931,928	6,588			
Replace	1,276,615	960		Replace	973,354	732			
	6,514,110				4,179,011	_			
	Year 3				Year 4				
Annual Costs	193,728			Annual Costs	193,728				
Salary	1,080,000	Valves		Salary	1,080,000	Valves			
Repair	1,472,997	5,023		Repair	1,123,085	3,830			
Replace	742,133	558		Replace _	565,838	426			
	3,488,858	:		=	2,962,652				
						1			
		Annual Costs	Yea 193,728	<u>13</u>		J			
		Salary	193,728	Valves	Total Valves				
		Repair	856,295	2,920	27,000				
		Replace	431,423	2,920	3,000				
			2,561,446	- 324	30,000				
		-	-,,	-	20,000				
		- Total	19,706,077	-					
			227. 201077	=					

*Budgeting

300,000 Valves

24 Crew Members

Total Cost \$19,706,077

What you really need to get started: The Big Picture

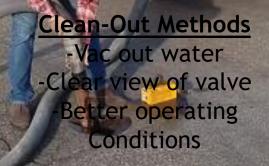
1)Locating equipment to find the riser or lid if buried

2)Riser clean out tools, auger, clean out shovels, vacuum truck, magnets

- 3)Marking buttons, Maps, layouts, GPS, and methods to document locations and other information
- 4)Valve key, Valve machine, towable or dedicated truck mounted rig

Safer Lifting Methods

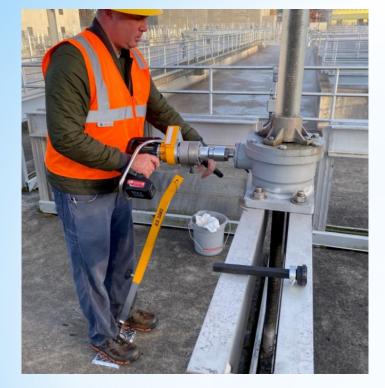
-Lessen workload -Lower risk for Injury -Easy to remove & Replace

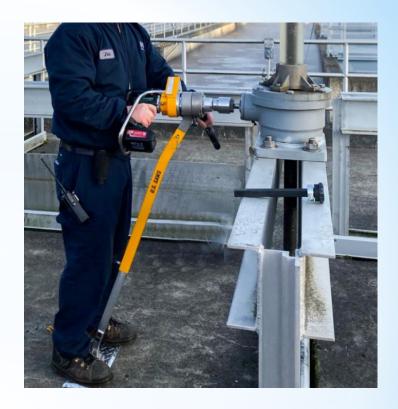


cleanout

Location/ Marking

GPS/Locating




Manual

Powered

Truck/ Trailer Mount

Other Powered Uses -Gates -PIV's -Hydrants * Closing or opening a valve for any reason

- * Did you Turn it and RECORD the data (Date/Time/Operator)
- * Water line Breaks valves should be turning
- * Hydrant Flushing Crew Maintenance/Service
- * Tapping for new Services
- * Best Practices
 - * Begin Slowly at lower torque settings
 - * Get at least 5 10 turns
 - * Reverse (open) for 2 3 turns
 - * Reverse (close) for 5 10 turns
 - * Repeat until fully closed
 - * Open 2 3 turns to flush debris
 - * Close and Open full (slowly)
 - * Turn back ½ turn from full open

What Counts as an Exercised Valve

*RECORD THE DATA

*This is most important step

- * Valve ID (#)
- * Coordinates
- * Turns
- * Torque Setting
- * Date

* Time

	Valve	Coordinates	Turns	Torque	Date	<u>Time</u>
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

*Collecting the Rata

*RECORD MUCH MORE DATA

*Date Valve Exercising

* Employee

Asset Number

* ₀\%al		Asset Number	Valve Type	Original Position	Final Position	Closes L/R	Number Turns	Number Cycles	Torque Ibs.	Valve Size	Sound	Condition	GIS
			турс	rosition		<u> </u>	Turns	Gydies	105.	JILC			
	ve Size												
*Ori	ginal Po	ositio	n										
* Fin	al Posit	ion											
	ses L/R												
*Nu	mber of	Turr	S										
*Nu	mber of	f Cvcl	es										
* Tor													
101	que tos)											

NOTES : (REFER TO ASSET #)

* Conditions * GIS

*Collecting the Rata

Can I break a valve stem?

Yes! - Most manufactures publish maximum stem torque. Older systems are at greater risk. Determine your maximum torque values so damage does not occur. (you can choose to have a lower amount than the manufactures values)

Can I break a valve stem in the closed position?

<u>Yes!</u> - Do not slam a valve shut. Slow and steady. With a counting device you should have awareness of the valves cycle position.

Do you have an emergency plan if you cut off the West side of towns water supply?


How do I get a valve started?

Getting old valves moving depends on several fundamentals that must be understood.

1) Carefully! - Forcing a valve to move that has been frozen for moving a value quickly can cause to open and close the value in small increments to clear the runsingsen and e spikes pfawater hammer that 2) scanydamage components up and downf the valve bindstreameafethe value fAmBan value isinguldchine can take to ward of 30 seconds or more to 3) Koomplete an open or closing cycing a frozen valve can lead to permanently damaged parts or a valve stuck in the wrong position. Check with the valve manufacturer for a maximum torque specifications.

*Possible tools needed for Repairs *Nut Replace Kits

* Valve Repair Parts

*Possible tools needed for Repairs *Saws - Air / Hydraulic / Gas *Chain / Belly / Chop * Safety concerns first

* Access to Air or Hydraulics vs. Gas

Questions

*Possible tools needed for Repairs

- *Trench Safety
 - * Egress Ladders, Steps, etc.
 - * Boxes
 - * Rental Offices
 - * Neighboring Municipality
 - * Personal Portable Units
 - * 1 person can set up in 10 15

Questions

When	Where	Who	What	Depth
2/17/2020	Licking County, OH	39 year old	Working on Drainage	10 Foot Depth
4/10/2019	New Plymouth, ID	59 year old	Working on Irrigation	7 Foot Depth
4/10/2019	New Plymouth, ID	53 year old	Working on Irrigation	7 Foot Depth
4/8/2019	Marysville OH	34 year old	Working on Culvert	20 Foot Depth
4/6/2019	Sugarcreek TWP	49 year old	Working on Sewer Line	8 Foot Depth
4/2/2019	Spencer, TN	31 year old	WATER LINE LEAK	?

2017-2019	46 Trench Related Deaths	
2019	10 Trench Colapse	2 in OH
2018	10 Trench Colapse	
2017	15 Trench Colapse	1 in OH
2013-2017	45 Trench Related Deaths	5 in OH

In Conclusion:

Over time a valve maintenance program will help keep moving parts operating efficiently and help to make locating valves easier.

There are many variables in every system, and we hope you have learned a few basics to implement your own program.

Good Luck!

Why exercise a valve

Utility Solutions, Inc.

327 Curtis Street Delaware, OH 43015

> Cell Phone : 740-972-6359 Email : kevin@utility-solutions.com