Valve Exercising, Tools & Data Collection

Presented by:

Kevin Waugh, Manufacturer Representative US Saws, Kupferle, RyMar Innovative Products

*Valve Exercising, Tools & Data Collection

- *Agenda
 - *Why exercise a valve
 - *Planning for an Exercise Program
 - *What Counts as an Exercised Valve
 - *Tools of an Exercise Program
 - *Collecting The Data
 - *Questions

- *Working Knowledge of Distribution System
- *Asset Management
 - General Maintenance
 - Location of Assets
 - Emergency Use
 - Leaks, Breaks, Fires, Illegal Access containment

In May 2007, The department of homeland security and EPA jointly published the "Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan"

Which specifically states to:
Identify Assets, Systems, Networks, and
Functions

In other words,

"know where your assets are!"

- *Working Knowledge of Distribution System
- *Asset Management
 - General Maintenance
 - Location of Assets
 - Emergency Use
 - Leaks, Breaks, Fires, Illegal Access containment
- *Identify problems
 - Closed Valves
 - Non-working valves
 - Replace / Repair
- ***EPA REQUIREMENT**

Valve Exercising Program Guidance

Division of Drinking and Ground Waters

Per AWWA G200-15 Distribution Systems Operation and Management, section 4,2,5, a valve exercising program is to follow AWWA Manual M44 and the manufacturer's recommended procedure and include at least the following elements:

- 1) A goal for the number of transmission valves to be exercised annually based on the percentage of the total valves in the system.
- A goal for the number of distribution valves to be exercised annually.
- 3) A goal that 100% of the valves are tested within a certain time frame (recommend 1x/5 years).
- Measures to verify that the goals are met and written procedures for action if the goals are not attained.
- Critical valves in the distribution system shall be identified for exercising on a regular basis. Potential water quality and isolation concerns shall be recognized. The program shall track the annual results and set goals to reduce the percent of inoperable valves.
- The valve-exercising program may be implemented in conjunction with the systematic flushing program.
- A goal of replacing the inoperable valves identified during the operation and maintenance process shall be established as part of the exercising program.

Determining which valves are critical

- · Transmission mains affecting service to large groups of customers
- · Distribution valves necessary to maintain service to critical customers such as: hospitals, dialysis centers, nursing homes, medical facilities, manufacturing facilities, downtown/high density areas, and service connections where loss of flow could impact human health due to catastrophic events (Waste water treatment plant critical processes or loss of cooling water to processes where it is critical)
- Areas prone to main breaks
- Areas of infrastructure approaching the end of its useful life
- · Areas around road or other utility re-construction areas

Frequency of exercising

- Critical valves annually
- Non-critical valves:
 - o Rate of deterioration known to occur in the distribution system. Systems should operate a representative sample annually to determine rate of deterioration
 - Consequence of failure or delays in being able to close the valve

September 7, 2018

September 7, 2018

<u>Goals</u>

Per AWWA G200-15 Distribution Systems Operation and Management, section 4.2.5, a valve exercising program is to follow AWWA Manual M44 and the manufacturer's recommended procedure and include at least the following elements:

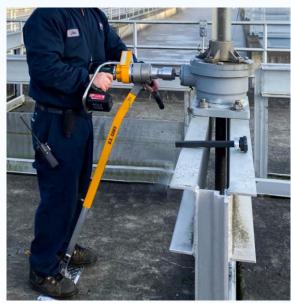
- * 1) A goal for the number of transmission valves to be exercised annually based on the percentage of the total valves in the system.
- * 2) A goal for the number of distribution valves to be exercised annually.
- * 3) A goal that 100% of the valves are tested within a certain time frame (recommend 1x/5 years).
- * 4) Measures to verify that the goals are met and written procedures for action if the goals are not attained.
- * 5) Critical valves in the distribution system shall be identified for exercising on a regular basis. Potential water quality and isolation concerns shall be recognized. The program shall track the annual results and set goals to reduce the percent of inoperable valves.
- * 6) The valve-exercising program may be implemented in conjunction with the systematic flushing program.
- * 7) A goal of replacing the inoperable valves identified during the operation and maintenance process shall be established as part of the exercising program.

Yalve Exercising Program

Determining which valves are critical

- Transmission mains affecting service to large groups of customers
- * Distribution valves necessary to maintain service to critical customers such as:
 - *hospitals, dialysis centers, nursing homes, medical facilities, manufacturing facilities, downtown/high density areas, and service connections where loss of flow could impact human health due to catastrophic events (Waste water treatment plant critical processes or loss of cooling water to processes where it is critical)
- * Areas prone to main breaks
- * Areas of infrastructure approaching the end of its useful life
- * Areas around road or other utility re-construction areas

Frequency of exercising


- *Critical valves annually
- *Non-critical valves:
 - *Rate of deterioration known to occur in the distribution system. Systems should operate a representative sample annually to determine rate of deterioration
 - *Consequence of failure or delays in being able to close the valve

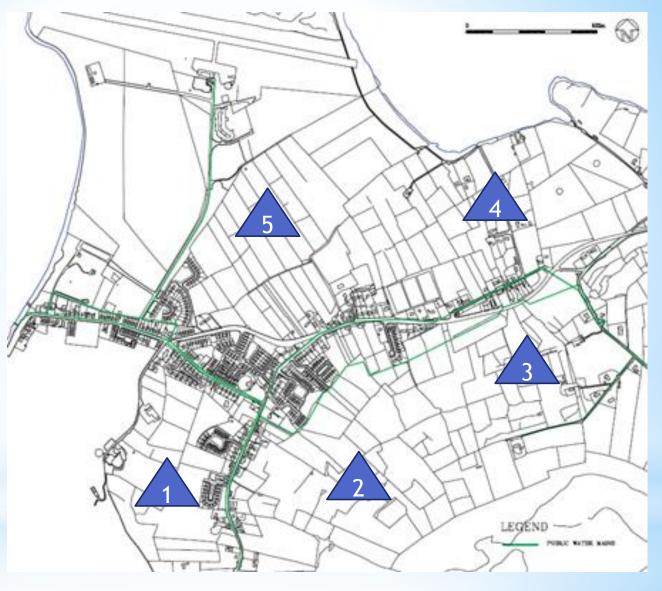
*EPA Valve Exercising Program

Exercising Extends the life of moving parts for:

Valves
Hydrants
Gates
Pumps

What you really need to get started:

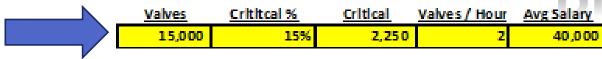
The Big Picture


A valve exercising program is more than just a T-handle and spare time.

Very specific tools and resources will need to be allocated to properly implement an exercising program

- *Start Small and Collect the DATA
- *Mapping out your system
 - *Create Zones
 - * Old Meter Read Routes
 - * Hydrant Flushing program
 - * Snowplow routes
 - *Identify Critical vs. Non-Critical
 - *Separate non-Critical into 5 zones (years)
- *Budgeting
 - *Labor needs
 - *Tool needs
 - *Time Needed

Map Zones Find Valves
GIS Location



*Budgeting

Em ploye es

Base

MISC.

Valve Exercising								
Non-Critical Valves	<u>Years</u> <u>V</u>	alves / year	Valves/ hr	FTE	Valve / FTE			
12,750	5	4,800	2	2	2,400	1200 hrs / yr		
			<u>Costs</u>		1			

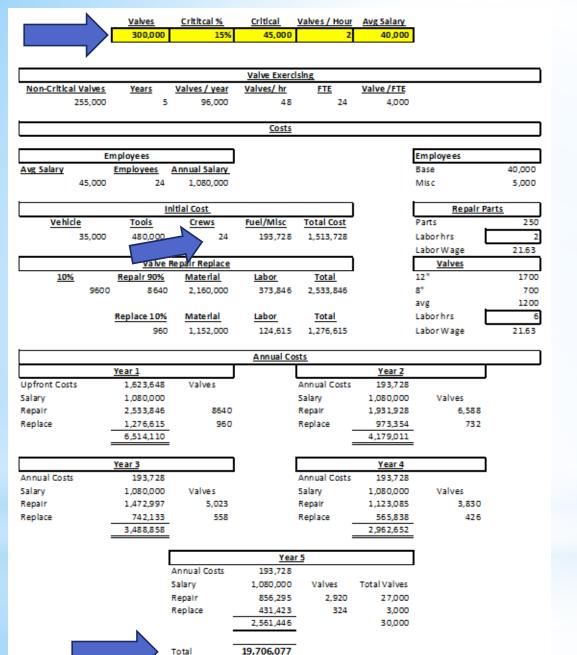
	E	m ploye es	
Avg Salary		<u>Employees</u>	Annual Salary
	45,000	2	90,000

	<u>Inli</u>	tlal Cost		
<u>Ve hicle</u>	Tools	Crews	Fuel/Misc	Total Cost
35,000	40,000	2	16,144	126,144

1			Valve Re	pair Replace		
7	10%	R	epair 90%	<u>Material</u>	<u>Labor</u>	<u>Total</u>
		480	432	108,000	12,113	120,113

800 hrs / yr	Replace 10%	Material	Labor	Total
	48	57,600	5,192	62,792

_		
Repal	r Parts	
Parts	-	250
Laborhrs		1.3
Labor Wage	•	21.63
<u>Valves</u>		
12"		1700
8"		700
avg	<u> </u>	1200
Laborhrs		5
Labor Wage		21.63


40,000

5,000

	Year 1			Year Z	
Jpfront Costs	135,304	Valves	Annual Costs	16,144	
alary	90,000		Salary	90,000	Valves
epair	120,113	432	Repair	91,580	329
place	62,792	48	Replace	47,876	37
	408,209		-	245,600	
	40 8,2 09 Year 3			245,600 Year 4	
nnual Costs			Annual Costs		
nnual Costs alary	Year 3	Valves	Annual Costs Salary	Year 4	Valves
	<u>Year 3</u> 16,144	Valves 251		<u>Year 4</u> 16,144	Valves 191
lary	<u>Year 3</u> 16,144 90,000		Salary	<u>Year 4</u> 16,144 90,000	

	Year !	5	
Annual Costs	16,144		
Salary	90,000	Valves	Total Valves
Repair	40,591	146	1,350
Replace	21,220	16	150
-	167,955		1,500
•			
Total	1 221 450		

300,000 Valves

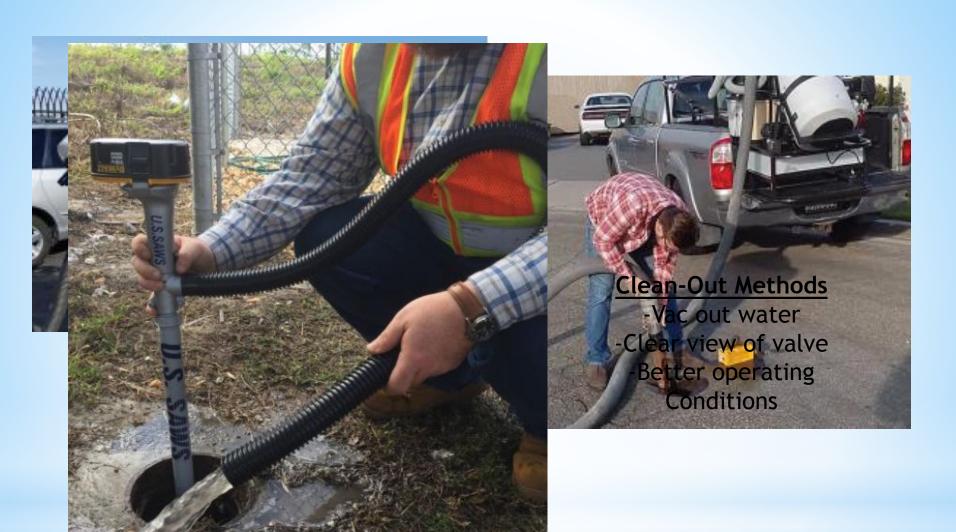
24 Crew Members

Total Cost \$19,706,077

What you really need to get started: The Big Picture

- 1)Locating equipment to find the riser or lid if buried
- 2) Riser clean out tools, auger, clean out shovels, vacuum truck, magnets
- 3) Marking buttons, Maps, layouts, GPS, and methods to document locations and other information
- 4) Valve key, Valve machine, towable or dedicated truck mounted rig

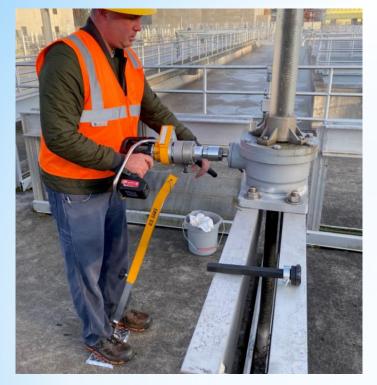
-Lessen workload -Lower risk for Injury -Easy to remove & Replace

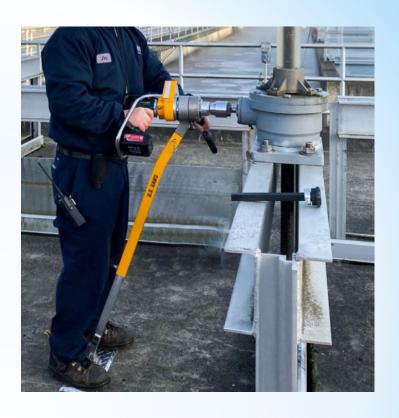


cleanout

Location/ Marking

GPS/Locating




Manual

Powered

Truck/ Trailer Mount

Other Powered Uses

-Gates

-PIV's

-Hydrants

- *Closing or opening a valve for any reason
 - * Did you Turn it and RECORD the data (Date/Time/Operator)
 - * Water line Breaks valves should be turning
 - * Hydrant Flushing Crew Maintenance/Service
 - * Tapping for new Services
- *Best Practices
 - * Begin Slowly at lower torque settings
 - * Get at least 5 10 turns
 - * Reverse (open) for 2 3 turns
 - * Reverse (close) for 5 10 turns
 - * Repeat until fully closed
 - * Open 2 3 turns to flush debris
 - * Close and Open full (slowly)
 - * Turn back ½ turn from full open

*What Counts as an Exercised Valve

*RECORD THE DATA

- *This is most important step
 - * Valve ID (#)
 - * Coordinates
 - * Turns
 - * Torque Setting
 - * Date
 - * Time

	<u>Valve</u>	Coordinates	Turns	Torque	<u>Date</u>	<u>Time</u>
1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101400		
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						

*Collecting the Data

*RECORD MUCH MORE DATA

*Date Valve Exercising

* Employee

Asset Number

**Val	verige Verige	Asset Number	Valve Type	Original Position	Final Position	Closes L/R	Number Turns	Number Cycles	Torque lbs.	Valve Size	Sound	Condition	GIS
1 1	ve Size												
	ginal Po		n										
*Fin	al Posit	ion											
*Clo	ses L/F												
* Nur	nber of	 f Turn	S										
	mber of												
	aue lbs		C2										
^^ Tor	que lbs												

NOTES: (REFER TO ASSET #)

Sound

*Conditions

*GIS

Can I break a valve stem?

<u>Yes!</u> - Most manufactures publish maximum stem torque. Older systems are at greater risk. Determine your maximum torque values so damage does not occur. (you can choose to have a lower amount than the manufactures values)

Can I break a valve stem in the closed position?

Yes! - Do not slam a valve shut. Slow and steady. With a counting device you should have awareness of the valves cycle position.

Do you have an emergency plan if you cut off the West side of towns water supply?

How do I get a valve started?

Getting old valves moving depends on several fundamentals that must be understood.

- 1) Carefully! Forcing a valve to move that has been frozen for moving a valve to move that has been open and close the valve in small increments to clear the runshingsen and easily for the parties of the valve in small increments to clear the runshingsen and easily plays a teller in that
- 2) scanydamage comprehents up and down the valve bindstreamed estime valve famean watereising undchine can take approximate of 30 seconds or more to
- 3) Kromplete amopemor Closing Cycing a frozen valve can lead to permanently damaged parts or a valve stuck in the wrong position. Check with the valve manufacturer for a maximum torque specifications.

*Possible tools needed for Repairs

*Nut Replace Kits

*Valve Repair Parts

Questions

- *Possible tools needed for Repairs
 - *Saws Air / Hydraulic / Gas
 - * Chain / Belly / Chop
 - * Safety concerns first
 - * Access to Air or Hydraulics vs. Gas

Questions

*Possible tools needed for Repairs

- *Trench Safety
 - * Egress Ladders, Steps, etc.
 - * Boxes
 - * Rental Offices
 - * Neighboring Municipality
 - * Personal Portable Units
 - * 1 person can set up in 10 15

Questions

When	Where	Who	What	Depth
2/17/2020	Licking County, OH	39 year old	Working on Drainage	10 Foot Depth
4/10/2019	New Plymouth, ID	59 year old	Working on Irrigation	7 Foot Depth
4/10/2019	New Plymouth, ID	53 year old	Working on Irrigation	7 Foot Depth
4/8/2019	Marysville OH	34 year old	Working on Culvert	20 Foot Depth
4/6/2019	Sugarcreek TWP	49 year old	Working on Sewer Line	8 Foot Depth
4/2/2019	Spencer, TN	31 year old	WATER LINE LEAK	?

2017-2019	46 Trench Related Deaths	
2019	10 Trench Colapse	2 in OH
2018	10 Trench Colapse	
2017	15 Trench Colapse	1 in OH
2013-2017	45 Trench Related Deaths	5 in OH

https://www.osha.gov/fatalities/reports/archive

In Conclusion:

Over time a valve maintenance program will help keep moving parts operating efficiently and help to make locating valves easier.

There are many variables in every system, and we hope you have learned a few basics to implement your own program.

Good Luck!

Utility Solutions, Inc.

U.S.SAWS

WrapidSeal™ Manhole Encapsulation System

327 Curtis Street Delaware, OH 43015

Cell Phone: 740-972-6359

Email: kevin@utility-solutions.com