ELEVATED WATER STORAGE TANKS

-SELECTION-
-MAINTENANCE-

-WATER AGE AND THM REMOVAL-

Robert C. Heady, P.E., S.I., ENV SP
Project Manager - Civil Design Associates, Inc.

Robert C. Heady, P.E., S.I., ENV SP

Education

B.S. Civil Engineering, 2006-Ohio University, Athens, Ohio

Registration

Professional Engineer in Ohio, Registration No. 74658
Surveyor Intem in Ohio

Field of Expertise

Project Management, Bridge Design and Inspection, Construction Administration, Contract Documents, Municipal Engineering, Pressure and Gravity Piping Design, Surveying, GIS Data Collection

Positions Held		
Civil Design Associates, Inc.	2017 - Present	Project Manager
Hocking County Engineer's Office	2016-2017	Assistant Engineer
Muskingum County Engineer's Office	2013-2016	Design Engineer, Bridge Program TeamLeader
Strand Associates, Inc. ${ }^{\text {® }}$	2006-2013	Project Manager, Engineer, Office Specifier
Ohio Research Institute for Transportation and the Environment (ORITE)	2005-2006	Research Assistant
Basic Systems, Inc.	2001-2004	Engineering Intem

Tank Selection

- Location
- Type
- Costs

Construction
Maintenance

Location of Tank

- Elevation
- Location in System

Water Supply Infrastructure

1.Water Resources
2.Treatment Plant

- Elevation
- Tank Site Approx. 1,100 ft
- Service Area Elev. 900-1,000 ft
- Difference of 100 ft
- Pressure 2.31 ft per $\mathrm{psi}=43.29 \mathrm{psi}$
- 35 psi minimum $=80.85 \mathrm{ft}$
- Other Considerations
- 1. Place to drain overland
- 2. Three feet above 100 YR Flood
- 3. Access for Construction
- 4. Access for Maintenance

Location in System

- Pressure Zones
- Customers Served
- Dead Ends

Types of Tanks

- Stand Pipe
- Multi-leg
- Composite
- Pedisphere
- Fluted Column

Reconditioned water tower showing City's new logo.

New elevated water storage tank.

Single Pedestal

	Gallons	Diameter	Head Range
	75,000	27'-0"	25'-0"
	100,000	$30^{\prime}-0^{\prime \prime}$	26'-0"
	125,000	$32^{\prime}-0^{\prime \prime}$	29'-6"
	150,000	$34{ }^{\prime}-0^{\prime \prime}$	$31^{\prime}-4 "$
	200,000	37'-6\|"	$34^{\prime}-0^{\prime \prime}$
	250,000	44'-0"	$31^{\prime}-0^{\prime \prime}$
P $\mathrm{H}^{\text {a }}$	500,000	55'-6"	37'-6"

Fluted Column

Gallons	Diameter	Head Range
250,000	$42^{\prime}-0^{\prime \prime}$	$30^{\prime}-4^{\prime \prime}$
300,000	$44^{\prime}-0^{\prime \prime}$	$30^{\prime}-8^{\prime \prime}$
400,000	$44^{\prime}-0^{\prime \prime}$	$39^{\prime}-6^{\prime \prime}$
500,000	$50^{\prime}-0^{\prime \prime}$	$37^{\prime}-6^{\prime \prime}$

Fluted Column Tanks are available in sizes up to two million gallon capacity

TORO

Gallons	Diameter	Head Range	
	250,000	$42^{\prime}-0^{\prime \prime}$	$30^{\prime}-4^{\prime \prime}$
	300,000	$44^{\prime}-0^{\prime \prime}$	$30^{\prime}-8^{\prime \prime}$
	400,000	$44^{\prime}-0^{\prime \prime}$	$39^{\prime}-6^{\prime \prime}$
	500,000	$50^{\prime}-0^{\prime \prime}$	$37^{\prime \prime}-6^{\prime \prime}$

Double Ellipsoidal

Gallons	Diameter	Head Range
75,000	$30^{\prime}-0^{\prime \prime}$	$16^{\prime}-0^{\prime \prime}$
100,000	$30^{\prime}-0^{\prime \prime}$	$20^{\prime}-8^{\prime \prime}$
125,000	$30^{\prime}-0^{\prime \prime}$	$25^{\prime}-5^{\prime \prime}$
150,000	$32^{\prime}-0^{\prime \prime}$	$28^{\prime}-0^{\prime \prime}$
200,000	$36^{\prime}-0^{\prime \prime}$	$28^{\prime}-3^{\prime \prime}$

Sizing Case Study

New Holland, Ohio Population 801
342 Customers

100,000 Gallon 122Ft Multi-leg (Circa 1939)

Elevations 840-870 Ft

Sizing Case Study

	Present Conditions	Future Conditions
Firm Supply (gallons)	216,000	228,000
Maximum Day Demand (gallons)	196,000	228,000
Fire Fighting Demand (gallons)	180,000	180,000
Peak Hour Demand (gallons)	49,000	57,000
Total Supply (gallons)	216,000	228,000
Total Demand (gallons)	425,000	465,000
Storage Required (gallons)	$\mathbf{2 0 9 , 0 0 0}$	$\mathbf{2 3 7 , 0 0 0}$

Assumed - 2 hour fire flow 1,500 gpm
Peak Demand 25% of max. day demand

Tank Costs

Tank Type	Tank Size (Gallons)	Average Construction Costs	24-Year Maintenance Costs	Total Costs
Pedisphere	150,000	$\$ 580,000$	$\$ 168,000$	$\$ 748,000$
Pedisphere	200,000	$\$ 662,500$	$\$ 201,000$	$\$ 863,500$
Pedisphere	250,000	$\$ 745,000$	$\$ 237,000$	$\$ 982,000$
Multilegged	150,000	$\$ 470,000$	$\$ 186,000$	$\$ 656,000$
Multilegged	200,000	$\$ 530,000$	$\$ 199,000$	$\$ 729,000$
Multilegged	250,000	$\$ 617,500$	$\$ 241,000$	$\$ 858,500$
Composite	150,000	$\$ 850,000$	$\$ 128,000$	$\$ 978,000$
Composite	200,000	$\$ 925,000$	$\$ 149,000$	$\$ 1,074,000$
Composite	250,000	$\$ 995,000$	$\$ 171,000$	$\$ 1,166,000$
Glass-Lined	150,000	$\$ 495,000$	$\$ 5,100$	$\$ 500,100$
Glass-Lined	200,000	$\$ 615,000$	$\$ 5,100$	$\$ 620,100$
Glass-Lined	250,000	$\$ 715,000$	$\$ 5,100$	$\$ 720,100$

Source: Caldwell Tanks, HydroDynamics Company, Phoenix Fabricators and Erectors
Table 5.04-1 Opinion of Probable Cost (WST)

Alternative Ranking

Alternative	Construction Cost		Present Worth of Maintenance		Present Worth		Average Annual Equivalent Cost	
	Cost	Rank	Cost	Rank	Cost	Rank	Cost	Rank
150,000 Gallon Pedisphere	\$580,000	4	\$168,000	6	\$748,000	6	\$49,817	6
200,000 Gallon Pedisphere	\$662,500	7	\$201,000	10	\$863,500	8	\$57,509	8
250,000 Gallon Pedisphere	\$745,000	9	\$237,000	11	\$982,000	10	\$65,401	10
150,000 Gallon Multilegged	\$470,000	1	\$186,000	8	\$656,000	3	\$43,690	3
200,000 Gallon Multilegged	\$530,000	3	\$199,000	9	\$729,000	5	\$48,551	5
250,000 Gallon Multilegged	\$617,500	6	\$241,000	12	\$858,500	7	\$57,176	7
150,000 Gallon Composite	\$850,000	10	\$128,000	4	\$978,000	9	\$65,135	9
200,000 Gallon Composite	\$925,000	11	\$149,000	5	\$1,074,000	11	\$71,528	11
250,000 Gallon Composite	\$995,000	12	\$171,000	7	\$1,166,000	12	\$77,656	12
150,000 Gallon Glass-Lined	\$495,000	2	\$5,100	1	\$500,100	1	\$33,307	1
200,000 Gallon Glass-Lined	\$615,000	5	\$5,100	1	\$620,100	2	\$41,299	2
250,000 Gallon Glass-Lined	\$715,000	8	\$5,100	1	\$720,100	4	\$47,959	4

Composite Tank Consideration

-Welded or Glass Lined -Security
-Maintenance Cost
-Storage
-Valve Room
-Ladder Location

Drain Options

Maintenance

-Inspection - Generally every 5 years AWWA G200 (2010)
-Cleaning - Disinfection one of three methods found in AWWA C652-11 Disinfection of Water Storage Facilities (2011)
-Painting - every 10-15 years
Painting Largest Cost typically $\$ 8-\$ 18$ per square foot

Applicable Standards

AWWA MANUAL M42 - Steel Water-Storage Tanks

- ANSI/AWWA D100, Standard for Welded Carbon Steel Tanks for Water Storage.
- ANSI/AWWA D102, Standard for Coating Steel Water-Storage Tanks.
- ANSI/AWWA D103, Standard for Factory-Coated Bolted Carbon Steel Tanks for Water Storage.
- ANSI/AWWA D104, Standard for Automatically Controlled, Impressed Current Cathodic Protection for the Interior Submerged Surfaces of Steel Water Storage Tanks.
- ANSI/AWWA D106, Standard for Sacrificial Anode Cathodic Protection Systems for the Interior Submerged Surfaces of Steel Water Storage Tanks. Copyright © 2013 American Water Works Association. All Rights Reserved.xix - ANSI/AWWA D107, Standard for Composite Elevated Tanks for Water Storage.
- ANSI/AWWA D108, Standard for Aluminum Dome Roofs for Water Storage

Facilities.

- ANSI/AWWA C652, Standard for Disinfection of Water-Storage Facilities.

Tank Reconditioning Reynoldsburg, Ohio

Reconditioned water tower showing City's new logo.

Additional cost for fluted Column ~\$229,500 (41.6 \%) = $\$ 12,079$ per year over 19 yrs.

1 Million Gallon Fluted Column 92 Ft. to Overflow
Built in 1989
Reconditioned in 2008 (19 years)
Existing Exterior Coating - 2 coat urethane
Existing Interior Coating - 2 Coat Epoxy
Cost to Refinish
Exterior:
Prep. $\quad \$ 99,000$
Shrouding $\$ 50,000$
Zinc, Urthane, Floro-
Polymer \$180,000
Ext. Total \$329,000 (60\%)
Interior:
Prep. Zinc with 2 coats Epoxy
Int. Wet \$158,000
Int. Dry $\quad \$ 65,000$ (12\%)
Total \$223,000 (40\%)
Grand Total \$552,000
$\$ 29,053$ per year over 19 yrs.

Example Estimate Calculation

1,000,000 Gallon Fluted Column 65.3 Ft Dia., 40 Ft Tall Tank, 92 Ft overflow Interior Surface Area:

Walls $=$ Circumference \times Height $=8,206$ SF
Floor and Ceiling $=2 x A=\pi r^{2}=6,698 \mathrm{SF}$
Int. Total $=14,904$ SF
Interior Estimate $\mathbf{\$ 1 0} \mathbf{~ p e r ~ S F ~}=\$ 149,040$
Bid Price (9 bidders) $\$ 158,000=\$ 10.60$ per $\mathbf{S F}$

Exterior Surface Area:
Bowl
Walls $=$ Circumference \times Height $=8,206$ SF
Roof $=A=\pi r^{\wedge} 2=3,349$ SF

$$
\text { Total }=11,555 \mathrm{SF}
$$

Column
Circumference x Height П50FT $x(92 F T-40 F T)=8,168$ SF Exterior Total $=19,723$ SF

Exterior Estimate w/ Containment $\$ 16$ per $\mathrm{SF}=19,723 \mathrm{SF}$ x $\$ 16 / \mathrm{SF}=\$ 315,568$
Bid Price (9 bidders) $\$ 329,000=\$ \mathbf{1 6 . 6 8}$ per $\mathbf{S F}$

Water Age and THM Reduction

Trihalomethanes - THMs

-Identified in 1974
-Disinfectants/Disinfection Byproducts (DBPs) - Natural Organic Matter (NOM)
-THMs are formed by chemical reaction of chlorine and NOM
-Chlorine Sources:
Gaseous Chlorine, Sodium Hypochlorite, Calcium Hypochlorite, Chloramine, and Chlorine Dioxide
-Other factors:
Water Temperature, detention time, High pH, High bromide levels, High chlorine dosage
-Types of THMs (Henry's Constant "capacity for volatilization"

Compound	Henry's Constant @ 20 deg. C
Chloroform (most common)	170
Bromodichloromethane	118
Dibromochloromethane	47
Bromoform	35

THM Removal

-Before disinfection
Precursor Removal (reduces disinfection demand)
-Oxidation (ozone or chlorine dioxide)
-Clarification (Coagulation, Settling, and Filtration)
-Adsorption (Activated Carbon)
-After disinfection
-Tank Operation
-Aeration
-Mixing
-Adsorption

THM Removal, continued

-Aeration (Chloroform is predominant THM)
-Mixing
-Adsorption
-Headspace
-Ventilation
-Information Needed for Design
-Historical Flow
-Residence Time
-THM data for the tank
-Considerations
-Water Quality (pH , alkalinity, free chlorine residual)
-Haloacetic Acids (HAA)

THM Removal, continued

-Aeration (20-70\% reduction possible)
-Mixing
Flow Rate -Water Age
Tank Turn Over - Water Age
Water Depth - Stagnate areas
-Adsorption
-Headspace (4-5 feet surface and spray aeration)
Unsaturated Air to absorb THMs
Distance between nozzle for transfer
-Ventilation (fresh air exchange rate)

THM Removal, continued

-Aeration (20-70\% reduction possible)
-Time of Year (Spring, Summer, and Fall)
-Types of Systems

1. Spray Aeration Min. 5 Foot headspace

Draw water from bottom of tank spray from nozzle
Droplet size
Travel Distance
Water Temperature
Ice Formation, typically spray not operated in Winter

THM Removal, continued

Diffused Aeration - Min 4-Ft headspace
Tiny Bubbles
Air Bubble Size
Air to Water Ratio
Depth of Water Above the Diffuser
Detention Time
Water Temperature
Geometry of Tank (Baffling)

THM Removal, continued

Effects on Residual

"Chlorine and chloramine are more stable in water than THMs, and we have seen little to no loss of residual in our in-tank aeration installations. In side-by-side measurements, we measured roughly 10% reduction in residual chlorine in a system that removed 50\% of TTHMs. At pH levels lower than 7, we expect a greater fraction of residual chlorine to exist in the form of hypochlorous acid, which is slightly volatile. Therefore, we generally expect more residual chlorine to be lost due to aeration in low-pH systems." - Pax Water Technologies

THM Removal, continued

Summary and Recommendations from AWWA
-Aeration can be successful
-Haloacetic Acids may increase
-Disinfection byproducts precursors at plant
-Water System BMPs
-Exercise Tanks, Reduce Water Age, Control CL Residuals, Clean Tanks, Perform Routine Hydrant Flushing
-Monitor water quality for pH , stability, and CL
residuals

Civil
 Design Engineering Excellence Associates, Inc.

THANK YOU

CONTACT INFORMATION
Robert C. Heady, P.E., S.I., ENV SP
Project Manager - Civil Design Associates, Inc.

(P)330-339-4242
rheady@civil-design.us

References:

1. White Paper on Aeration to Reduce Trihalomethanes, AWWA Ohio Section Technology Committee November 30,2013
2. Gerard Tanks sizing charts 1540 East 11th St. Concordia, KS 66901 Phone: 785-243-3895
3. www.paxwater.com
4. www.medoraco.com SolarBee
