

Marina & The Diamonds - Mowgli's Road (2010)

Hydrocarbon Prefixes

Name the hydrocarbon prefixes:	But
1 Carbon C Meth	Dec
	Eth
2 Carbons C-C Eth	Lui
3 Carbons C-C-C Prop	Hept
4 Carbons C-C-C But	Hex
5 Carbons C-C-C-C Pent	Meth
6 Carbons C-C-C-C-C Hex	Nlara
7 Carbons C-C-C-C-C- Hept	Non
8 Carbons C-C-C-C-C-C Oct	Oct
	Dont
9 Carbons C-C-C-C-C-C-C Non	Pent
10 Carbons C-C-C-C-C-C-C-Dec	Prop

Alkanes

Name the Alkanes:

H H H H I I I I H — C — C — C — C — H I I I I H H H H

Pentane

1 Carbon CH 2 Carbons 3 Carbons C₃H₈ 4 Carbons 5 Carbons C_5H_{12} 6 Carbons 7 Carbons C₇H₁₆₁ 8 Carbons 9 Carbons C_oH₂₀ 10 Carbons C₁₀H₂₂

Ethane Propane Butane Pentane Hexane Heptane Octane Nonane Decane

Methane

Butane

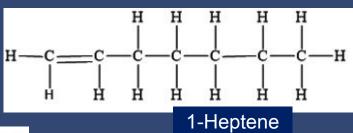
Decane

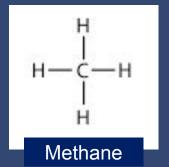
Ethane

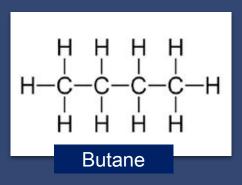
Heptane

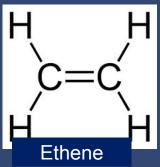
Hexane

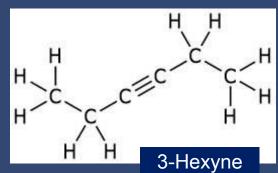
Methane

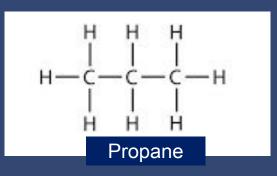

Nonane

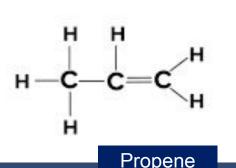

Octane

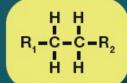

Pentane


Propane

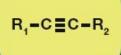

See if you can name these:

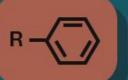





2-Butene

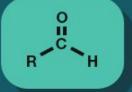
Propene

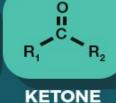

Topics & Concepts

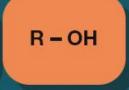

- 1. Aldehydes
- 2. Ketones
- 3. Alcohols
- 4. Ethers

Functional Groups

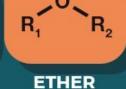
$$R_1$$
 C=C R_2

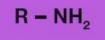

ALKANE V

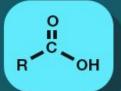

ALKENE V


ALKYNE 🗸

ARENE

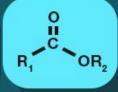

HALOALKANE





ALCOHOL

AMINE



ALDEHYDE

CARBOXYLIC ACID

R₁ O C R₂

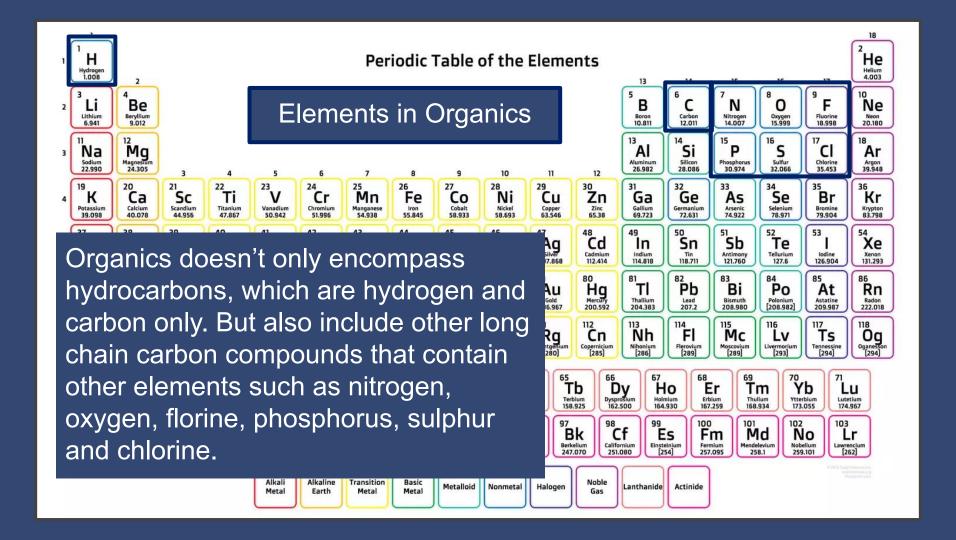
ACID ANHYDRIDE

ESTER

AMIDE

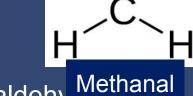
ACYL HALIDE

OTHER HETEROATOMICS

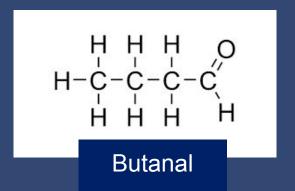


SIMPLE OXYGEN HETEROATOMICS

CARBOXYLIC ACIDS AND DERIVATIVES

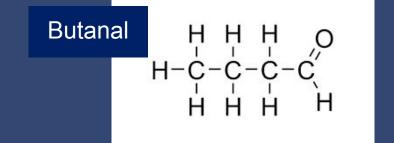


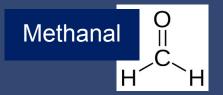
1. Aldehydes



Aldehydes

The first 10 aldehydes are:




1 Methanal CH₂ O ... (Formaldehy Methanal 2 Ethanal C₂H₄O 3 Propanal C_3H_6O 4 Butanal C₄H₈O 5 Pentanal C₅H₁₀O 6 Hexanal C₆H₁₂O 7 Heptanal C_7H_{14} O 8 Octanal C₈H₁₆O 9 Nonanal C₉H₁₈O 10 Decanal C₁₀H₂₀O

Aldehydes

Name the Aldehydes:

Butanal

Decanal

Ethanal

Heptanal

Hexanal

Methanal

Nonanal

Octanal

Pentanal

Propanal

1 Carbon	Carbon CH ₂ O	Methanal (Formaldehyde)
2 Carhons	CHO	Ethanal

3 Carbons C_3H_6O Propanal

4 Carbons C₄H₈O Butanal

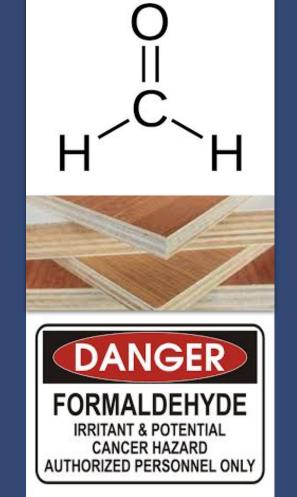
 $C_5H_{10}O$ 5 Carbons Pentanal

6 Carbons C₆H₁₂O Hexanal

7 Carbons $C_7H_{14}O$ Heptanal

8 Carbons C₈H₁₆O Octanal

9 Carbons C_oH₁₈O Nonanal 10 Carbons C₁₀H₂₀O


Decanal

Aldehydes

Aldehydes are found in nature in small amounts in such things as the plants that produce the spices cinnamon and vanilla, these are very small doses.

However in industry we create large amounts, especially methanal, otherwise known as formaldehyde. This chemical is then used to make glues and resins that are in turn used to make furniture for the home and car interiors.

The "new car smell" and the "new home smell" is formaldehyde ... and it is very very toxic.

Formaldehyde

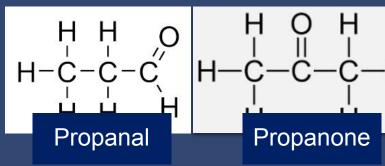
Household Products Containing Formaldehyde

Formaldehyde is extremely toxic

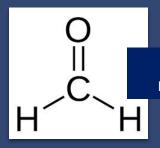
Short term exposures to high levels of formaldehyde can be fatal at levels as low as 100 parts per million (.01%) in air.

3 to 5 parts per million in air causes eye tearing and is intolerable to some people.

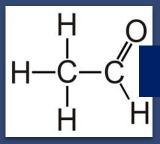
Some people have developed asthma or bronchitis following and single exposure to high levels of formaldehyde in the air from an accidental spill.


Some people are very sensitive to formaldehyde, whereas others have no reaction to the same level of exposure.

2. Ketones



Ketones


The ketones are:

- 1 Methanone doesn't exist, it is methanal
- 2 Ethanone doesn't exist, it is ethanal

Same as methanal

Same as ethanal

- 3 Propanone
- 4 Butanone
- 5 Pentanone

 C_3H_6O C_4H_8O $C_5H_{10}O$

(Acetone)

Ketones

Name the Ketones:

1 Carbon CH₂O

2 Carbons C₂H₄O

3 Carbons C_3H_6O

4 Carbons C₄H₈O

5 Carbons $C_5H_{10}O$

6 Carbons C₆H₁₂O

7 Carbons $C_7H_{14}^{-1}O$

8 Carbons C₈H₁₆O

9 Carbons C₉H₁₈O

10 Carbons C₁₀H₂₀O

Does Not Exist, it is Methanal

Does Not Exist, it is Ethanal

Propanone

Butanone

Pentanone

Hexanone

Heptanone

Octanone

Nonanone

Decanone

These all have multiple isomers

Butanone

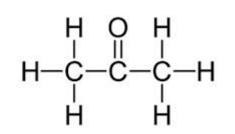
Decanone

Heptanone

Hexanone

Nonanone

Octanone


Pentanone

Propanone

Ketones

Ketones are similar to aldehydes, in fact in chemistry we group them together, aldehydes and ketones. Both have an oxygen atom double-bonded to a carbon atom, aldehydes have an oxygen bonded to a carbon bonded to a carbon and a hydrogen whereas a ketone has an oxygen bonded to two carbons.

A common form of ketone is propanone, commonly called acetone. It is used as a solvent in nail polish. It is highly toxic both through the skin, through the air and if swallowed.

Face masks are useless. The girls simply get used to the smell and continue to inhale the fumes.

ACETONE

DO NOT TAKE INTERNALLY

AVOID CONTACT WITH EYES, MOUTH OR CLOTHING

WARNING

AVOID BREATHING FUMES

FLAMMABLE - KEEP FIRE AWAY
USE ONLY IN WELL VENTILATED AREAS.
USE ONLY WHERE THERE ARE NO OPEN FLAMES
OR OTHER SOURCES OF IGNITION

EXTREMELY FLAMMABLE
KEEP AWAY FROM HEAT, SPARKS AND OPEN FLAME.
KEEP CONTAINER CLOSED.

-ANTIDOTE:

Immediately flush skin or eyes with water for at least 15 minutes, remove patient from contaminated area, remove all contaminated clothing, keep patient warm. Get medical attention never attempt to give anything by mouth to an unconscious person.

HAZARD IDENTIFICATION

EXTINGUISHING METHOD

USE "ALCOHOL" FOAM, DRY CHEMICAL OR CABON DIOXIDE, WATER SPRAY MAY BE INEFFECTIVE BUT SHOULD BE USED TO KEEP CONTAINERS COOL.

CODE NUMBERS

- 4-SEVERE
- 3-SERIOUS
- 2-MODERATE
- 1-SLIGHT
- 0-MINIMAL

PERSONAL PROTECTION

WEAR EYE PROTECTION AND PERSONAL PROTECTION. CONSULT CORRESPONDING MSDS FOR FURTHER HAZARDOUS INFORMATION AND INSTRUCTIONS.

Acetone in Nail Polish & Nail Polish Remover

3. Alcohols

Alcohols

The first 10 alcohols are:

H H H-C-C-O-H H H

Ethanol

1 Methanol CH₃ OH

2 Ethanol C₂H₅OH ... (Alcohol)

3 Propanol C₃H₇OH

4 Butanol C₄H₉OH

5 Pentanol C₅H₁₁OH

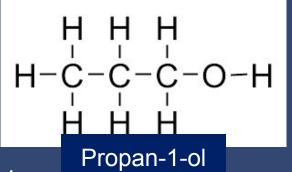
6 Hexanol C₆H₁₃OH

7 Heptanol C₇H₁₅OH

8 Octanol C₈H₁₇OH

9 Nonanol C₉H₁₉OH

10 Decanol C₁₀H₂₁OH


H H H H-C-C-C-O-H

Propan-1-ol

Alcohols

Name the Alcohols:

CH₂OH Methanol 1 Carbon 2 Carbons C₂H₅OH **Ethanol** 3 Carbons C_3H_7OH Propanol 4 Carbons C₄H₉OH **Butanol** 5 Carbons $C_5H_{11}OH$ Pentanol 6 Carbons C_6H_{13} OH Hexanol 7 Carbons $C_7H_{15}OH$ Heptanol 8 Carbons C₈H₁₇OH Octanol 9 Carbons C₀H₁₀OH Nonanol 10 Carbons C₁₀H₂₁OH Decanol

Butanol

Decanol

Ethanol

Heptanol

Hexanol

Methanol

Nonanol

Octanol

Pentanol

Propanol

Methanol

Methanol, also known as methyl alcohol and wood spirit, is the simplest of the alcohols and often abbreviated to MeOH.

It is made from natural gas, methane, and water in a process called steam reformation. It is a base chemical used in industry worldwide and in some instances, such as some motorsports, it is used as fuel because it produces more power.

It is extremely volatile and burns with a pale blue flame that is practically invisible during the day, which makes methanol fires extremely dangerous.

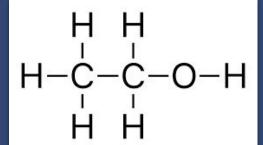
Methanol Fires

Methanol Fires

Methanol Fires

Methanol Plant

This is a methanol plant in New Zealand. They take natural gas from an offshore rig, pipe it to the plant and produce methanol.

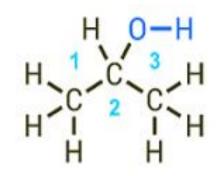


Ethanol

Ethanol, otherwise known as ethyl alcohol, grain alcohol, drinking alcohol or just alcohol is often abbreviated to EtOH.

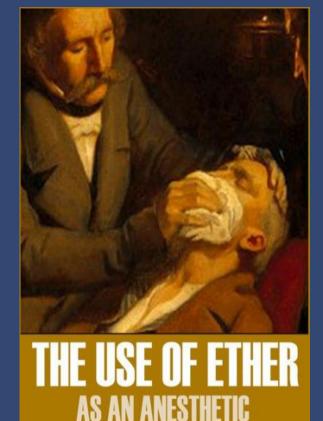
Ethanol is a volatile, flammable, colourless liquid with a characteristic wine-like odour and pungent taste. It is a psychoactive recreational drug, and the active ingredient in all alcoholic drinks.

For human consumption it is made by bacteria and fungi that feed on sugars such as potatoes in vodka, molasses in rum, grapes in wine. For gasoline additives it comes direct from the refinery.

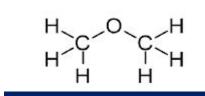

Ethanol

Propanol Isomers

Propanol has two isomers: 1 propanol & 2 propanol


1 propanol, also called propan-1-ol and PrOH.

2 propanol, or propan-2-ol and isopropyl alcohol is is a colourless, flammable organic compound with a pungent alcoholic odour used as a solvent and in many medical applications for sterilization.


4. Ethers

AT THE BATTLE OF THE WILDERNESS

Ethers

Example of 4 ethers are:

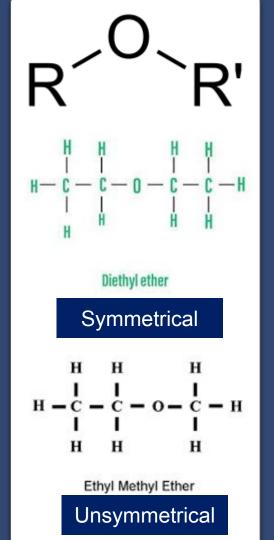
Dimethyl Ether

1 Methoxymethane CH₃ OCH₃ (Dimethyl ether)

2 Methoxyethane CH₃OC₂H₅ (Methyl ethyl ether)

3 Methoxypropane CH₃OC₃H₇ (Methyl propyl ether)

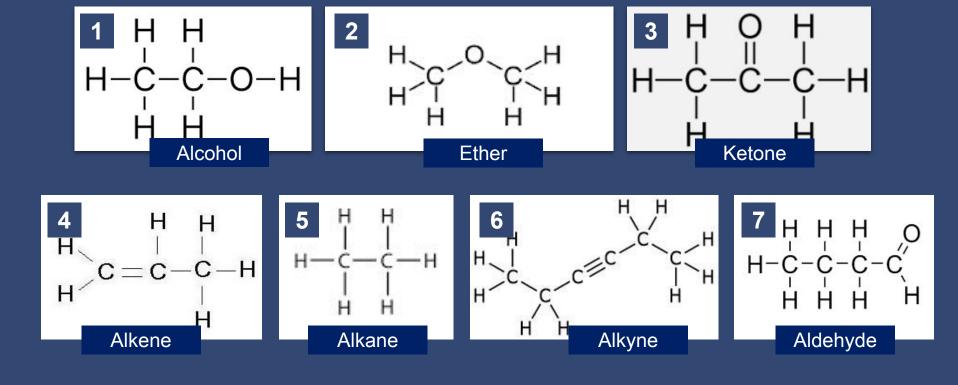
4 Methoxybutane C₂H₅OC₂H₅ (Diethyl ether)

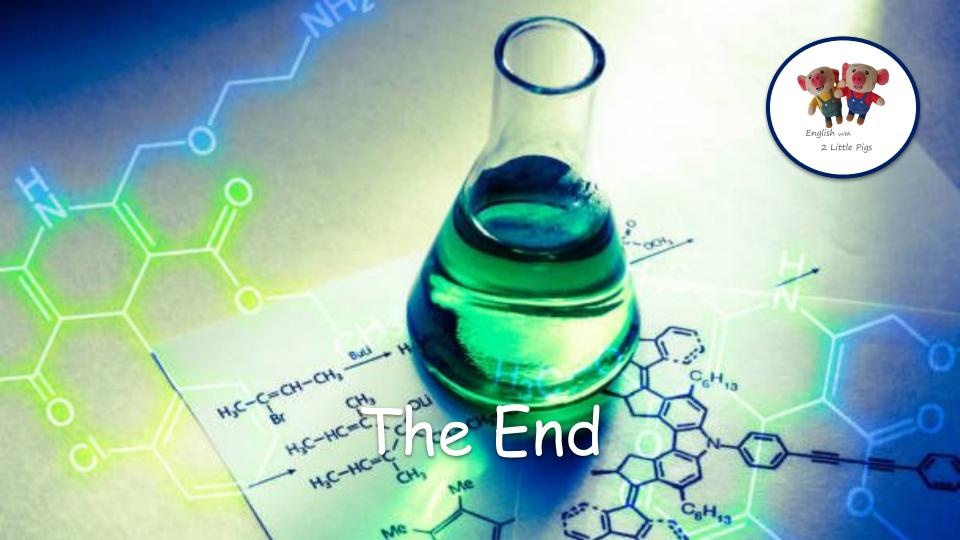

ETC

Ethers

In organic chemistry, ethers are a class of compounds that contain an ether group, an oxygen atom connected to two organyl groups.

They have the general formula R-O-R', where R and R' represent organyl groups.


Ethers can again be classified into two varieties: if the organyl groups are the same on both sides of the oxygen atom, then it is a symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers.



Ether

Alkane, Alkene, Alkyne, Aldehyde, Ketone, Alcohol or Ether?

