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 THE ICOSIAN CALCULUS OF TODAY

 By NORMAN BIGGS
 London School of Economics, Houghton St., London

 [Received 20 August 1993. Read 11 December 1995. Published 29 December 1995.]

 ABSTRACT

 Hamilton's Icosian Calculus is less well known than his algebra of quaternions,
 but it is nevertheless an interesting system of non-commutative algebra. He used it
 to study complete cycles on the dodecahedron, a subject which so fascinated him
 that he attempted to popularise a game based on it. The game was not a success
 in commercial terms, but it resulted in the term 'Hamiltonian cycle' being used for
 a complete cycle on any graph. This was not only inappropriate, because Hamilton
 was not the first to study such things, but also inauspicious, because Hamilton's
 methods have little relevance to the study of 'Hamiltonian' cycles in general.

 A modern development which can be linked more positively with the Icosian
 Calculus is the use of generators and relations to study graphs which have certain
 symmetry properties. In particular there is a remarkable theorem of W.T. Tutte,
 concerning graphs of degree three, the proof of which involves calculations like
 those of Hamilton. Similar ideas were also used by J.H. Conway in unpublished,
 but seminal, investigations on the same subject. This is the legacy of the Icosian
 Calculus which is discussed in the paper.

 1. Introduction

 Hamilton discovered the Icosian Calculus in 1856, thirteen years after his
 discovery of quaternions. He was led to it by considerations involving polyhedra,
 and he pursued it because he saw it as a system of non-commutative algebra which
 is capable of a geometric interpretation. Much of his work was unpublished at the
 time, but it is now available in Volume 3 of the Collected Papers, items LIV-LVIII
 (to which we shall refer by the Roman numbering).

 In moderln terminology, the geometric interpretation involves paths and cycles
 on the graph formed by the vertices and edges of a regular dodecahedron (see
 Fig. 1). In particular, the Icosian Calculus can be used to describe a cycle which
 passes just once through every vertex. Hamilton's association with this particular
 problem resulted in the name Hamiltonian cycle being used generally for a cycle
 with this property, in any graph. Unfortunately the Icosian Calculus has little
 relevance to the general problem, and subsequent work on Hamiltonian cycles has
 used quite different methods. Equally unfortunate is the fact that the general
 problem was first studied not by Hamilton but by Kirkman in 1855 [17].

 It is not the purpose of this paper to discuss the work of Kirkman and Hamilton
 on 'Hamiltonian' cycles, although I shall say a little more about their relationship
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 FiG. I-A dodecahedron and its graph.

 at the end, referring the reader to another paper for details [1]. My aim here is to
 describe how the interplay between algebraic and geometrical ideas foreshadowed
 by the Icosian Calculus has led to interesting developments in another area of
 Discrete Mathematics.

 2. The algebraic framework

 The Icosian Calculus was the name Hamilton gave [LIV, LV) to the algebraic
 structure in which there are three basic symbols t, r, A, satisfying the equations

 J=i 1 O=z-, A5=1, A=ts.

 The choice of symbols was clearly influenced by the use of i,j, k for the
 quaternion units. By the same analogy, Hamilton referred to the new symbols as
 roots of unity, although he was quick to point out that they are not fourth roots
 like the quaternion units. He was careful to say explicitly that the symbols should
 satisfy the associative law a(bc) = (ab)c, but not the commutative law ab = ba:
 indeed, he noted that assuming the commutative law makes t = K, = A = 1. Also
 he noted that his calculus was based on a single 'multiplicative' operation, unlike
 the quaternion algebra which has addition and multiplication. Thus, in modern
 terms, Hamilton was concerned with the group I defined by the presentation

 (t,K,A I2 = K3-A5 = 1 A 5K).

 This fact led Miller [19] to cite Hamilton as one of the founders of abstract group
 theory.

 Today, an algebraist faced with this presentation for the first time might argue
 as follows. Since A = K, there are really only two generators, t and K, so we should
 look first at the group

 M- (, K =2 3 = 1).

 This is very well known: it is an infinite group known as the modular group,
 which arises in many areas of mathematics. Adjoining the relation (6K)5 = I defines
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 I as a quotient group of M. But is the quotient finite or infinite? The answer is
 on page 67 of the second edition of the standard work by Coxeter and Moser [11],
 where we find that I, denoted there by the symbol (2, 3,5), is the alternating group
 A5, of order 60. Those who like to work things out for themselves should study
 David Johnson's book [16], in which this is an exercise on page 105.

 Alternatively, the result is a moment's work for the widely used computational
 group theory package CAYLEY. The coset enumeration algorithm will tell us that
 the order is 60, and, with a bit of help, CAYLEY will confirm that there is a
 faithful representation of I defined by

 t -+ (12)(34), s v-> (135), A v-* (12345).

 Since the generators map to even permutations of degree 5, this establishes that I
 is isomorphic to the alternating group A5.

 3. The geometric framework

 It is when we turn to the geometrical interpretation of the Icosian Calculus
 that we begin to see the richness of its possibilities. Hamilton himself observed
 that it could be generalised [LVI; LVII, p. 623], although he concentrated for the
 most part on the icosian system.

 Hamilton's initial geometrical interpretation was in terms of the faces of a
 regular icosahedron. However, he saw immediately that there is a 'dual' interpre
 tation in terms of vertices of the dodecahedron (Fig. 1), and this soon became
 his preferred mode of expression. Roughly speaking, his idea was to regard t, n,
 and A as operations on the set of oriented edges of the dodecahedron. He took
 t as the operation which 'reverses' any oriented edge, K as the operation which
 'rotates' it around one end, and A as the operation which 'shunts' it along to one
 of its successors. The sense of the rotation and the choice of successor must be
 defined consistently, and this can be done in terms of the plane drawing. Following
 Hamilton, we shall choose A to be the operation which gives the successor obtained
 by 'turning right'. Explicitly, suppose we fix our attention on a pair of adjacent
 vertices (P, Q), and let U, V be the other neighbours of Q, as in Fig. 2. Then

 t(P, Q) = (Q, P), r(P, Q) = (V, Q), A(P, Q) = (Q, V).

 It is worth emphasising that Hamilton's operations are defined as permutations
 of the set of oriented edges: they are not permutations of the vertex-set, and they
 are not automorphisms of the graph. However, as we shall explain in section 4,
 they are closely related to automorphisms.

 The basic relations are obvious consequences of the geometry. Clearly v2 = 1I
 since reversing twice is equivalent to doing nothing. Similarly, r3 = 1 since there
 are three edges at each vertex. The relation A = LK can be checked as follows:

 tr(P,Q) = t(V,Q) = (Q,V) _ A (P,Q).

 Finally, the relation A - 1 expresses the fact that if we walk along the edges of
 the dodecahedron, turning right five times in succession, then we get back to the
 starting position.
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 V

 Fic. 2-The basic operations.

 In this light, it clearly makes sense to consider the operation which takes an
 oriented edge to its 'other' successor, obtained by turning left instead of right.
 Hamilton used the symbol pi for this operation, noting that it can be defined in
 terms of the generators as follows:

 pt = AK = trK2

 Let us say that any sequence of A's and p's (but not their inverses) is a positzive
 word. Clearly a positive word can be interpreted as a route on the graph, turning
 right or left at each vertex according as the appropriate symbol is A or p. The fact
 that a positive word reduces to the identity in I means that the route ends in the
 same place as it started. For example, consider the positive word pAS3aA3. Using
 the definition p = AK, we have

 pA3pA3 = AK.A3 AK.A3 AKA 4K,A3.

 Since A5 = I we have A\4 -) 1 K-1! so

 p,3A3p,A3 AK.K-1ltKA3 = AAA3 = 1.

 In other words, ptA3pA3 is a positive word which reduces to the identity in I.
 Remembering that the operations are to be carried out in reverse order, this means
 that turning right three times, then left, then right three times again, and finally
 left, will ensure that we return to the starting position.

 Hamilton made an extensive table of words of this kind [LVII, pp 619-20]. He
 was particularly interested in the word

 (A'3 (Ap)2)2
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 which has twenty operations in all. Indeed, it represents a closed route with twenty
 steps, passing through each of the twenty vertices of the dodecahedron just once.
 As we have already remarked, this is the origin of the name 'Hamiltonian cycle' for
 a cycle passing through all the vertices of any graph.

 When we try to generalise Hamilton's method, we soon realise that it must
 depend on the existence of some symmetry in the graph, because the instructions
 for following a route do not specify the choice of the initial edge. Furthermore,
 as we shall see, there is a very specific sense in which it can succeed only in the
 cubic case, that is, when there are three edges meeting at each vertex. In the
 twentieth century, many mathematicians have worked on the symmetry properties
 of cubic graphs, and three (in particular) have discovered significant extensions of
 Hamilton's method. They are R.M. Foster, W.T. Tutte, and J.H. Conway. In all
 three cases the circumstances of the discoveries have picturesque features, and we
 shall digress briefly to describe them.

 R.M. Foster worked as an electrical engineer, and in that context he became
 interested in the use of cubic graphs as electrical circuits. In 1932 he published a
 paper 112] containing drawings of twelve such graphs, all having special symmetry
 properties. Throughout his long life he continued to devote his leisure to the study
 of such graphs, producing a remarkable Census which was eventually published in
 1988 [8]. This is an invaluable listing of symmetric cubic graphs with up to 512
 vertices and their properties. It contains a useful summary of Foster's methods,
 which makes the link with Hamilton very clear.

 W.T. Tutte was originally destined to be a chemist, but by a happy chance
 he met with three other Cambridge undergraduates who became fascinated by the
 problem of 'squaring the square'. This story will be familiar to those interested in
 mathematical recreations (see [13]). After a brief interlude spent in the service of his
 country, he became a serious mathematician, and soon published several important
 papers, among them one entitled 'A family of cubical graphs' (20]. In that paper
 he used ideas like Hamilton's to study a general problem on the symmetry of cubic
 graphs, and he proved a very surprising theorem, the content of which we shall
 explain in the next section.

 J.H. Conway is another leading mathematician who is well known for his work
 on mathematical recreations. His contribution to our subject began in an unlikely
 way. In his youth, a relative presented Conway with a multi-volume Junior World
 Encyclopaedia, which turned out to be deficient, in that the volume devoted to
 topics beginning with F and G was entirely blank, owing to a printing error. The
 fact that he grew up ignorant of such things as Fish and Fingerprints is not our
 concern. We have to thank this mischance for providing him with a notebook for
 his investigations on the symmetry of cubic graphs, in which, like Foster and Tutte,
 he used 'Hamiltonian' methods. His contribution is less well known than theirs,
 because Conway himself has published little on the subject. But it deserves to be
 better known, and because of its clear link with the Icosian Calculus we shall take
 the opportunity to use it in the next section.
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 4. Modern developments

 In this section we shall outline a general framework for the study of symmetry
 in cubic graphs, which can be regarded as a generalisation of the Icosian Calculus.
 The topic is still very much alive, and we shall mention some of the open questions.
 More details may be found in [5].

 An automorphism of a graph with vertex-set V and edge-set E is a permutation
 wr of V such that {r(v), ir(w)} is in E whenever {v, w} is in E. Clearly, the set of all
 antomorphisms of a given graph forms a group under the operation of composition,
 and any group of automorphisms of the graph is a subgroup of the full group. For
 example, the full group of the dodecahedron has order 120, and there is a subgroup
 of order 60 which, as we shall see, corresponds to Hamilton's group I.

 An s-arc is a sequence of vertices vo0vl, . . . ,v, such that {V, vIyiI} is an edge
 for 0 < i < s - 1, and vi- $ vj+ for 1 < i < s - 1. A group G of automorphisms
 is transitive on the s-arcs if, given any two s-arcs, there is an element of G which
 transforms the first into the second. The special feature of cubic graphs is that
 any group G of automorphisms which is transitive on 1-arcs must be regular on
 s-arcs for some s > 1. This means that there is a unique automorphism in G which
 transforms one given s-arc into another one. (The proof is not difficult: see [5,
 chapter 18].) It follows that if we choose a 'reference' s-arc R arbitrarily, then there
 is a bijective correspondence S +-+ gs between s-arcs S and automorphisms in G,
 where gs is the unique automorphism such that

 gs(R) = S.

 This observation enables us to make the link between automorphisms and Hamil
 ton's icosian operations explicit. We associate with each automorphism g a corre
 sponding permutation 4 of the set of s-arcs, defined by

 4(S) = gsg(R) = gsgg5'(S).

 It is clear that Hamilton's operations are permutations of the form g, rather than
 auitomorphisms g. Specifically, in the case of the dodecahedron there is a well
 known group of automorphisms which is regular on the 1-arcs: it is the group of
 rotational symmetries of the solid dodecahedron in 1R3. The corresponding group
 of permutations of the 1-arcs is Hamilton's group I, as previously described. For
 example, the operation t which inverts each 1-arc is the - corresponding to the
 unique rotational automorphism g which inverts the reference arc R. We note that
 the number of 1-arcs is 20 x 3 = 60, as we should expect, since they are in bijective
 correspondence with a group of order 60. We also note that the full automorphism
 group of the graph (and the group of all symmetries of the solid) is of order 120,
 and is regular on the 2-arcs. This observation provided the context for a second
 wave of calculations by Hamilton, done in 1863 [LVIII), to which we shall refer
 below.

 From now on we shall work with automorphisms, remembering that everything
 can be translated into 'Hamiltonian' language by means of the bijective correspon
 dence described above. For cubic graphs in general there are the obvious questions:
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 what values of s are possible, and what are the corresponding groups and graphs?
 The first question was answered in 1947 by Tutte [20]. Remarkably, it tuirns out
 that for finite cubic graphs only the values s = 1, 2, 3, 4, 5 can occur.

 We shall use Conway's approach to discuss this result. Suppose we have
 a group which is regular on the s-arcs of a cubic graph. Conway defines three
 automorphisms ar, a, b (Fig. 3), which act on the reference s-arc R in ways analogous
 to Hamilton's t, A, ,t respectively. That is, a reverses R, while a and b are the two
 'shunt' automorphisms which move each one of the first s vertices of R on to the
 next vertex.

 FiG. 3 The 'local' operations in Conway's notation.

 We begin by considering the 'local' relations which these automorphisms must
 satisfy, remembering that we must not assume any sense of left or right like that
 provided by our drawing of the dodecahedron. First, there is the obvious relation
 2 = 1, corresponding to the fact that two reversals are the same as doing nothing.

 Then we note that the operations uaar and abo have same effect on R as the
 operations a-i and b-'. But, in the absence of an orientation-convention, we
 cannot tell which is which. Thus, for any value of s, there are two sets of relations
 to consider:

 R+ - {f2 = 1, caa a- 1, abo = b- };

 R7 2 = 1, caaa = b-1, aba = a-1}.
 Note that in the J- case the last two relations are equivalent, and could be replaced
 by the single relation oaaab = 1.

 Next we introduce relations specific to the given value of s. These are obtained
 by finding pairs of words in a, a, b which have the same action on the reference arc
 R, and which must therefore be equal. For example, in the case s = 3 one possible
 set of such relations is

 a-la = b a 2b-2a2 = b2 a2 baa3 = b3

 Together with RI these define a group G+ with presentation

 (a,a,b a2 = o,aaa = a-',aba- = b-15ab-la = b a2b 2a2 = b2,a2baoa3 = b3).

 This is an infinite group, which we shall refer to as a type: it captures the local
 action of a group of automorphisms of a cubic graph which is regular on 3-arcs. In
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 fact it can be shown that it is the only type for the case s - 3. This follows from
 arguments which establish that very few sets of putative relations are feasible. In
 many cases the group collapses, for example when we try to define a group G0
 uising 1& instead of R+. The result of Tutte, together with a detailed analysis
 of the possibilities, leads to the conclusion that there are only seven essentially
 distinct types (with respect to a technical notion of equivalence). These we denote
 by

 G- ,G+,G-,G+G-,G+,G+ 1 '72 X2 X3 4 4 '5

 In particular, we see that in the case s = 1 only the R- relations are relevant.
 In fact the group G0 is given by the presentation

 (a, a, b 1a2 = 1, caab =1, (a-1b)3 = 1),

 where the first two relations are equivalent to R-, and the third follows from the
 fact that a-'b fixes the initial vertex of the reference arc. This is, in fact, the
 modular group M in disguise. If we define a function G0 - * M by

 o- X_ 1)^ a: *-- tK b l- K21

 then it is easy to check that we have an isomorphism. For example, the relation
 cracrb = I is preserved because

 oraub v-> t.LK.t.A2== 1.

 Given the local 'symmetry-structure', as determined by the type, Conway
 then turns to the question of constructing finite cubic graphs which have the given
 structure. Roughly speaking, this means looking for a positive word (or words)
 w -w(a, b), such that adjoining the relation w = 1 to the infinite group G0 results
 in a finite group F = G0(w). A finite cubic graph can then be constructed in the
 following way. Let ID be the subgroup containing those automorphisms which, in
 the intuitive description, fix the initial vertex of the reference arc. For a given
 value of s, K is generated by a-b, a-2b2,... I a-sb8. The vertices of the graph are
 the left cosets of K, and the edges join a typical coset gK to ga-lK, gb-'K and
 gaK. (Note that gaK = gbK.) Thus the construction becomes an exercise in the
 technique of coset enumeration [11]. Nowadays this is usually done on a computer,
 although there are inescapable difficulties about the termination of the process.

 For example, consider G0 and the relation a5 1. Returning for a moment to
 Hamilton's notation, the relation becomes A5 = 1 and, as we have seen, adjoining
 it to the modular group produces a group of order 60. Thus the coset enumeration
 technique will produce 20 cosets of K = (a-1b) in the group

 G0 (a) = (, ab a2 = 1, o-aab = 1, (a-'b)3 = 1, a5 = 1),

 and we can construct a cubic graph in the manner just described. Of course, it
 is the dodecahedron. By the same method, the groups G (a3) and G (a4) define
 the tetrahedron and the cube respectively. On the other hand, coset enumeration

This content downloaded from 81.155.158.127 on Fri, 24 May 2019 12:58:29 UTC
All use subject to https://about.jstor.org/terms



 BIGGS The Icosian Calculus of today 31

 will fail in the case of the relation a6 = 1 because this defines an infinite graph, the
 plane hexagonal lattice. In this case we can try to find additional relations which,
 together with a6 = 1, make the group and the graph finite. Conway discovered
 that in this case the most general solution is

 (ab)tm = 1, (ab)mP(ba)m = 1,

 where m, n, p are positive integers such that p3 1= (mod n). Versions of this result
 have been found independently by other people in other contexts: for example,
 the corresponding graphs can be regarded as toroidal quotients of the hexagonal
 lattice, as described by Coxeter and Moser [11].

 Although we have satisfactory results in such special cases, much work remains
 to be done on the problem of determining the finite quotients of the seven types
 and the corresponding graphs. Conway was the first to show that infinitely many
 graphs of each type exist; his proof (see [5, chapter 19]) required astronomically
 large graphs. For example, the second G+ graph in his family (the last one
 in the table below) has about two million vertices, and the next one has about
 2100000 vertices. A somewhat stronger result is also true: it can be shown by
 non-constructive means [4] that there are graphs of each type with arbitrarily large
 girth. (The girth is the length of the shortest cycle.)

 The type GC is especially interesting because it exhibits the 'maximum' sym
 metry. The complete definition of the group is

 - (a, a, b a-2 (waa)2 = (ab)t2 = 1, (a-1b)2 = (a-2b2)2 (a 3b3)2 = 1,
 a4b14a4= ba2b,a4baa5 = ba3b).

 It might be thought that we should be able to classify finite quotients of this group,
 given that it has so many relations. However, we know very few graphs of this
 type, and correspondingly little is known about the classification of quotients of
 G+. Most of the known examples are members of an infinite family, the sextet
 graphs S(p), p a prime congruent to 3 or 5 modulo 8, or coverings of these graphs
 [6]. The sextet graph S(p) has p2(p4 - 1)/24 vertices, and the automorphism group
 is PFL(2,p2). These graphs have some interesting graph-theoretical properties,
 such as the fact that their girth is exceptionally 'large', in a technical sense.

 The simplest sextet graph S(3), which has 30 vertices and girth 8, was known
 to Foster, Tutte, and Conway, and is usually known as Tutte's 8-cage. Its group is
 PFL(2, 9), of order 1440, which is isomorphic to Aut (S6), and has the presentation
 G+(a5). There is a threefold covering of S(3), also known to Foster and Conway,
 whose group has the presentation G+(V0). The next sextet graph S(5) has 650
 vertices and girth 12: Foster constructed it by hand (!), and Conway discovered it
 via the presentation G+(al2), using coset enumeration on a computer. The next
 three graphs in the sequence are S(11), S(13), and S(19), with girths 20, 24 and
 28 respectively, the last of which has nearly two million vertices.

 A list of the known cubic 5-regular graphs with less than 2 x 106 vertices
 follows. There are reasons for thinking that the list may be complete up to 5000
 vertices, but beyond that we have no information.
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 Size Reference Group Presentation

 30 S(3) AutS6 Gs (a 8)
 90 3.S(3) G+(bl6)
 234 Wong [21] AutPSL(3,3) Gt (a 13)
 468 2.234 G (b 12)
 650 S(5) PrL(2, 25) G+(a12)
 2352 Biggs [2] 2.HolPSL(2,7) G+(a14)
 4704 2.2352 G+((ab)8)
 73810 S(11) PSL(2, 121)
 75600 Conder [10] SO
 201110 S(13) PSL(2, 169)
 249696 Biggs [3] 2.HolPSL(2,17)
 1960230 S(19) PSL(2, 361)
 1966080 216.S(3) 2Z6.Aut S6

 Perhaps the most interesting recent discovery is the Conder graph. Conder was
 able to show that there are permutations of degree ten which satisfy the defining
 relations for G+; in other words, the symmetric group Sio is a quotient of G+, and
 so there is a corresponding graph, as listed above.

 Finally, we recall that Hamilton himself saw the possibility of generalisations

 of the kind we have described. In particular, in his memorandum of 1863 tLVIII]
 (not published until 1967) he discussed the case s = 2 on the dodecahedron. With
 commendable foresight, he used the symbols a and /B for the shunts which we have
 called a and b. He observed that a has order 5, whereas 3 has order 10, and he
 carried out extensive calculations involving positive words in a and W. In our terms
 he was working in the finite quotient of G+ obtained by adjoining the relations
 a5 = 1 and 610 - 1. Explicitly, we have the group G+(a5, b61) with presentation

 (a,a, b 2 5 = blO = 1, au = a-1 ,ab = b-1, ab-1 a = b, abaa2 = b2,

 which turns out to be a group of order 120 isomorphic to the full group of the
 dodecahedron.

 5. The Icosian Game

 The earliest recorded reference to the Icosian Calculus in the Hamilton papers
 is a memorandum to J.T. Graves dated 7 October 1856 [LVI]. Soon afterwards he
 sent a brief note on the subject to the Philosophzcal Magazine [LV], and wrote a
 similar outline in a letter to Rev. Charles Graves [LIV]. All three accounts mention
 the geometrical interpretation, but none of them provides any details.

 Hamilton wrote again to J.T. Graves on 17 October 1856 [LVII]. This is a long
 letter with 23 folio pages, the mathematical content of which has been outlined
 above. In the preamble he suggested that earlier contacts with Graves may have
 been responsible for rekindling his interest in polyhedra. Apparently Graves replied
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 to the effect that he himself had no claim, but he thought that the recently published
 work of Kirkman might be responsible. On 1 November Hamilton wrote that he had
 been ignorant of Kirkman's work. He said that the first part of the Philosophical
 Transactions for 1856 had just arrived, and he had immediately studied the two
 papers on polyhedra by Kirkman which were contained therein. He acknowledged
 that on the geometrical side Kirkman had dealt with far greater generalities, but
 observed that Kirkman's general result [17, theorem A] did not appear to cover
 the case of the dodecahedron. But he admitted that Kirkman could easily have
 obtained that special case independently.

 The last part of the letter of 17 October contains the germ of another idea.

 I have found that some young persons have been much amused by trying a
 new mathematical game which the Icosian furnishes, one person sticking
 five pins in any five consecutive points . . . and the other player then
 aiming to insert, which by the theory in this letter can always be done,
 fifteen other pins, in cyclical succession, so as to cover all the other points,
 and end in immediate proximity to the pin wherewith his antagonist had
 begun.

 He was so taken with this idea that in due course he sold it to Jacques and Son,
 a firm which made toys and games. (The firm still exists, producing croquet sets
 among other things. Unfortunately, all their records from the 1850s have long since
 been destroyed.) The form in which the 'Icosian Game' was sold was a circular
 wooden board marked with the skeleton of the dodecahedron, and a set of twenty
 pegs. There was a leaflet of instructions, with hints from the inventor himself.
 The leaflet is printed in full in [7], and more details of the negotiations between
 Hamilton and Jacques are given in [15].

 The mathematical content of the game, in the form outlined in Hamilton's
 letter to Graves, depends on the fact that 'five consecutive points' determine a
 sequence of three A or p operations. In other words, the starting configuration is a
 positive word of length 3 in A and p. Now Hamilton's word of length 20,

 h(A, p) = AAApppA;AiAAApppApA/p,

 contains each of the eight possible words of this kind, and so by starting at the
 correct place in h, and noting that any cyclic rotation of h also reduces to the
 identity, it is possible to write down the required cycle.

 There is no evidence that the Icosian Game was a popular success, and the
 copy which is in the Royal Irish Academy appears to be the only one known to
 have survived. There must have been others in existence in the nineteenth century,
 since the game is referred to in several contemporary records. For example, we
 know that Hamilton visited Kirkman in 1861, and Kirkman later wrote [18] that
 Hamilton had presented him with a copy of the game. No direct descendants of
 Kirkman have been traced, although he was the father of seven children. Perhaps
 somewhere there is a mine of fascinating material, including an Icosian Game, just
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 Icosian Calculus is a continuing stream of mathematical research and discovery,
 some of which has been described above.
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