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1. Introduction. The subject of squared rectangles and squared squares was de-
veloped by Brooks, Smith, Stone and Tutted) using techniques based on the theory
of electrical networks. In this note we shall treat the (apparently) more general topic
of rectangulations using purely algebraic techniques. The starting point is the observa-
tion that the incidence matrices of the pair of dual networks associated with a squared
rectangle in (l) can be more naturally derived as incidence matrices of the squaring
(or rectangulation) itself. Further, the topological information contained in the
networks is a simple consequence of Euler's formula applied directly to the rec-
tangulation.

In the first two sections following, we develop the matrix algebra necessary for
our purpose. Some of the early results here are well-known. Then we investigate
rectangulations and the matrices associated with them, obtaining conditions for
squared rectangles and squared squares. The main result (Theorem III) is a direct
proof of the fact that to every rectangulation there corresponds an essentially unique
squaring; however, it is not possible to describe this correspondence geometrically in
the way that might be expected. (The author is grateful to the referee for some remarks
on this subject.) Finally, there is a note on the application of the algebra to network
theory.

2. Some matrix algebra. We are interested in the properties of matrices which arise
as incidence matrices of networks; in such a matrix every column contains precisely
two non-zero entries, one of them being + 1 and the other — 1. These matrices, called
i-matrices for short, have some rather remarkable properties, which we proceed to
investigate. First, notice that if A is an m x r i-matrix, and u is the m-rowed column
vector with + 1 in each position, then A'u = 0 (A1 denoting the transpose of A). I t
follows that the nullity (= m — rank of A) of A is at least 1, and that its rank is at
most m— 1. The nullity of A A1 is the same as that of A1 since

AA'x = 0 => aSAA'x = 0
^ \\A'x\\2 = 0
=> A'x = 0.

and Alx = 0 => AA'x = 0 inmediately. Consequently, denoting the rank of A by p(A),

wehave p(A) = p(A') = p(AA') < m - l . (2-1)

In particular, if p(AA') = m — 1, then its nullity is 1 and since AAlu' = 0 we have

p(A) = m-l^kerAAl = {x:x = Au}, (2-2)

where ker A A1 denotes {z: AAlz — 0}.
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400 NOEMAN BIGGS

We now consider adj A A1, that is, the matrix of (m— 1) x (m— 1) cofactors of AAK
If the rank of A is less than m— 1 then every cofactor is zero; adj A A1 = 0. Suppose A
has rank m— 1; since A A1 adj A A1 = (detAA')I = 0, each column of adj A A' belongs
to the kernel oiAA1 and so is a multiple of u. Since A A1 is symmetric it follows that all
the multipliers are equal and thus adj A A1 = fiU where U is the mxm matrix each of
whose entries is + 1. We can also show that /i is non-negative, as follows: for any x,
x*AA'x = ||^4'#||2 ^ 0 so that A A' is a non-negative symmetric matrix; such a matrix
has all its principal cofactors non-negative. To sum up, for each i-matrix A we have a
non-negative integer (i(A) such that

adj AAt = /i(A)U (2-3)

and fi{A) = 0 if and only if p(A) < m — 1. We note for future use that if Ao denotes A
with row k deleted then AOA'O is AAl with row k and column k deleted so that

det A0A
l
o = /i(A). (2-4)

We shall always take the deleted row to be the last.
Another interesting and useful property of i-matrices is that every submatrix of an

i-matrix A has determinant + 1, — 1, or 0. To see this we consider the three possibilities
for a square submatrix C of A:

(1) C has a column consisting entirely of zeros;

(2) C has two non-zero entries in each column;

(3) C has a column with precisely one non-zero entry.

In case (1), expanding in terms of the column of zeros shows det (7 = 0; in case (2)
adding all the rows to the first gives a row of zeros so that det C = 0 similarly. In
case (3) we expand detC in terms of the column containing the one non-zero entry
getting det C = ± det C, where C" is a square submatrix of A of order one less than C.
We have the same three possibilities for C and if we continue the process we eventually
arrive at a zero determinant or a single element of A, whence the result.

This last result enables us to give another interpretation of the number fi(A), as
follows. Let Qk i denote the set of collections of k distinct integers which are subsets of
the first I positive integers. For any t x I matrix M and any cceQkl we write M(. \a)
for the matrix obtained from M by considering only the columns alt<x2> •••,ccko£M;
for each fieQpi we have similarly a matrix M(/?|.). Using this notation, the Binet-
Cauchy theorem states that

det A0A
l
0= £ detA0(.\a))detA'0(w\.).

weQm-i,f

Comparing with (2-4) we get

/i{A)= 2 [ d e t ^ O ) ] 2 . (2-5)
«€O*-l,r

Now, each square submatrix of A has determinant + 1 , — 1, or 0 so that the non-zero
summands on the right-hand side of (2-5) are all + 1, and we have the result that fi(A)
is the number of non-singular (m— l)-square submatrices of Ao.
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Rectangulations 401

The next object of study is the (TO — l)-square matrix

We shall restrict the investigation to the case p(A )= m — 1, and then we shall prove that
each entry etj of E(A) is a non-negative integer, and that the largest entry in any
row or column occurs on the main diagonal. That is, for each i &ndj between 1 and TO — 1,

eu =5 eH = ei3- Ss 0. (2-7)

To prove this, we augment E(A) by a final row of zeros, getting an TO X (TO — 1)
matrix E+(A), and let e denote the jth column of E+(A), c = A'e. Then, partitioning
A A1 so that we can multiply by E+(A) and performing this calculation we obtain

Ac = AA'e = /i(A)w, (2-8)

where w has + 1 in the jth place, — 1 in the mth place and zeros elsewhere. (At this point
the reader may find it helpful to refer to the remarks of section 7; the network interpre-
tation will illuminate the lemmas which follow.)

Continuing with the proof of (2-7), we define a set Sj by putting p e #3- if and only if
there is some k for which apkck 4= 0. From (2-8) we see that j and TO are in Sj. Two lem-
mas give the required result.

LEMMA 1. Ifp e S^ then

either (1) p =jorp = TO,

or (2) there are t and u in Sj such that ey < evi < eui.

Proof. Suppose p e8^ and p =t= j , p 4= TO. Then ~Lapkck = 0, and the existence of one
non-zero summand implies the existence of two: that is, there are x, y such that

apxCx

Since apx 4= 0, we can find just one other non-zero entry in column x of A, say atx.
There is a similarly defined auy. Then

0 < apxcx = apx{apxepj + alxeti) = epi-etj,

0 > apycy = apy{apyepi-\-auyeu^) = epi — eui,

and both t and u are in $,- since, for instance,

alxcx = -apxcx*°-

LEMMA 2.Ifp$Sj then there is azeS^ such that epi = e2i.

Proof. For each z = 1,2,..., TO let

Q(z) = {v:lw with a^a^ 4= 0};

that is, Q(z) is the set of rows of A which have a non-zero entry in the same column as a
non-zero element of row z.
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402 NOEMAN BIGGS

Then there is a sequence/, g, ...,l, ofdistinctrowsof A, such that

feQ(p), geQ(f)...meQ(l);

for if not we could partition the rows of A into two sets, each of which contained either
two or zero non-zero entries in each column, and this would imply p(A) < m— 1.

Now if p$Sp apkck = 0 for each h. But by definition of f,apk afk #= 0 for some k;
thus ck = 0, and we have

0 = cfc = apkepj + afl.efj = ± {epj-efj).

So if feSj we are finished, since ep} = efj. If f$Sj the same argument shows that
efi ~ egj> an<^ s o ^ 9e^i w e a r e finished. That the process must finish somewhere is
ensured by the fact that meSj.

Lemmas 1 and 2 lead immediately to the required result (2-7). We have only to recall
that emj = 0 by definition, and that ew > 0 since it is a principal cofactor of the positive
symmetric matrix AOA'O.

We note for future reference that (2-8) tells us that a solution of the equation
AAlx = aw, where a is a real number, is

(2-9)

where e is the j th column of E+(A). From the result (2-3) on the kernel of AAl we see
that this is the unique solution with xm = 0, provided p(A) = m— 1.

3. Dual pairs ofi-matrices. We shall define the pair {A,B} of i-matrices of size m x r
and nxr respectively, to be a dual pair if and only if

(1) p(A)+p(B) = (m-l) + (n-l) =r,

(2) AB' = 0.

It follows from the definition that p(A) = m— 1, p(B) = n— 1, and that the rank and
size of B are determined by those of A.

THEOREM I. If {A, B} is a dual pair then

li{A) = fi(B). (3-1)

Proof. Recall that /i{A) is the number of non-singular (m — l)-square submatrices of
Ao. Suppose first that Ao is partitioned as

•"o = (•"ol-"o)

where A'o has m — 1 columns and is non-singular. If Bo is partitioned in the same way
it follows from condition (2) of the definition that B"o is an (TO— 1)-square matrix. Since
^0JB'0 = 0wehave A'OB'O'+A'^ = 0

and since A'o is non-singular we can write

B'o = B0R,

where R = [ — (^o)"1 -^o]'- But this states that the columns of B'Q are linearly dependent
on the columns of B'o, so that the n—\ columns of BQ span the column space of Bo.
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Rectangulations 403

Further, these columns must be linearly independent since p(B0) = n — 1. Thus Bl is
non-singular. A parallel argument shows that if B"Q is non-singular then so is A'o,
and it is immediate that for any y e Qm-1>r the argument extends to show that Ao{. \y)
is non-singular if and only if Bo(. \ y') is non-singular, where y' e Qn_1 r is the complement
of y. So we have a one-one correspondence between non-singular submatrices giving

Suppose now that Ax = 0. Since Ab = 0 where 6' is any row of B, and the kernel of A
has dimension r — (m — 1) = (n — 1), it follows that the n—1 rows of Bo form a basis for
the kernel of A. That is, x = Bl

oy. If now Bx = 0 also, then BoB'oy = 0 so that y = 0,
since B0B

l
0 is non-singular. Thus we have

ker.4 nke r£ = {()}. (3-2)

4. Rectangulations of rectangles. A set of points in the plane of the form

3& = {{xx, x2): a < x1 < b, c < x2 < d}

will be called an open rectangle. A point set of the form

•V = {(xl!x2):x1=f, g^x2^h}

will be called a vertical cut, and a horizontal cut is defined similarly. A finite set of pair-
wise disjoint horizontal cuts and a finite set of pairwise disjoint vertical cuts, with
union ^ will be called a rectangulation of a given open rectangle 0t if

(a) fr£? c <g c c\m,

(b) c\3% — '£ is a set of pairwise disjoint open rectangles.

Any rectangulation "dfof a rectangle^ has an underlying network in which the vertices
are the points of intersection of cuts, and two vertices are joined by an edge if and
only if they lie on the same cut and have no vertices between them. Since this network
is planar we define its regions to be the open rectangles of c l ^ — '& together with the
complement of c l^ . We shall use the notation that there are m0 horizontal cuts, n0

vertical cuts, co = mo + n0, and that the underlying network has v vertices, e edges and
r regions.

The integers c0, s, v, e, r, satisfy certain relations, combinatorial and topological.
Suppose that there are <p{ cuts consisting of i edges, then

and since each vertex lies on precisely two cuts, and a cut with i edges contains i +1

But Co=

whence co = 2v — e. (4-1)

A topological constraint on a rectangulation is given by Euler's theorem

v-e + r = 2. (4-2)
26 Camb. Philos. 65, 2
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404 NORMAN BIGGS

From (4-1) and (4*2) we obtain

r - c o + 2 = 2e-3i> + 4. (4-3)

Now consider the valences of the vertices of the underlying network. There are four
vertices of valence 2 (the corners), and no vertices of valence greater than 4. Suppose
there are ip~z, xjr^ vertices of valence 3,4 respectively; by usual counting arguments

V =

giving 2e — 3u + 4 = ^4,

and comparing with (4-3) i/ri = r — co + 2. (4-4)

In what follows it will be necessary that the cuts are counted in such a way that the
right-hand side of (4-4) is zero; in the present system this is so if and only if ̂ 4 = 0.
Accordingly we introduce the convention that at each vertex of valence 4 the horizontal
cut involved will be regarded as two cuts, one lying to the left of the vertex and the
other to the right. If now, m, n, c denote the number of cuts counted in this way,
m = m0 + ̂ 4, n = n0, c = c0 + tfrt so that always

r-c + 2 = 0,

or, in the form we shall require it

(m-l)+(»-l) = r. (4-5)

We could have introduced this convention at the start, but its motivation would then
have been obscure, and in any event the previous work would still have been necessary
to establish the vital statement (4-5).

Of course, in a 'general' rectangulation a vertex of degree four can always be
abolished by the process illustrated:

is replaced by

without altering the configuration of the rectangles. But this is clearly not possible if
there are further constraints—if, for example, the rectangles are required to be squares.

5. The matrices associated with a rectangulation. We shall assume, without loss of
generality, that a given open rectangle 8& lies in the first quadrant of the plane and is
bounded in part by the coordinate axes. Given a rectangulation # of £& we label the
m horizontal cuts in order of distance from the horizontal axis, the first horizontal cut
being the upper boundary of £?, and so forth. If two horizontal cuts are at the same level
we take the one to the left first. In a similar way we label the n vertical cuts. The r — 1
interior rectangles are labelled in an arbitrary manner.
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Rectangulations 405

We define an m x (r— 1) matrix H = (hti) associated with the given rectangulation
as follows:

( + 1 if the ith horizontal cut is the upper boundary of the^'th rectangle,
— 1 if the ith horizontal cut is the lower boundary of the jth rectangle,
0 otherwise.

An n x (r — 1) i-matrix F = (v^) is defined by replacing the words: horizontal, upper,
lower; by: vertical, right-hand, left-hand. Our first remark is that the rank of H is
m — 1; for if it were less than TO — 1 there would be a proper subset S of the rows of H
which is linearly dependent. This would mean that the two non-zero entries of each
column are both in £ or both in the complementary set of rows £', so that the interior
rectangles are divided into two sets in such a way that any rectangle of the first set has
no common horizontal boundary with any rectangle of the second set. But this is
clearly impossible; and a similar argument holds for F, hence

p(3) = m-l, p{V) = n-l.

There is an important relation between the matrices H and F. If HVl = X then we
show that X is the mxn matrix with just four non-zero entries:

Consider

= - !> xml = ~ !> xmn =

r-l

A summand hikvik is non-zero if and only if both hik and vik are non-zero, that is, if
and only if horizontal cut i and vertical cut_?' are both boundaries of rectangle k. For
a given i and j there can be either one or two rectangles with this property, some typical
configurations being illustrated below.

II

I t is now immediate that xt] = 0 except in the four cases detailed above.
We now augment H and F by writing H = (Hlw), V = (V\ — w) where w is the vector

(1,0,...,0, —1)', it being understood that w has the apt number of rows whenever it
occurs. (We may think of the extra column in H and F as representing the whole
rectangle S%). I t follows from the fact that HVl = X, and (4-5), that {H, V] is a dual
pair, so from Theorem I we have ITJ\ — iv\

THEOREM II. IfH, V are the matrices associated with any rectangulation then

(5-2)
26-2
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406 NORMAN BIGGS

where e(E) is the determinant of the submatrix of EE' formed by deleting the first and last
rows and columns.

Proof. Since

\0 0 ...

expanding determinants by the first row gives

(5-3)
whence (5-1) implies the result.

6. Squared rectangles and squared squares. Suppose we are given a rectangulation with
associated matrices E and V. Let the height of the ith. horizontal cut be ht and define
Vj similarly; the convention stated at the beginning of section 5 implies that

hx > 0, v1> 0, hm = vn = 0.

We have column vectors h = (ht) and v = {vf).
Let y = Hlh. For a fixed i, h^ is non-zero only whenj = p and j = q say, p and q being

the upper and lower horizontal cuts bounding the ith rectangle. So yi is the height of the
•ith rectangle and the condition for the interior rectangles to be squares is thatH'h = V'v.
We now show that any rectangulation of a rectangle determines an essentially unique
squared rectangle.

THEOREM III. IfH and V are the matrices associated with a rectangulation, then:

(1) There are vectors h* and v* such that

E'h* = V'v*,

hf^hf^ht = 0, vf ^vf^v* = 0.
(2) / / h, v are any vectors such that Wh = V'v, h± > 0, vx> 0, hm = vn — 0, then

h = yh*, v = yv* for some number y > 0.

(3) e(H) = fi(V), e{V)=fi(B). (6-1)

Proof. Let E+(H) denote (adj HQHQIO)1 as in section 2 and let h* be the first column
of E+(H); define v* to be the first column of E+(V). These definitions and the result
(2-7) give the inequalities in part (1) directly. Let

_ / Hlh* \ , ( V'v*

Then using (2-8), (5-3), and the fact that H V = X, a simple calculation shows that

Hx = Ex' = 0,

Vx = fi(E) w, Vx' = /i( V) w.

Since {E, V} is a dual pair, ji(E) = ji(V) and k e r # n ker V = {0}; since E{x — x') = 0,
V(x - x') = 0. it thus follows that x = x', giving parts (1) and (3) of the theorem.
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Rectangulations 407

For part (2), suppose Wh = V'v, then

HH'h = 3 V'v = Xv = V-LW.

so by (2-9) we see that if hm = 0, then

h = [vJ/ilHW*. (6-2)

and similarly « = [hJM V)] v*. Equating the first entries in (6-2) give.;

MB) MB)

that is - i - = -̂ =- = y > 0. (6-3)
MF) M#) 7

Finally, if we have a squared square then there is the additional requirement that
h1 = v1} so that from (6-1) and (6-3) we deduce:

THEOREM IV. IfH, V are the matrices associated with a squared square then

MB) = MV) = e{B) = e{V).

I t turns out that although any rectangulation of a rectangle will determine a squared
rectangle (Theorem III) the additional condition for a squared square (Theorem IV)
is very restrictive.

It remains to remark on the interpretation of Theorem III . One would like to be
able to say that the h* and v* vectors describe a squaring with incidence matrices H
and V, whose underlying network is the same as that of the original rectangulation de-
termining H and F. Unfortunately, when we come to associate a squaring with the
system {H, V, h*,v*}, we find that this can be done only via a normalization process
(for instance, by using the algebraic counterparts of the geometric procedures of (d),
p. 320-322)). This process implies, for example, that ifH%* has some zero entries then
the corresponding rectangles will not appear in the squaring. However, our Theorem
III does provide a precise and constructive statement of as much as is generally true,
and in this respect it represents an improvement on the methods of (l).

7. Applications to network theory. A directed network Jf with m vertices and r
edges has an incidence matrix A = A(JT) which is an m x r i-matrix in our sense. The
network is connected if and only if p(A) = m — 1. The edges corresponding to a non-
singular (m— l)-square submatrix of Ao can easily be seen to form a spanning tree in
Jf, so that the integer M-A) can be interpreted as the number of spanning trees in Jf.
If ^V is a planar network and ^ is its dual then the incidence matrices of JV and Jl
are dual in the sense of section 3, so that we have given a proof of the well-known fact
that Jf and ^ have the same number of spanning trees.

Any TO-vector x can be thought of as assigning a 'potential' to each vertex of JV
and A'x is then an r-vector which assigns a corresponding 'flow' to each edge of JV.
The m-vector A A'x represents the accumulation of flow at the vertices; since v?A A'x = 0
the algebraic sum of these accumulations is zero. If the network is connected, and a
flow a enters at vertex j and leaves at vertex TO, the accumulations at other vertices
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408 NOBMAN BIGGS

being zero, then (2-8) tells us that a potential vector for this flow is [a//j,(A)] e, where e
is the j th column of E+(A). Thus the work of that section may be regarded as proving
the existence of a positive potential vector for any flow of this sort.
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