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1. Distance-transitive Graphs

Let [ be a finite, connected, undirected, linear graph without loops or parallel
edges. IT ¥ is the verlex set of T, an automorphism of I is a permutation g of V
such that two vertices are joined by an edge of I' if and only if their images
under g are joined by an edge. The set of all such g forms the auiomorphism
group G of T. Also, recall that the distance d(x,y) between two vertices
x, ye V is the number of edges in the shortest path joining x and y; and the
dfameter 4 of I is the maximum of such distances.

We shall be concerned with the transitivity properties of the permutation
group (V, G). If (V, G) is transitive in the usual sense, then we say that I'isa
vertex-transitive graph; this is a useful notion, but not a very strong one, for
we cannot expect any classification of vertex-transitive graphs. On the other
hand, if we require the permutation group (¥, G) to be 2-fold transitive in the
usual sense, this implies (since an automorphism must preserve distances)
that each pair of vertices of I must be at the same distance, and so I' must be
a complete graph K,. The present paper is concerned with a concept midway
between the two just mentioned, which turns out to have interesting con-
sequences. In fact, we shall sneak in at the back door of a theory developed
by J. S. Frame, H. Wieﬂlandt and D. G. Higman, for which a basic reference
isT5].

DenNiTiON. A graph T with vertex set 'V and awtemorphism group G will be
said 10 be distance-transitive if, for any twe ardered pairs (u, v), (x, y)eV x V
such that d(u, v) = d(x, y) there is an automorphism g € G such that

g(u) = x and g(v) = y.
Briefly, this says that (V,G) is as 2-fold transitive as possible, given that
automorphisms preserve distances.

t Present address: Royal Holfoway College, University af London, Englefield Green,
Surrey, England.
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2. The Incidence Algebra

For any graph I with |V| = » and diameter d we may define @ + 1 i L JSare
matrices Ay Ay, ..o A, in M (Chby

| ifdG,f) = a,
(Aﬂ)iJ =

0 otherwise,

where we have Jabelled the rows and colitmns of the matrnices with the «o-1ree
of I in some way. It is clear that 4y = I, and

A0+A1+...+Ad=-}

where cach entry of Jis 1. Also {4, Ay, ... A4} is a Jinearly independent set
over M,(C) and so forms a basis for a vector space which will be denoted by
U{F). We shall show that if I is distance-transitive, U{T'} is an algebra.

LEMMA. (4, Ap);; depends only ona, B andy = d(i, j), not on i and j individually,
provided that T is distance-transitive.

Proof. From the definition it follows that (A, Ag);; is the number of vertices &
such that d(i, k) = o and d(J, k) = B. II' T is distance-iransitive, for any other
pair i, j’, such that d(i, j) = d(i’, j') = ¥ there is some g € G taking i to {’ and
Jto j'. Thus lor each vertex k at the correct distances [rom i and j, gk 1s at
the correct distances from i and j'.

THEOREM. If T is distance-transitive U(I'} is an algebra with “structure
constanis”

Jyuﬁ = (Aa Aﬂ')ij! Whe]’e d(‘:j) =%
with respect to the basis {Ag, Ay, ... A4}.

Progf. If d(i, j} = y the matrix A4, is the only onc of the basic set with T in
position ij. Thus

(A, Ag)i; = 0)(A)y; = (? O2p Ar)u-

that is,
A Ay =3 0l A,

¥

which is the required result.
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A useful way of interpreting the structure copstants is as follows. Choose
one vertex ¥ e ¥ and arrange the remaining vertices according to distance

from '

{2) (2).
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(1.
v S
where

d(®, o) =i for j=1,.. k.

We may call the set of vertices {97} for a fixed i, the ith circle centred on ',
I[ we Jabel the rows and columns of A, in this order then it is partitioned into
(d + 1)* blocks, and the entries in block (7, j) tell us which vertices ol circle
are distant a from which vertices of circle j. The hypothesis of distance-
transitivity now implies that the sum ol a column of biock (i, f) is independent
of the particular column chosen and of the initial choice of v!®; the column
sum is o/

3. Intersection Matrices

Henceforth I' will always denote a distance-transitive graph, and the rows
and columns of the matriccs A, will be arrangéd as in the previous paragraph.
It follows that every matrix in the algebra U(I') has the property that in each
block the column sum is constant. For X e U{[) define ¢(X) e M, ((C) to
be the (d + 1) x (d + 1) matrix obtained by replacing each block in X by its
column sum.

Lemsa. ¢: U(I) — M,, (C) is an algebra monontorphism.

Proof. It is clear that ¢ is a vector-space homomorphism; that ¢{XY)} =
$(X) ¢(Y) may be proved directly with a little labour. To sec that ¢ is a
monomorphism consider the images of the basic set; we found in the previous
section that if B, = ¢(A4,) then

(Bn.)l‘j = Gii‘

(Note that the rows and columns of B, are labelled 0, 1, ... 4.}
Now, direetly from the definition of the structure constants,

oly = 8,; (Kronecker delta),

and so the top row of B, is non-zero only in column «. Thus {Bg, By, ... By}
is a linearly independent set, so that ¢ is a monomorphism,

THEOREM. For eacha = 0,1, ... d, A, and B, have the same set of eigenvalues.

Proof. By the lemma, A, and B, have the same minimum polynomial.
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The matrices B, are called intersection matrices; they reduce the study of
distance-transitive graphs from a problem of size nto one of size d + 1, where
d+ 1 <n.

We concentrate on A, and B, which will be abbreviated to 4 and B.
B takes the tridiagonal form

0 1
ky a b, O
¢ 4,
B = c,
0] by
| Co—1 4y J

which we shall write

Recalling the last paragraph of the previous section, this tells us that each
vertex in circle i is adjacent to b;, @;, c; vertices in circles i — 1, i, i + 1,
respectively. -

Example. Let Q, be the edge-vertex graph of the n-dimensional cube. Precisely,
the vertices of Q, are the 2" symbols (g4, ... &,) where each ¢; = 0 or 1, and
two vertices are joined by an edge wherever their symbols differ in just one
coordinate. It is straightforward to prove that @, is distance-transitive;
if 1 = (0,0, ... 0) then the vertices in circle i are those for which Z¢; = i,
and Bis

* 1 1 ...n—1n
0 0 0o .. 0 0

n n—1n-2 .. 1 *

[t i1s not quite obvious that the eigenvalues of B are
nn—2.n—4,...,—n+2, —n,

but this fact gives immediately the “Hoffmann polynomial” of Q,, the first
few of which were worked outin [7].
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4, The Characterisation Problem

We consider the guestion: which matrices can be the ©B™ matrix of some
distance-transitive graph? Several necessary conditions are plain,
(1) Bistridiagonal with non-negative integer entries.

(2) The entries above and below the main diagonal are strictly positive
(otherwise I" would be disconnected).

(3) Each column ol 8 sums to k,, the valency of I, (for distance-transitivity
implies constant valency).

Further necessary conditions involve the theorem of the previous section
stating that 4 and B have the same set of eigenvalues. First we notice some
elementary facts.

LemMa. If A and B are the first incidence and intersection malrices of some
-distance-transitive graph I then:

(a) the eigenvalues of B all have multiplicity 1;

(b) the valency k = ky of T is an eigenvalue of A and B, the corresponding
eigenveciors being u = [1,1,... 1T and v = [1, ky, ko, ... k), where k;
is the number of vertices in circle i;

(¢} k has multiplicity 1 as an eigenvalue of A and all other eigenvalues 4
satisfy 4] < k.

Proof. {a) This is a standard result on tridiagonal matrices [9, p. 155].

(b) Av = ku immediately, and il we partition « in the same way as A then
the corresponding vector of column sums is v, thus Bv = Lv.

{¢) This s the so-called Perron-Frobenius theorem [9, p. 124].

Finally we notice that each eigenvalue 4 of B is also an eigenvalue of 4 and
50 occurs with some multiplicity m{1) as an eigenvalue of 4. Remarkably, in
the case under consideration, m(1) can be computed from B alone.

THEOREM, If A and B correspond to same distance-transitive graph and have
common eigenvalue set {k,A,, ... A}, and if the corresponding eigenvectors of B
with initial entry 1 are {v, v, ... v,} then the multiplicity of }; os an eigenvalue
of Ais

u'y

I
b o

m(2;) =
where (u,); = (v));fk ;. Explicirly

m(3) =) k. ():(v;)f/k;) N .
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Progf The only proof known to the avthor at the moment is algebran ally
tedious and will not be piven here.
The loregoing resulis give two more necessary conditions for B {o arise
from some distance-transitive graph.
{4) The unique eigenvector v of B sutislying Br = kv and v, = 1 must hine
positive integer entrics,
(5) The numbers m{2,) compoted from ¢ and the other eigenvectors of B ooy
in the theorem must be positive infcgers.
If B satishes conditions 1-5 we shall say that it is feasible.

5. First Application: The Problem of Cages

DEeFIRITION. A graph is a (k, y)-cage if it has valency k, girth ¥, and no graph
with fewer vertices has these properties. (We 1ake k 2 3, v 2 3 o avoid trivial
cases.}

LemMMa. A (k, y)-cage has at least vk, y) vertices, where
1+ k+k(k— 1)+ ...+ k(k — DU ifyisedd,
S 1+ k= D+ oo+ k= DY i yiseven.
Proof [13, p. 70].
If we define a minimal cage to be a (k, y)-cage C with the smallest possible
number vy(k, y) of vertices, then although € may not be distance-transitive,

the eptries of the matrix B as interpreted in section 3 are defined and in-
dependent of the vertices chosen. We have

* 1 ... 1 1
B=]|0 0 ... 0 k-1 i yis odd,
k k—1.. k-1 =
while -
Fx 1 .1 &k
B=10 0 ... 0 o0 if yiseven.

k k—-1..k—-1*%*

The analysis of section 4 can be carried out under the slightly weaker con-
ditions obtaining here, so that the feasibility of the matrix B is necessary for
the existence of a minimal (k, y)-cage. Il can be shown that, when ¥ is even,
only y = 4,6,8,12 are feasible, while y = 3 is always possible (complete
graphs) but for ¥ = 5, only k = 3,7, and 57 are feasible. For these results,
by various nieans, and some constructions of minimal cages see [1], [3]1, [8],
[11]. We return briefly to the case y = 5in section 7.
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6. Second Application: Trivalent Graphs

If B arises rom seme trivalent distance-transitive graph then the three nan-
zeroentries in any column {except the first and last) are

1 1 2
0 or 1 or O
2 1 1.

Thus it is a reasonably simple matter to apply the leasibility tsts to such B -1
smal] size. There are ten feasible matrices for 4 5, and each one in fuct
corresponds to a graph, as shown in the following table.

d| B ko, kq, ... ks 1IV]|| Eigenvalues and Graph, references
multiplicities
2(*1 L3 413, ~1 K,
02
3% 13
31*13 1,3,2 6] 3,0 -3 Ky,
000
32> 1,41
3[*11 1,3,6 104§ 3,1, -2 Petersen’s graph
002
32* 1,5,4 [13, p. 74]
4(*123 1,3,3,1 813,1,-1, —-./3 o,
0000
321+ 1,3,3,1
41*113 1,3,6,4 4] 3,2, —/2,-3 Heawood's graph
0000
322% 1,6,6,1 [13, p.61]
5[*1123 |1,3,6,6,2 |18] 3,./3,0, —/3, —3 Pappus’s graph
00000
3221* 1,6,4,6,1 [2, p. 434]
50*1112 [1,3,6,12,6 |28] 3,2,/2--1,—1,—/2—1| [12],[14, p. 237}
00011
3221 1,8,6,86
s5|*1113 11,3,6,12,8 [30]3,2,0, —2, ~3 Tutte's 8-cage
00000
3222%* 1,9,10,9,1 [13, p. 76]
61*1122311,3,6,6,3,1120¢ 3,2,1,~1, -2, —3 Desargues's graph
000000
32211+ £,4,5,5,4, 1 [2, p-435]
61*11123 (1,3,6,6,3,1(20] 3,/5,1,0, 2, —/5 | Dodecahedron
001100
32111¢* 1,3,54,4,3
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7. Third Application: Graph< of Diameter 2

For a distance-transitive graph of valency & and diameter 2 we have

0 | 0
B=1 k a b
0 A—a—-1 k—»n

~ The eigenvalues of B are & and the roots of a quadratic equation, so that the
feasibility conditions can be formulated explicitly in terms of the puranicters
k,a,b. The author hopes to collect the known resulis on such graphs in a
later paper; for the moment if suffices to notice that great interest attaches 1o
this topic because many of the classical simple groups have representations as
automorphism groups of graphs of this kind [4]. Further, scveral of the
newly discovered simple groups occur in this way: that of Higman-Sims [6]
corresponds {0 &k = 22, ¢ = 0, b = 6, while that of McLaughlin [10] cor-
respondsto k = 112, 2 = 30,5 = 56. To round off this topic we state without
prool a trivial extension of the famous result of Hoffmann and Singleton [8].

TRHEOREM. The matrix B is feasible with a = 0 (that is, the girth is 4 or 5) and
a given b # 2,4, 6 only for a finite list of k in each case. For example,

b=1: k=375
b=3: k=2372I,183.
b=15: k=25551551155

If'b = 2,4, 6 there is an infinite list of feasible k in each case.
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