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It is a well-known result that if G and G* are dual planar graphs and T is a 
spanning tree for G, then the complement of the edges dual to T is a spanning 
tree for G*. The purpose of this note is to show how ideas of Edmonds [I], 
Gustin [2], and Youngs [3] can be used to formulate precisely the generalization 
of this result to graphs imbedded in any orientable surface. In the course of the 
work several new interpretations of standard graph-theory concepts will be 
presented. 

1. DUALITY 

In the usual sense, an undirected linear graph consists of a set V of 
vertices and a set E of edges together with a mapping which assigns to 
each edge an unordered pair of vertices. This formulation is difficult to 
handle in abstract terms, and so we use here the following notion. 

DEFINITION 1. A graph is an ordered quadruple (E, V, h, T) where E 
and V are sets (finite for our purposes), X: E + V is a surjection, and 
r: E---f E an involution. 

Intuitively, E consists of the edges taken twice, once in each direction, 
V is the vertex set, h assigns to each directed edge its initial vertex, and T 
reverses directions. Thus hi assigns to each directed edge its final vertex, 
and an edge e E E for which e = T(e) will be called a loop. 

Now if a graph (in the geometric sense) is imbedded in a closed 
orientable 2-manifold, then the orientation at each vertex determines 
a cyclic permutation of the incident edges; conversely, given such a set 
of cyclic permutations we can construct such a 2-manifold in which the 
graph is imbedded, following Edmonds [l]. Accordingly we introduce 
this idea formally. (Throughout this note, ~$3 denotes the composite 
x2 Y2 2.) 
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DEFINITION 2. A rotation p on a graph G = (E, V, h, 7) is a permuta- 
tion p: E -+ E such that Ap = A. 

The condition hp = A ensures that p induces, for each v E V, a permuta- 
tion of X-l(v), the set of directed edges starting from v. It will clarify the 
situation if p is not yet required to be cyclic on each h-l(v), but it will be 
necessary to have a word to signify when this is the case. 

DEFINITION 3. A rotation p on G is smooth if p is cyclic on h-l(v), 
for each v E V. 

Suppose now that a graph G and a rotation p on it are given. Then let 

E* = E; 

V* = Ejpr, the set of orbits of pr: E --+ E; 

A* : E* + V* be the quotient mapping E -+ Elpr; 

7* = 7; 

p* = PT. 

It is immediate that G* = (E*, V*, X*, T*) is a graph and that p* is a 
smooth rotation on it. Intuitively, the orbits of pi are the edges belonging 
to a “face” of G when it is imbedded using the rotation p. 

DEFINITION 4. The dual of a pair (G, p) consisting of a graph G with 
a rotation p on it, is the pair (G*, p*) defined above. 

The duality construction can be iterated to give a double dual (G* *, p * *) 
which turns out to be in natural one-one correspondence with (G, p) 
provided p is smooth. 

2. PERMUTATIONS 

If rr: X-+ X is a permutation of a finite set X we shall write c(n) = 
1 X/r 1 for the number of orbits of r’; when the cyclic ordering of the 
orbit sets induced by rr is relevant we shall refer to the cycles of VT. (Some 
care is necessary in using the standard notation which ignores orbits of 
length 1: thus if X = {1,2,3) and v = (12) then c(r) = 2, not 1.) A 
transposition is a permutation with just one orbit of length 2, all others 
being of length 1. Thus the involution r: E--t E in the definition of a 
graph is the composite of a number of transpositions, and if there are 
no loops then C(T) is the number of undirected edges. 

The following trivial observation is basic. 
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LEMMA 1. If rrr: X + X is a permutation and o: X + X is a transposition 
written cr = (xx’) then 

c(n-0) = I 
44 + 1, $x and x’ are in the same orbit of n, 
c(r) - 1, if x and x’ are in different orbits of T. 

3. THE CHARACTERISTIC AND ITS APPLICATIONS 

We begin the main argument with a definition that generalizes the Euler 
characteristic. 

DEFINITION 5. If p is a rotation on a graph G then the characteristic 
of (G, p) is the number 

x(G P> = I v I - 4’) + 4~4. 

A trivial consequence is: 

LEMMA 2. If p is a smooth rotation on G then 

x(G, P> = x(G*, P*> = 4~) - 4.4 + 4pd. 

Thus, in order to compute the characteristic, it is necessary to discover 
how the number of orbits of p changes as p is composed with successive 
transpositions of the involution T. .It will be convenient, in order to 
clarify the exposition, to suppose henceforth that G has no loops. 

Let S be a symmetric subset of E, by which we mean that T(S) = S, 
and let TV denote the permutation of E consisting of the transpositions 
of the elements of S; that is 

44 = ! +9, if e ES, 
e 
3 if e $S. 

In our study of the process in which p becomes pr through composition 
with transpositions we try first to reduce p to a single orbit. If there is a 
symmetric subset S of E such that c(p~s) = 1 then we shall call S a 
spanning subset of (G, p). Looking back to Lemma 1 we see that such a 7s 
must consist of at least c(p) - 1 transpositions, and that, since the effect 
of composition depends only on the orbit sets and not their cyclic structure, 
if S spans (G, p) then it also spans (G, p’) where p and p’ have the same 
orbit sets. In particular, this is the case if p and p’ are two smooth rotations 
on G. 
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DEFINITION 6. A graph G is connected if, for some smooth rotation p 
on G (and thus for all such), there is a TV consisting of c(p) - 1 transposi- 
tions such that c(p~J = 1. S is called a spanning tree for G. 

It is clear that any spanning subset of G contains a spanning tree 
for G. It is an instructive exercise to show that these definitions are 
equivalent to the usual, more intuitively meaningful, ones, but this is not 
essential for our present purposes. 

Now if G is a connected graph without loops and S is a spanning tree 
for G, put R = E - S so that R is symmetric and rR consists of 
C(T) - c(p) + 1 transpositions. In order to find c(PT) it is sufficient, 
since pr = prsrR, to examine the changes which take place when the 
successive transpositions of TV are composed with the single cycle p7s . 
Suppose that, when this is done, in some order, the number of orbits 
increases by 1 at p stages and decreases by 1 at m stages. Then 

p + m = C(T) - c(p) + 1, 

p - m + 1 = c(pT>, 

whence 

x(G, f’) = C(p) - C(T) + c(pT) = 2 - 2m, 

where m is an integer >O. Thus we recover the classical result that the 
Euler characteristic of a graph imbedded in orientable surface must be 
an even integer <2; we also have a new interpretation of the genus (m) 
of an orientable surface. It is also immediate that p and m do not depend 
on the spanning tree S or the order of composition of the transpositions 
in TR . Furthermore, since 

C(PTT~) = c(~T~TR~) = C(~T~) = 1, 

we see that R spans (G”, p*) and so R contains a spanning tree for G* 
which must have 

C(pT) - 1 = p - m  = C(TR) - 2m 

edges. Our final result is: 

THEOREM. Zf G is a connected graph without loops and p is a smooth 
rotation on G, S any spanning tree for G, then the complement R of S 
spans (G*, p*) and contains a spanning tree of G* which consists of all but 
2m undirected edges of R, where m is the genus of (G, p). 
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