ON TRIVALENT GRAPHS

N. L. BIGGS anp D. H. SMITH

1. Introduction and results

In this note we determine completely a class of highly symmetrical trivalent
graphs. The existence of a similar classification for graphs with valency greater than
3 remains an open problem (compare the remarks of Thompson [5]).

We deal with finite, undirected, connected graphs, and denote the distance
between two vertices # and » of such a graph I by d(u, v).

Definition. T is a distance-transitive graph if, for any vertices u, v, x, y, of T
for which d(u, v) = d(x, y) there is an automorphism 4 of I" such that uh = x, vh = y.

I" is an automorphic graph if it is distance-transitive and the group H(T) of all
automorphisms of I" acts primitively but not doubly transitively on the vertices of
I.

THEOREM. There are exactly 12 trivalent distance-transitive graphs, and just 3
of them are automorphic.

The twelve graphs are listed in the third section of this note. A quick description
of the three automorphic graphs (iii), (vii) and (xi) is as follows. Let the symbol
(nls), or (x,n|s) if the names of the vertices are important, denote the polygon with
vertices X, ..., X,~; and edges x,;x;,, for i =0,1,...n—1 where the suffixes are
taken modulo #. Then the smallest trivalent automorphic graph (Petersen’s graph)
may be constructed by taking five edges x;y;, i =0,1,...4, together with the
polygons (x, 5/1) and (y, 5/2); the usual representation of this graph is shown in
Fig. 1, together with a hopefully self-explanatory symbol for it.
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Fig. 1

Similarly, the remaining two automorphic trivalent graphs can be described by
the symbols shown in Fig. 2, the first of which (for example) implies that we take
seven copies of the graph shown and form a trivalent graph by joining the “free”
ends by the polygons indicated.
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Fig. 2

2. Theory of distance-transitive graphs

Associated with every distance-transitive graph I' is a tridiagonal matrix of
size (d+1) x (d+1)
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in which k and d are the valency and diameter of I" and the integers c;, a;, b; are
defined as follows: let u and v be two vertices of I' for which d(u, v) = i, then the
number of vertices w of I" such thatd(w,v) = 1 and d(w, ) = i—1,1i, i+1 respectively
is defined to be c;, a;, b; respectively. These numbers are easily seen to be independent
of the apparent choices. We shall need to denote the columns of P by p,, py, ..., Pa-

Now not every tridiagonal matrix of integers can arise from a distance-transitive
graph, since, for example, we must have c;+a;+b; = k. Another elementary con-
straint comes from counting the sets of vertices

T'i(u) = {wld(u, w) = i}.
Setting k; = |I";(w)| we find k, = 1, k; = k, k, = kb,/c,, and generally
ki=ki_ybi-/c;

Thus the entries of P must be such that the numbers k; so defined are integers.

In addition to such simple conditions derived from combinatorial considerations
there is a much deeper (and more restrictive) condition which must be satified.
This is due, in a different form, to D. G. Higman [3]. We note first that P has d +1
distinct real eigenvalues k = A, > A, > ... > A;, and so for each 4, there is thus a
unique left eigenvector u; with first entry 1, and a unique right eigenvector v; with
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first entry 1. The condition we require is that, for i =0, 1, ...,d the numbers

(uo, vo)
(“l’ V,-)

must be integers (where (,) denotes the usual inner product). For a proof in these
terms, see [1].

3. Trivalent graphs

The columns of the matrix P (except the first and last column) have just three
entries which are not identically zero and if I" is a trivalent (k = 3) distance-transitive
graph then these must be of one of the following types:

1
A 0 B: 1 C: 0
1 1

It is thus a fairly easy matter to enumerate all such matrices of a given size and
to apply the tests of the previous section on an electronic computer. These criteria
turn out to be very restrictive. There remain two steps before the classification of
trivalent distance-transitive graphs is complete. One step is to decide if a matrix
which passes the tests does in fact correspond to a distance-transitive graph, and if
so, whether or not the graph is unique. The uniqueness is quite easy in these cases,
and there are very few ‘ redundant ” matrices, so we shall not pursue these details
further here. See [4].

The other step is crucial. We shall show that there is an upper bound for the
diameter d of a trivalent distance-transitive graph. In the terminology of Tutte
[6, 9] such a graph is edge-transitive and so is s-regular for 1 < s < 5.

This means that the order of the stabilizer of any given vertex is 3.2°"! and we
deduce that each integer k; is a divisor of 48. From the recurrence k; = k;_, b;_,/c;
it follows that py, ...,ps, cannot all be of type A4, and that p, ..., p; cannot all be of
type A with ps of type B. Thus there are two cases to consider: letting j be the
smallest integer such that p; is of type B or C, we have

6.

Case 1: p; is of type C with 1 < j <
Case 2: p; is of type B with 1 <j < 5.

LemMA. 1. Incase 1,d < 2j.

Proof. Suppose d > 2j. Then we can choose weI',;(u) and ve I () such
that d(v, w) = j. Now because p;is of type C, u and v are on a circuit of length 2j.
But d(v, w) = d(u,v) = j, so v and w must likewise be on a circuit of length 2j; this is
impossible since there is only one vertex of I';,,(u) adjacent to v. Hence d < 2j.
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LEMMA 2. Incase2,d < 3j.

Proof. Suppose d > 3j. The following schematic diagram may illuminate this

proof (Fig. 3).
0—‘—-—:-- ‘1——4—'—'&—0---——'
u v W X

Fig. 3

We choose vertices ve I';(u), we I'y;(u), xeI';j(u) such that d(v, w) = d(w, x) = j.
Then because p; is of type B, « and v lie on a circuit of length 2j+1, and hence so
must » and w. Thus p,; must be of type C. Now w and x must also lie on a circuit
of length 2j+1 and this is impossible. Hence d < 3j.

We conclude that d < 15 in all cases, and so the computational criteria need only
be applied to a finite number of matrices of relatively small size.

4. Table of trivalent distance-transitive graphs

Diameter Number of vertices Name, description, reference.
() 1 4 K,.
(i) 2 6 K; ;.
(iii) 2 10 Petersen’s graph.
(iv) 3 8 Cube.
) 3 14 Heawood’s graph, [8, p. 61].
(vi) 4 18 Pappus’s graph, [2, p. 434].
(vii) 4 28 See section 1, also [7].
(viii) 4 30 Tutte’s 8-cage [8, p. 76].
(ix) 5 20 Dodecahedron.
x) 5 20 Desargues’s graph [2, p. 435].
(xi) 7 102 See Section 1.
(xii) 8 90 Related to (viii). See [4].
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