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Abstract. In this paper we shall show how combinatorial methods can be applied to
the study of maps on orientable surfaces. Our main concern is with maps which possess
a certain kind of symmetry, called vertex-transitivity. We show how an extension of
the well-known method of Cayley can be used to construct such maps, and we give
conditions which suffice for the automorphism groups of these maps to have non-
trivial vertex-stabilizers. Finally, we investigate the special case when the skeleton
of the map is a complete graph; a classical theorem of Frobenius then implies that all
vertex-transitive maps are given by our extension of Cayley's construction.

1. Introductory definitions. Let us denote the two-element set { + , —} by A. Our
basic definition is that a map consists of a finite set E of edges, together with a permuta-
tion p of the set S = E x A. The elements of 8 are called sides, and we abbreviate the
sides (e, +), (e, —) to e+, er respectively. If M denotes the map (E,p) we shall say that
p is the rotation in M.

The involution T: S ->• S which interchanges the sides e+ and e~ for each eeE will be
said to reverse sides, and the permutation p* = pr (r followed by p) of 8 gives rise to
a dual map M* = (E,p*). We refer to p* as the dual rotation on M.

Underlying the map M is its skeleton graph Y(M) whose vertices are the orbits of p
on S and whose edges are the edges of M. An edge e is incident with a vertex u if and
only if either e+ or e~ belongs to the orbit u of p on 8. We also say that the side s is
incident with the vertex (orbit of p) to which it belongs. Thus an edge is incident with
either two vertices or one vertex (in which case it is a loop), whereas a side is incident
with precisely one vertex.

The set of sides incident with a given vertex of Y(M) is an orbit of p, and so has
a cyclic ordering determined by p. This corresponds to our intuitive picture of the
situation when a graph is drawn on an orientable surface, and explains the motivation
behind our terminology. If Y = Y(M) we often speak of the rotation p as providing
an imbedding of Y.

In the case when the graph F(M) is a simple graph, that is, when it has no loops or
multiple edges, there is an alternative description of p in terms of the vertex set V of
Y(M). For each vertex ueV we let the star of u, written st(u), denote the set of
vertices v for which there is an edge of M incident with u and v. The hypothesis
that Y(M) is simple means that u$sb(u) and that for each vest(u) there is a unique
side s such that s is incident with u and T(S) with v. Thus S may be identified with a sub-
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382 NORMAN BIGGS

set of V x V, and E with the corresponding set of unordered pairs. Now the rotation p
in M may equally well be described in terms of its cycles, of which there is one, say pu,
for each vertex u of T(M), and pu can be interpreted as a cyclic permutation of st(u).
We shall speak of the vertex-description of p as being this set {pu} of cyclic permutations,
given by p(u, v) = (u,pu(v)).

We notice that the dual map M* = (E,p*) also has a skeleton graph T(M*) whose
vertices we call the faces of M. Thus the vertices F, edges E, and faces F, of M are
respectively the vertices of T(M), edges of M, and vertices of T(M*). It can be shown (l),
by purely combinatorial arguments, that there is a non-negative integer g = g(M),
called the genus of M, such that | V\ - \E\ + \F\ = 2 - 2g.

Finally, we define an automorphism of a map M = (E,p) to be a permutation a of
S such that ap = pet and ar = ra. Clearly ap* = p*a also. The group of all such auto-
morphisms of M is the automorphism group, Aut M, which is by definition a permuta-
tion group on the set S.

In the case when Y(M) is simple, Aut M is also a permutation group on the vertex
set F. For, since ap = pa, an automorphism a induces a permutation (also called a)
of V, and when S is a subset of V x V the two are related by a(u, v) = (au,ccv). The
condition ar = ra is automatically fulfilled in this notation.

Now in this case the rotation p can be given by what we have called its vertex-
description; in terms of this, the condition that a should be an automorphism becomes
pau(av) = apu{v). In other words,

pau = apua~1 for each ueV. (1-1)

2. Vertex-transitive maps

PROPOSITION 1. If ae AutM and a(s) = s for some seS, then a is the identity. (In
other words no non-identity automorphism of M can fix a side of M.)

Proof. If a fixes s, since ap = pa we see^that a fixes all sides with the same vertex
as s. Also, since ar = ra, it follows that a fixes T(S), and consequently all sides with the
same vertex as T(S). Proceeding in this way, since M is connected, we deduce that a
fixes all sides and so is the identity.

We now consider Aut M as a permutation group on the vertex set V of M. In this
context the preceding proposition states that if the automorphism a fixes a vertex u
then it does not fix any vertex adjacent to u, unless of course a is the identity. Thus if
A = Aut M, and Au denotes the stabilizer of the vertex u, we see that an element a
of Au is determined by its action on st (u).

Our next proposition is expressed in terms of the vertex-description of p for maps
M with Y(M) a simple graph.

PROPOSITION 2. If M is a map with T(M) simple, and u is a vertex of M, then the
group of automorphisms of M which fix u is isomorphic to a subgroup of the cyclic group
generated by the permutation pu of st (u). Thus the order of the stabilizer group is a divisor
of the valency of u.

Proof. Let a be an automorphism of M fixing u. By (1-1) pau = apuarx, that is
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Gayley maps and symmetrical maps 383

For convenience let /? denote the permutation of st (u) induced by a, and label the
vertices of st{u) as xvx2,...,xk where pu = (x1x2...xk). Suppose /?(%) = vy, then
a simple calculation shows that fi(vt) = pi~1(vi) for all i = 1, 2,..., k, and so /? = pi"1.
Thus each automorphism a fixing u is equal to a power of pu on the vertices adjacent
to u. But a is determined by its action on st (u) and so the subgroup of Aut M which
fixes u is isomorphic to a group of powers of pu, that is, a subgroup of the cyclic group
of order k generated by pu.

We now define a map M to be vertex-transitive if Aut M is transitive in its action on
the vertex set V, and symmetrical if Aut M is transitive on the set S of sides. If M is
symmetrical then Aut M must in fact be regular on S, from proposition 1, and the
order of Aut i f is \S\ = 2\E\ = nk, where n = \ V\ and k is the valency of F(M).

If M is vertex-transitive, then the vertex-stabilizers are all conjugate in Aut M,
and have order d, a divisor of k, so that Aut M has order nd.

3. Gayley maps. For any group G we denote by (?* the set of non-identity elements
ofG.

Suppose G is a given abstract group and X <= G* is a set of generators for G with
the property that X-1 = X (that is, xeX => x^eX). For any cyclic permutation
r : I - > - I w e define the Gayley map M(G, X, r) as follows: M has edge set E which is
the subset of the set of unordered pairs {gr,, g2} for which gx and g2 are in G and gi1 g2 e X.
(Since X = X~x this definition is precise.) We may take the set S of sides to be the
corresponding set of ordered pairs, and define the rotation p: S -> S by

Since r is cyclic, it is clear that the orbits of p (vertices of M) are in bijective corre-
spondence with the elements of G, and we shall write them as such. Thus F(M) is
a simple graph, with vertex set G, and it is easy to see that it is connected as a con-
sequence of the fact that X generates G. The vertex-description of p is given by
Pg{gx) = g. r(x) for each g e G and xeX.

PROPOSITION 3. Any Gayley map M(G, X,r) is vertex-transitive.

Proof. For each g e G define g: S -> S by g(glt g2) = (ggv gg2). I t is straightforward to
check that g does in fact take values in S, and it is an automorphism of M since

-1 gg2))

It follows that Aut M is transitive on the vertex set G of M.
It is not true that a Cayley map is symmetrical —in many cases the automorphism

group of M(G, X, r) will consist only of the automorphisms g constructed in the proof
of Proposition 3, so that in these cases Aut M x G.

However, it is possible to be more specific about the conditions which suffice for
the automorphism group of M(G, X, r) to be larger than G. Since M is in any case
vertex-transitive, all vertex-stabilizers will be isomorphic, and we need only describe
one of them, say the stabilizer Av where 1 is the identity in G and A = AutM.
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384 NORMAN BIGGS

PROPOSITION 4. With the notation above, suppose that ra: X -*• X is a power of r which
extends to a group automorphism y: G ->• G. Then y, regarded as a permutation of the
vertex set G of M(G, X, r), belongs to the stabilizer Ax.

Proof. Since 7 is a group automorphism, y(l) = 1. We must show that 7 is an auto-
morphism of M. First, if (glt gz)e8 then gx

1g2eX so that

and consequently y(gltg2) = (y(di),7(Hi)) is in 8. Secondly, we have

7P(9i,92) = y(<7i>S'i-r(9'I1sr2))

= (7(9i),y(9i)-r(7(9)~17(92)))

Thus ysAlt as required.
I t follows from this proposition that if r itself extends to a group automorphism of G,

then M(G, X, r) is a symmetrical map.
We conclude this section by showing how the genus of a Cayley map may be cal-

culated. For a given M(G, X, r) we let r*: X -»• X be denned by r*(x) = r(x~l), and
note that r* is not necessarily cyclic. Suppose r* has t cycles wx, w2,..., o)t in its action
on X, and if wi = (xxx2...Xj) let mi denote the order of the element xxx2...Xj in G.
This mt is well defined, since a change in the initial member of the cycle 0^ results in
a conjugate element of G. The set mlt m2, ...,mtis the set of periods of M and standard
arguments show that the number of faces of M is

\F\=n^m^ (3-1)
i = l

where n = \V\. Since \E\ = \nk, where k = \X\, we deduce that the genus of M is

given by 4:(g - 1) = n(k - 2 - 2IlmJ1) (3-2)

which is the form taken by the classical Riemann-Hurwitz formula in our present
context. The arguments which are given, for example, in ((3), p. 398) adapt readily to
give the necessary proofs.

4. Complete maps. In this section we shall investigate maps M for which T(M) is a
complete graph, that is, those maps in which each pair of distinct vertices is adjacent.
This special case is the subject of the classical Heawood Problem(7), and the basic
work of Gustin (4) hi that context is founded on a generalization of Cayley's construc-
tion which is related to that described in the previous section. However, our concern
is with maximizing symmetry, rather than minimizing genus, and we shall explore
ideas not directly relevant to Heawood's Problem.

The result of proposition 1 implies that, if Y{M) is a complete graph, then a non-
identity automorphism of M can fix at most one vertex of M. Thus, if M is a vertex-
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Cayley maps and symmetrical maps 385

transitive map, the permutation group Aut M acting on the vertex set V is a Frobenius
growp ((b), p. 10). The remarkable result of Frobenius states that such a group has
precisely n— 1 (where n — \V\) elements which fix no point, and that these, together
with the identity form a regular normal subgroup of Aut M. This vital fact has the
following consequence.

PROPOSITION 5. Any vertex-transitive map M with T(M) a complete graph Kn, is in
fact a Cayley map M(G, £?*, r) with G a group of order n.

Proof. Let the vertex set F of M be {0,1,2,..., n — 1}, and let G be the regular normal
subgroup of Aut M guaranteed by Frobenius's theorem. There is a bijection ft: V -»• 0,
written i -> fit, defined by the statement that Pt(0) = i. We note that /?„ is the identity
ixxG.

Suppose the given map M has rotation p; we may then define a cyclic permutation
r: 6r* -»• Gs by insisting that r(/?f) = priori 4= 0. (Here p0 denotes the cyclic permuta-
tion of V — {0} induced by p at the vertex 0.) We shall show that with these definitions
M(G, (?*, r) is equivalent in an obvious way to the original map M.

That is, if <r denotes the rotation in M(G, £?*, r) derived from r as in (3-1), we show
that cr and p correspond under the bijection ft.

Now 0p(i,j) = P(i,Pi(j)) = (A.fltffl), whereas <r/3(i,j) =-<r(/?i,/?>) =
so that we have to show that fli.r(fii1fij) is the same as

Let fih = fi^Pj and use the definition of r:

Since fit is an automorphism of M

PiPo = Pa,<o)Pi = Pifii>
and so

In other words, pt P^) ^s ^n e element of G (which is regular on V) which takes 0 to
Piij). Thus it is /2p0, as required.

The converse to proposition 5 is clearly true, for any Cayley map M(G,G*,r) is
vertex-transitive, by Proposition 3, and its skeleton is a complete graph. Thus we have
a classification of vertex-transitive imbeddings of complete graphs.

It is possible to go further, since in this particular case the converse of Proposition 4
holds, and we can determine the full automorphism group of such a map in terms of G
and r alone.

PROPOSITON 6. Let A be the automorphism group of the Cayley map M(G,G*,r),
and Ax the stabilizer of the vertex 1 (the identity in G). Then A1 consists of those powers of
r: G -> G which when extended by putting r(l) = 1, are group automorphisms of G.

Proof. We need not distinguish between r: G* -> G% and its extension to G which
fixes 1. From Proposition 4 we know that if ra is an automorphism of G it is an auto-
morphism of M (G, G%, r).

For the converse, we require the fact that in the case of M(G, G*, r) the subgroup
Q of A consisting of the automorphisms g (Proposition 3) is normal in A. Thus if
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386 NORMAN BIGGS

ra eAlt ragr~a is in &, and since it takes the vertex 1 to ra(g), it is ra(g). Now for any g,
heG we have ^^, ^ ,^_, / ^ w

ra(gh) = raghr~a = ragr-a.raKr-a =

whence ra(gh) = ra(g») ra(h) so that ra is an automorphism of G.
We may now summarise our results on vertex-transitive imbeddings of complete

graphs. Such a map is a Cayley map M(G,G*,r) and its automorphism group is
a Frobenius group whose Frobenius kernel is G and Frobenius complement is the
cyclic group given by Proposition 6. Furthermore, the genus of the map is given by
the formula (3-2). Thus everything is determined by G and the cyclic permutation
r of (?*.

In particular we notice that M(G, (?*, r) is a symmetrical map if and only if r itself
is an automorphism of G. In order to see for which values of n = \G\ it is possible for
G to have automorphisms with the cycle structure of ra, we proceed as follows.

Since ra (a < n— 1) acts without fixed points on 6r* we know ((5), p. 501) that for
each prime p dividing n there is a Sylow f»-subgroup of G which is setwise fixed by ra.
Since ra consists of cycles of length d = (n — 1 )/(n — 1, a) we have

d

where n = pp.p^...pp is the prime factorisation of n. As extreme cases we see that:
(i) ifr itself is an automorphism of G, so that M is symmetrical and d = n — 1, we must
have n = pe, a prime power; (ii) if TO = 2 (mod 4), we can only have d = 1, and so any
vertex-transitive map with skeleton Kn for such n has a trivial vertex-stabilizer.

In (2) the present author showed that symmetrical imbeddings of Kn do exist for
all prime power values of n = pe. In our present notation these are constructed by
taking G to be the elementary Abelian group (Zp)

e underlying the field GF(pe) and r to
be the cyclic permutation given by r(g) = gu where u is a primitive element of GF(pe).
The genus of these maps is easily calculated, for the formula (3-1) shows that there are
n faces if p = 2 or n = 1 (mod 4), but 2n faces if n = 3 (mod 4).
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