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EXPANSIONS OF THE CHROMATIC POLYNOMIAL

Norman BIGGS
Department of Mathematics, Royal Holloway College, Englefield Green, Surrey, England
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Abstract. The chromatic polynomial {or chromial) of a graph was first defined by Birkhoff in
1912, and gives the number of ways of properly colov :ing the vertices of the graph with any
number of celours. A good survey of the b-sic facts about these polynomials may be found in
the article by Read [3].

It has recently been noticed that some classical problems of physics can be expressed in
terms of chromials, and papers by Nagle {2, Baker [1], Temperley and Lieb [4], are concerned
with methods of expanding the chromial for use in such problems. In this note we shall unify.
simplify, and generalise their treatments, confining our attention to the theoretical basis of the
methods.

1. Subgraphs and separability

We shall be concerned with finite graphs I', with edge-set £ T" and
vertex-set V' I'; loops and multiple edges are allowed. For any subset
S € ET we define the edge-generated subgraph (S);. to be the graph
whose edges are the edges of I' in S and whose vertices are the vertices
of I incident with edges in S. If the context is clear, (S is abbreviated
to (S).

The set of all edge-generated subgraphs of I is denoted by A(I"); thus
A(I") has 2Tl members in bijective correspondence with the subsets of
ET. We note the existence of the empty subgraph (().

There is no loss of generality in restricting attention to those graphs
which have no isolaizd vertices; that is, graphs I' for which<ET) =T
With this restriction in mind, we define a graph I to be szparable if ET
is the disjoint union of two non-empty subsets £, , E,, such that

VKE)UVU VIE,) =VT,
WVE)DN ViE))=0o0r1.

* Original version received 21 March 1972.
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T* : empty graph, and a graph with a single edge, are not separable.

The blocks of a graph are its maximal non-separable edgec-generated
siibgranhs. The symbol B(I') will denote the set of blocks of I'; thus, if
I' is non-separable, B(I') = {I"}. In order to avoid confusion, it is worth
remarking that a separable graph (in our terminology), may be discon-
nected. If this is the case, each component is either a block or a union
of blocks joined at cut-vertices.

2. The logarithmic transforination

This section simplifies the wor« of Tutte [§, pp. 307-317].
Let 7 be any function define:* for each graph of the kind we are con-
sidering, ard taking non-negative real values such that

ql“ P _ 1, ifEF=$’
(2.1} (') = n 7(A) . otherwise .
AEB()

Then we define a new function T by

(22) TM)= 2 7S,
SCET
We note that if ET" = @, T(I") = 1.
Lemma 2.1. If T is separable via the partition ET' = E, UE,, then
T)=T(EDT(E,).
Proof. For each S C ET, let Sy =SNE, S, =8NE,, and write
I'; =<Z)), Ty =(E,). Then if §; and S, are non-empty, the blocks of
($). are precisely (S, dp, and (5, ’r,> and so

TS ='.r(S1)Fl 'r(Sz)F2 .

If either or both of S, S, are empty, this equation remains valid for
trivial reasons. Hence

TM)= 2 nS= 2 Y nS)HrS)=T{,)TT,).
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We now define L (I') = log 7 (I") and

LIO)=-DET 25 (=)' LS, .
SCEr

Again we note first that if ET" = @, then L I") = log T(I"} = 0. The im-
portance of L stems from the fact that this conclusion remains true if
I" is separable.

Lemma 2.2. If T is separable, L (") = 0.

Proof. We shall make use of the elementary identizy:

> (== 0 if Yisnon-empty ,
Xcvy ) i if Yisempty.

Suppose I' is separable via the partition FT" = E 1 Y E, and recall the
notation of the previous proof. By the result of Lemma 2.1, we know
that 7(S), = T4Spr, T{Syy, forall § S ET, and so

Consequently,

LIO)==DET 33 (=1, 5 LS
SCEr

S1CEy Sy7 Ey

=(—1)"5‘"[Z) D'Lsp T (-

S1SE 5, S E,
+ ="'y X (»-1)‘51‘].
S, CE, S| CE|

Since £, and E, are both non-empty, our elementary identity shows
that the whole sum is zero.

Our next result is an inversion formula.

Lemma2.3.L(D)= 2, I(S).
SCETD
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Proof.
2 IS 2 (DS T (DR LR

SCET SCET RES

from the definition of L, and using ihe fact that (R) as a subgraph of
(S) is, the same as (R) as a subgraph of I'. The right-hand side is, writing
Q=S\R,

E E (_1)|R§+IQI(_1)IRIL(R)=

RCEr QCET\R

= 27 LR 2 (-D9=LEM=LD),
RCET QCET\R

since ‘h2 inner sum is nonzero only when R = ET.

The function T is defined as a sum over the set A(I") of all subgraphs
of I'; Lemamas 2.2 and 2.3 give an expansion of L = log T in terms of the
much smaller class N(I') of non-separable subgrajhs of I'.

Theorem 2.4. With the above definitions we have

L= 22 L.

ASND)
Equivalently, we have a multiplicative expansion

Ty= 11 Tw,

AEND)

where T =exp L.

Thus we can regard the logarithmic transformation as converting an

additive expansion of T into a multiplicative one ir-volving far fewer
terms.

3. Additive expansions of the chromial

For each natural number u let [u] denote the set {1, 2, ..., u}, and
[u]¥ the set of all functions x : X ~ [u]. Suppose ve are given a graph
I'; then for each x € [1]¥T we have an associated indicator function
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X:ET - {0, 1} which is defined as follows: X(e) = 1 if there are verticcs
vy, U, incident with the edge e such that x(v; ) # (v, ) and x(e) = 0
otherwise. In particular &(e) = 0 if e is a loop.

Now for each ¢ € R and u € N we have a weight function

W, u)=u=VT 35 T1 (k) —1).

xe [u]VP ecEr

In other words, W(T'; ¢, 1) is the mean value of the product in the right-
hand side taken over all functionsx : V'T" - [u].

Lemma 3.1. If C(I'"; u) is the chromial of T, then

C(; ) =u'VT W(I; 0, u) .

Proof. Consider the product Il g -&(e). This is zero unless x is a proper
colouring of I" with values in {1, 2, ..., u}, and then it takes the value 1.
Thus u'Y™ W(I"; 0, u) is the number of proper colourings of .

Lemma 3.2. (i). If " is separable via the partition ET' = E, U E, and
Pl = (El)’ Fz = (E2>, then

W t,u)=W(T;t,u) W, t,u).

(ii). Ff e is an edge of T" which is not a loop, and T"', T'"', denote the
reduction and contraction of I" with respect to e, then

W e, wy=(0 =) WT; e, u) —u " WI'5 ¢, u) .

Proof. (i) This is proved by elementary manipulation of the sums of
products involved.

(i) As a temporary notation, let X = «'V' W. Then if the vertices of e
are g and b, split the sum over x € [u] YT into two parts, one containing
those terms for which x{a) # x(b) and the other those terms for which
x(a) = x(b). The first sum is of the form (1 — £) Y since X(e) = i therein;
and the second sum is (—#) X (I'""). That is,

XD)=1-nDY+ -DxT".
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Pr- -eeding in the same way with I, we find
xXarHy=vY+xa@’.

Eliminating Y gives
XMH=0-npxXT)-xI,

and since |VTI=1VI'I=1VT"l+ 1, we have the resuit on substituting
for Iv.

Our basic result about the weight functions now follows. It can be
regarded as a simple translation theorein.

Theorem 3.3. For any graph T, real numbers s, t, and natural number u,
we have

W(T:s,u)= 22 W(ES) s+t u)tETI-IS
SCETr

Proof. From the defirition we have

Wr;s,w)=u"'VT" 25 [T e)—-ys).

x € [u] VT ecEr

=~V 3 [T Gey-G+n+1)

xe u}VT ecEr

=~ VT YT h) [T {&(e)=(s+62} tETI-18,

xe[ulVT SCET ees

Now if ¥ = V'(S), each function in [#]"T is the extensionof u'” ~'~ V0

L 4 . .
functions in [¢#] " 0; hence we may rewrite our double sum in the follow-
ing way

_ = -
W;s,u)=u""VT" 5 47T
SCED

X 24 . TT {&(e) - (s + 1)} ¢1ETI= 13

xefu] Yees

= 27 W{S): s+t u)t'ETI=181
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Corollary 3.4. Putting s = 0, we obtain

u VT O u)= 25 WES): ¢, u) tETI-IS1
SCEr

This corollary is a generalisation of the expansions of Birkhoff and
Whitney [6] and Nagle [2]. If we put £ =1, W ({(S); 1, u) is the mean
value of the product I, ¢ (%(e) — 1) and this product is (—1)'S' if x is
constant on each component of (S}, and zero otherwise. Hence if
denotes the set of components of (S), we have

W‘((S); 1’ u) = uﬁ‘VO' (_I)ISI u“"b‘ ,

and consequently

Cl,u)= 2 (-1)!STy WTl= Wl +1Cy .

SCET

This is the Birkhoff—Whitney expansion; all susgraphs have to be con-
sidered, but their weights are easily fouad.

Nagle’s expansion is obtained by putting # = § — «~1 1In this case
many subgraphs have weight zero, for Lemma 3.2 shcws that this is so
for any graph with a bridge (and consequently for any graph with a
monovalent vertex). Further, another application of Lemma 3.2 shows
that divalent vertices can be ignored, so that the weight in this cuseisa
homeomorphism invariant. Thus Nagle’s expansion depends upon a
restricted class of subgraphs, but the determination of the relevant
weights is a relatively difficult matter.

4. The logarithmic expansion of the chromial
If we take ¢t > 0 in the previous section and write

(4.15 (it u)=W(; t,u) ETY

then 7 is a funiction satisfying the conditions (2.1) and the function T
defined by (2.2) is



112 N. Biggs, Expansions of the chromatic polynomial

TT:t,u)= 2 T({&tu)

2 WESY;t, u) 'S
SCET

u- vri t- IET ! C(F, u) .

The last equality follows from Corollary 3.4.

We now use the logarithmic trarsformation to get an expansion of
the chromiai in terms of non-separable subgraphs. We use the notation
of Section 2, with the functions 7', L, L, T, defined in terms of the par-
ticular 7 function given avove. Thus from Theorem 2.4 we heve

(4.2) u W ~EM oy =T@; t,u)= 1 T(A;t,u).
AENT)

At first sight it would appear that different values of ¢ will give dif-
ferent expansions, as in the additive case. Remarkably, this is not so.

Lemma 4.1. (i) If I denotes the graph with one edge joining two distinct
vertices, then T(I; t,u) = t"1 (1 —u™1).

(i1) If T is any non-separable graph with more than one edge, then
T(T; t, u) is independent of t.

Proof. (i) Explicit calculations starting from the definition o W give

Wt )= -0 —ul, sWit,w)=1=D—ut 1,
TUi, )= —u 1y,

and finally 7(/; ¢, u) = ! (1 — u~1) as required.
(ii) We use the formula for L = log T in terms of the chromial. We
have

L) =(DET 35 (=DS'L(S)
SCFEr

= (—1)Er! Sé) (—1)'s! lc»g[u_woit"J"('7(’(.5'); w)] .
CETr

)

The part of this which depends (apparently) on ¢ is
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20 (—DSogriS=(logs) 25 (—1)S™1 sy,
SCET SCEr

Now this sum is zero unless |ET|= 1, so we have the result of part (ii),
and incidentally verification of part (i).

If we let N* (I') denote the class of non-separable subgraphs of I'
with more than one edge, the multiplicative expansion of the chromial
in terms of N* (") is explicitly independent of ¢:

Theorem 4.2. If we write T(A; t,u) = Q(A; u) when |EAl> 1

Cuwy=u" (1 - HEY  TT  0A;u).
AEN*(I‘)

Proof. This follows from (4.2) and the results of Lcimma 4.1.

The expansion of Theorem 4.2 is a version of thz onc found by
Baker [1] by a method based on ideas of Rushbrooke which involve
limiting processes. Tutte’s derivation of a sim:ilar result [&, p. 317] uses
the complicated notion of a “tree-mapping”. The present method shiows
the essentiaily finite lattice-thecsetic nature of the result, and also that
it has a uniqueness not shared by the additive expansions.
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