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The classical problem of the existence of perfect codes is set in a vector space. 
In this paper it is shown that the natural setting for the problem is the class of 
distance-transitive graphs. A general theory is developed that leads to a simple 
criterion for the existence of a perfect code in a distance-transitive graph, and 
it is shown that this criterion implies Lloyd’s theorem in the classical case. 

1. INTRODUCTION 

The problem of the existence of e-error correcting perfect codes of 
block length m over GF(q) is set in the vector space V(m, q), endowed 
with the Hamming metric; we shall refer to this as the classical perfect 
code question. It is possible to replace the vector space by a graph r(m, q), 
whose vertices are vectors and whose edges join vectors which differ in 
precisely one coordinate. In fact, there is an analogous graph for all 
natural numbers q, not just the prime powers, so that we have a slight gain 
in generality. (This case is also treated, from a different viewpoint, in [5].) 

It is clear that we may pose the perfect code question for any graph l”. 
Let u belong to the vertex-set W and let e be a non-negative integer; 
define Ce (v) to be the set of vertices of .Z’ whose distance from u is not 
greater than e. Then a perfect e-code in r is a subset C of Vr such that 
the sets Ce (c), as c runs through C, form a partition of VT. However, 
the class of all graphs is too general a setting for the perfect code question, 
since we may construct perfect codes at will by choosing suitable (but 
uninteresting) graphs. 

In this paper we shall try to justify the claim that the proper setting 
for the perfect code question is the class of distance-transitive graphs. 
This class contains the graphs r(m, q), and many other important graphs; 
its members are distinguished by their remarkable symmetry. Our 
justification rests on the algebraic formulation of Lloyd’s theorem, as it is 
given in [5] and [7]. This theorem gives a necessary condition for the 
existence of perfect codes in the classical case, and it has recently been 
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employed by Tietdvainen [6] in showing that the only solutions to the 
classical problem are the obvious ones, the Hamming l-codes (see [7]), 
and two exceptional codes first described by Golay [4]. 

The proof of Lloyd’s theorem is in two parts: some theory, and some 
calculations involving characters. We shall show that the theory can be 
developed (and simplified) in the setting of a general distance-transitive 
graph, and that it leads to a condition on the divisibility of two polynomials 
which generalizes Lloyd’s theorem. Our exposition will show clearly that 
the structure of the group of the graph is unimportant, the vital fact being 
that the group acts on the graph in the distance-transitive manner. 

In each particular instance, the relevant calculations can be expressed 
in terms of the intersection array of the graph. We shall derive Lloyd’s 
theorem in this way, using the graphs T(m, q), and briefly discuss the 
existence of perfect codes in other graphs. 

I should like to express my thanks to the University of Waterloo, at 
which I held a visiting appointment while this paper was written, and to 
Dr. P. J. Cameron of Merton College, Oxford, who first pointed out to me 
the similarity between Lloyd’s theorem and some calculations involving 
distance-transitive graphs. 

2. DISTANCE-TRANSITIVE GRAPHS 

A simple connected graph F with distance function a is said to be 
distance-transitive if, whenever u, v, x, y are vertices of I’ satisfying 
a(u, v) = 8(x, y), then there is an automorphism g of r such that 
g(u) = x and g(v) = y. We shall briefly review the relevant theory of 
distance-transitive graphs, referring the reader to [l] and [2] for details and 
proofs. 

Let n = [ Vr 1 and d be the diameter of I’. We define d + 1 matrices 
A, 9 A, ,*.-, Ad, each having n rows and columns labeled by the vertices 
0f r, as follows: 

c&)uv = 1;: 
if a(u, v) = h, 
otherwise. 

The matrix A1 = A is the usual adjacency matrix of r. The adjacency 
algebra, a(r), is the algebra of polynomials in A (over C); in the case 
of a distance-transitive graph this algebra has dimension n + 1 and the set 
{A,, A, ,-*., Ad} is a basis for it. The multiplication of basis elements is 
given by 

d 
AhAi = C ShijAj (4 i E P, I,..., 0, 

j=O 



PERFECT CODES IN GRAPHS 291 

where the numbers +,i$ are called intersection numbers of r, and they have 
the following combinatorial interpretation: 

shii = I{w E VT 1 a(u, w) = h and a(~, w) = i>l whenever a(u, u) = j. 

The regular representation of G!(r) assigns to each X in a(F) the 
(d + 1) x (d + 1) matrix X which represents left multiplication by X in 
g(P), with respect to the basis {A,, A, ,..., Ad}. In particular, the matrix &, 
is the matrix whose entries are (A& = shjt . Since the algebra @(I’) is 
commutative, it is permissible to use the transpose of this representation, 
-%? = It; we write B8 = Ah , so that (B& = &&ii . The matrices -%, as X 
runs through @(I’), constitute an algebra &(I’) isomorphic with GZ((r), 
and @(I’) has a basis {B,, , Bl ,..., Bd}. 

The triangle inequality shows that the intersection numbers sIij are zero 
unless 1 i - j 1 G 1; these numbers are the entries of the matrix B = Bl 
(that is, B = A), and consequently B is a tridiagonal matrix. Writing 
C, = ~,,j-~,, , LZ~ = S, j j , bj = S, j+l j, we have I . * . 

-0 1 
k a, ~2 

bI a2 . 
B= b,-- , 

. . . 

where some simple observations have been used to deduce that a, = 0, 
c, = 1, and b,, = k (the valency of F). Each column of this matrix has 
sum k, so that it is sufficient and convenient to specify only the two minor 
diagonals, and we write 

40 = {k, bl ,..., b-1 ; 1, ~2 ,..., 4 

which we call the intersection array of I’. Of course, not every array is 
realized by a graph; for example there are only 12 trivalent distance- 
transitive graphs [3 J. 

Let Q[h] denote the ring of polynomials in h with rational coefficients, 
and let u,(h), z&A),..., Q(A) be the elements of Q[A] defined by the recursion 

%o() = 1, 44 = A, 

ci+Iui+l()o + (ai - A) u&l) + b,-,u,-,(A) = 0 (i = 1, 2,..., d - 1). 

Wh/3-6 
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We note that vi(A) is a polynomial of degree i in A, for 0 < i < d. If we 
introduce the column vector 

then the recursion equations are those which arise when we put u,(h) = 1 
and try to solve the equation &(A) = k(h), using one row of B at a time; 
we call {vi(A)} the eigenvector sequence of I’. Our equations involve all rows 
of B except the last one, the equation which is derived from that row being 

(4 - 4 Ud(4 + L-1%-1@) = 0. 

This is a polynomial equation of degree d + 1 in A, and it gives the 
condition that v(A) be an eigenvector of B corresponding to the eigenvalue 
A. In other words, it is the characteristic equation of B. Using the recursion 
equations, we may rewrite it in the form 

(A - W(v,(4 + 49 + -a* + &x(4) = 0. 

The tridiagonal form of B implies that it has d + 1 distinct eigenvalues 
A, = k, X, ,..., Ad, and so the above equation is a rational multiple of 
(A - k)(X - h,) .*a (X - X,) = 0. 

Now since Q!((r) is the algebra of polynomials in A, each matrix Ai 
(0 < i < d) is a polynomial in A, and in fact Ai = vi(A). To see this, 
we note the equations 

A,, = I, A, = A, 

c~+~A~+~ + aiAi + bielA,-, = AAi (i = 1, 2 ,..., d - l), 

which correspond to the equations defining the eigenvector sequence. 
Passing from a(r) to the isomorphic algebra 6?(r) we deduce that 

Bi = vi(B) (0 < i d d). 

Finally, if we distinguish one vertex z in r and define a (d + 1) X n 
matrix T as follows: 

U’)iu = $1 if a(z, 2.4) = i, 
otherwise, 

then a simple calculation shows that TA = BT. It follows that TX = 8T 
for each X in r%(r). 
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3. PERFECT CODES 

Let .F be a simple connected graph with distance function a, and for 
each non-negative integer e and each vertex v of I’ define 

Ce (v) = {u E VT [ a(u, v) < e>. 

A perfect e-code in r is a subset C of VT such that the sets Ce (c), as c 
runs through C, form a partition of VT. The graph r always has a perfect 
O-code (C = VT) and a perfect d-code (1 C I = l), where dis the diameter 
of p, we call these the trivial codes. Our aim is to investigate the existence 
of non-trivial perfect codes in distance-transitive graphs. 

Let C be a perfect e-code in I’, and let c be its representative column 
vector; that is, (c), = 1 if v belongs to C, (c), = 0 otherwise. 

LEMMA 1. With thenotation ofsection 2, let S, = A,, + A, + **- + A,, 
and u = [l, l,..., lit. Then S,c = u. 

Proof. This follows immediately from the definition of a perfect 
e-code. 1 

LEMMA 2. If r is a distance-transitive graph, and 9, is the image of Se in 
L?(r), then the dimension of the kernel of s, is at least e. 

Proof. We may suppose without loss of generality that the distin- 
guished vertex z is in C. Choose vertices u,, = z, u1 ,..., u, such that 
a(z, UJ = i (1 < i < e); then there are automorphisms g, ,..., g, of r 
such that g,(z) = ui (1 < i < e) and we have e + 1 perfect e-codes 

c, = c, G = g,(C),..., G = g,(C). 

Let c0 , c1 ,..., c, be the representative column vectors for these codes, 
and let T be the (d + 1) x n matrix defined at the end of Section 2. We 
shall show that the vectors Tc, , Tc, ,..., Tc, are linearly independent. 

The j-th component of Tci is 

But, for 0 < j < e, Ci contains one vertex (z+) whose distance from z is j, 
whereas Ci (i # j) contains no such vertices. Hence (Tc& = aij for i, j in 
P, l,..., e>, and so the vectors Tc, , Tc, ,..., Tc, are linearly independent. 



294 BIGGS 

Now, since $,T = TS, we have 

&(Tc, - TcJ = TS,(c, - ci) = T(u - u) = 0 (1 < i < e), 

and so the kernel of Se has dimension not less than e. 1 

4. THE EXISTENCE CRITERION 

Let r be a distance-transitive graph of valency k and diameter d, and 
let {Q(A)} be the associated eigenvector sequence. We shall state our main 
result in terms of the polynomials 

Xi@) = v,@) + q(h) + *-’ + Q@) (O<i<d). 

If we put h = k, then vi(k) = ki (the number of vertices whose distance 
from any given vertex is i) and so 

x,(k) = 1 + k, + *** + k, = I Ce (v) I (v E Vr), 

xd(k) = 1 + k, + *.* + k,j = I VT\. 

Thus, if there is a perfect e-code in r, the number x,(k) must divide xd(k). 
Our theorem is a much stronger version of this result. 

THEOREM. If there is a perfect e-code in the distance-transitive graph r 
of diameter d, then, in the ring Q[h] we have the condition: 

x,(X) divides x&l). 

Proof. Since S, = A, + A, + *a* + A, , it follows that 

s, = B, + B, + +-- + B, = u,(B) + v,(B) + ... + v,(B) = x,(B). 

Hence the eigenvalues of $ are x,(k), x&) ,..., x&Q, where k, Al ,..., X, 
are the eigenvalues of B. Now, by Lemma 2, at least e eigenvalues of A!?, 
must be zero, so that the polynomial x,(A) must have at least e zeros in the 
set k, A1 ,..., A, . Since x,(h) is a polynomial of degree e, and x,(k) # 0, 
we may say that x,(h) is a rational multiple of (A - &(A - pZ) *en (A - p,), 
where (CLI , p2 ,..., pe) is a subset of {A, , A, ,..., Ad). 

Finally, we noted in Section 2 that x&) is a rational multiple of 
(A - A,)@ - A2) ... (A - A,), and, since both x,(h) and x&) are members 
of Q[[x], the result follows. 1 
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The form of the theorem most suitable for practical application states 
that the e zeros of x,(h) are eigenvalues of r. In the next section we shall 
recover the classical case of Lloyd’s theorem in this form. 

5. APPLICATION TO THE CLASSICAL PROBLEM 

- Let q and m be natural numbers not less than two, and set 
Q = {I, 2 ,..., q}. We define a graph F(m, q), whose vertex-set is 
QxQx **. x Q = Qm, and in which two vertices are adjacent if and 
only if they differ in precisely one coordinate. It is straightforward to check 
that r(m, q) is a distance-transitive graph with valency m(q - 1) and 
diameter m; its intersection array is 

Mq - l>, (m - l)tq - 11, . . . . 67 - 1); 1, 2, . . . . ml. 

The recursion for the eigenvector sequence of I’(m, q) is: 

~00) = 1, s(h) = 4 

(i + 1) vd+l(JU + {i(q - 2) - A} ui(4 + {(m - i + l)(q - l)} r~~-~()o = 0 
(i = 1, 2 ,..., m - 1). 

To find explicit expressions for these polynomials, we continue the 
sequence for all i > 0 by means of the same recursion, and introduce the 
generating function 

V(A, t) = t v,(h) tf. 
i-o 

Multiplying the recursion equation by ti and summing, we obtain the 
differential equation 

(1 + (q - 2) t - (q - 1) P} f& = (A - m(q - 1) t> V, 

which, with the condition V(h, 0) = 1, has the solution 

V(h, t) = (1 + (q - l)t)+‘(l - t>r. 

Here we have put 5 = m - (m + h)/q, that is, h = m(q - 1) - q[. 
Now we require the polynomials xi(h) = v,(h) + me* + vi(h), and we 

may suppose that this sequence also is continued for all i > 0, and put 

X(A, t) = f xg()o ti. 
i-0 
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Then X = V/(1 - t), so 

X(A, t) = (1 + (q - l)Q”-C(l - Q-1. 

It is clear from this expression that, if 1; is any one of the 
integers 1, 2,..., m, then X(h, t) is a polynomial of degree rn - 1 in 
t, and consequently x,(h) = 0. Thus x,(h) is a rational multiple of 
(5 - 1% - 2) **- (5 - m>. 

The condition for a perfect e-code in I’(m, q) is that x,(h) should divide 
x,(h), or that the e zeros of x,(X) should be zeros of x,(h). The above 
expression for X(h, t) gives 

and so this must have e zeros corresponding to 5 in the set {I, 2,..., m}. 
We have recovered the classical form of Lloyd’s theorem. 

6. CONCLUSION 

The results of this paper may be helpful in finding non-trivial perfect 
codes in distance-transitive graphs, other than the graphs T(m, q). It would 
be particularly interesting to find perfect e-codes with e > 1; at the 
moment the only examples known are the Golay codes in the classical case 
(these are a 3-code in Q23,2) and a 2-code in r(l1, 3)). 

We know a few examples of perfect l-codes in distance-transitive graphs. 
These examples are given in a paper by the present author, entitled 
“Perfect codes and distance-transitive graphs,” to appear in the proceedings 
of the British Combinatorial Conference, Aberystwyth, July, 1973 (Lon- 
don Mathematical Society Lecture Notes Series). 
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