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1. Introduction
THE idea of a perfect code in a finite vector space has recently been
extended by Delsarte (3) and the present author (2). The extension in
(2) is concerned with the notion of a perfect code in a graph, and it is
shown that the important theorem of Lloyd [(7), 111] can be generalised
when the graph is distance-transitive. Delsarte's extension, where an
analogous theorem is proved, takes place in the context of association
schemes; in his terminology, a distance-transitive graph is a metric,
symmetric association scheme. He also investigates the analogue of a
design in an association scheme, but his definition of a design seems
slightly unnatural in view of its algebraic, rather than combinatorial,
nature.

In this paper we generalise simultaneously, in a graph-theoretical
context, the notions of a design and a perfect code. In particular, this
leads to a combinatorial definition of a design in a graph. When the
graph is distance-transitive we shall state, and give elementary proofs
of, the extensions of some basic theorems of (2) and (3).

2. q- coverings and designs
Let q be a mapping of the non-negative integers into themselves,

with the property that q(i) = 0 implies q(J) = 0 for all j > i. Denote
by a the largest integer for which q takes a non-zero value.

Let F be a connected finite graph, with distance function d and
diameter d.

The above notation will be fixed throughout this paper.

DEFINITION If q and F are given, such that a < d, then a subset X
of V will be called a q-covering of F when the numbers

»)) (« 6 VT)I
XeX

are all equal to a constant a. If a = q(0), we shall say that the q-
covering is sparse.
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114 N. BIGGS

With appropriate choices of q and F, this definition includes the
classical theory of perfect codes and designs. We explain first the
relationship with designs.

Let t be a positive integer less than d, and q the function

where the binomial coefficient is, naturally, zero for i > d-t. Then a
g-covering in F will be called a t-design in F. For the classical case we
take F to be the graph J(a, b) whose vertices u, v,... are the subsets of
cardinality 6 (6-sets) chosen from a given a-set, and two vertices are
adjacent when they have 6-1 common elements. When a > 26, J(a, 6)
is a connected, graph with distance function

d(u, v) = b — \u n v\,

and diameter d = b.

PROPOSITION. The blocks of a t-(a, b, c) design in the usual sense (4)

are the vertices of a t-design in J(a, 6), with a = cl I. If the given design

is a Steiner system (c = 1), then the corresponding t-design in J(a, b) is
sparse.

Proof. Let X denote the set of blocks of the t-(a, b, c) design, regarded
as a set of vertices of J(a, b). For any pair of vertices u, v in J(a, b)

»(«))a(lB^l]1

is in u n v. Now, fc

t-sets in v and each one occurs just c times as a subset of a block. Thus

which is the number of <-sets iau nv. Now, for a given v, there are I
V

1
XeX

and this is independent of v, as required. When c = 1, we have

so the J-design is sparse.

3. An example from graph theory

Let q be the function defined by

gr(O) = 2, q(l) = 1, q{i) = 0 (i > 1).
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ON DESIGNS, FACTORS AND CODES 115

PROPOSITION. A graph A has a 1-factor if and only if its line graph
L(A) has a sparse q-covering, with the particular function q defined above.

Proof. Suppose A has a 1-factor and let X be the corresponding set
of vertices of L(A). Then, for a vertex v of L(A), we have

<x(t>)= £ q(d(x,v)) = 2eo(v) + 9i(v),
XeX

where 0<(v) = |{a; e X | d{v, x) = i}\. If v is in X, then 0o{v) = 1 and
6i(v) = 0, whereas if v is not in X, then 6o(v) = 0 and <?i(v) = 2 (since
each edge of A which is not in the 1-factor is adjacent to just two edges
belonging to the 1-factor). Thus a(v) = 2 for each v, and so X is a
sparse ^-covering of L(A).

Conversely, suppose that there is a subset X of the vertices of L(A)
such that 26o{v) + di{v) = 2 for each vertex v of 2/(A). Then either v is in
X and 9Q(V) = 1, 6i(v) = 0, or v is not in X and Oo(v) = 0, 0i(v) = 2.
This implies that the edges of A corresponding to X form a 1-factor in
A.

4. 3-coverings in distance-transitive graphs
The theory of distance-transitive graphs is developed in (1). We shall

need only the results and notation as given in (2), which will be used
without further explanation. I t should be noted that J(a, b) is a distance-
transitive graph when a > 26.

We shall suppose that r is distance-transitive with valency k,
diameter d, and n — \ VT\. Let q be a function of the kind introduced in
Section 2, and define O to be the nxn matrix, with rows and columns
corresponding to the vertices of T, whose entries are given by

(<*>)«» = q(d(u,v)).

LEMMA. $ belongs to the adjacency algebra sf(T).

Proof. If {Ao,Ai Ad} denotes the basis for s/(T) denned in
[(2), 290], then we have the equation

Since At is a polynomial Vi(A) and Vi has degree i(0 < i < d), it
follows that 3> is a polynomial <j>(A) and that the degree of <j> is a.

LEMMA. Let X be a q-covering in T and x its representative column
vector. Then, if u is the column vector each entry of which is 1,

C>x = ecu.
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116 N. BIGGS

Proof. This is just the matrix equation corresponding to the defini-
tion of a g-oovering.

Now let z be a given vertex of T and w the weight vector of X with
respect to z, that is

(w)« = \{x e X | 3(2, x) = i}\ (0 < i < d).

As explained in [(2), 291] there is an algebra j / (F ) of (d+1) x (d + l)
matrices isomorphic with s/(T). Let O be the matrix corresponding to
<D in s/(T), and let 21 be the (d+l)xn matrix defined on page 292 of
(2), so that TQ> = $T.

LEMMA. Let w be the weight vector of a q-covering in T. Then

<Dw = ak ,

where (k)< is the number of vertices of T at distance i from a given vertex.

Proof. Applying T to the result of the preceding lemma and using
the fact that T<& = OT, we get $(Tx) = a{Tu). Then the definition
of T implies that Tx = w, Tu = k, so we have the result.

DEFINITION. The nullity of a j-covering in r is the dimension of the
kernel of 6 .

The last lemma implies that, if T has a g-covering, a suitable linear
combination of w and u belongs to the kernel of Q>, so that the nullity
is at least one.

THEOREM 1. If V denotes the nullity of a q-covering in a distance-
transitive graph F, then v < <r and v of the a zeros of <f> are eigenvalues of

r.
Proof. Since O = <t>(A) we have O = (f>(B) where B = A is the

intersection matrix of T. Now B is tridiagonal, that is (B)y = 0 for
\i—j\ > 1, and we also know that

The degree of <j> is a, so (O)y = 0 for \i— j \ > a, and

(*)M-HT^0 (0<i<d-a).

This means that the first d — o + 1 rows of O are linearly independent,
whence the rank of O is at least d—a + 1 and its kernel has dimension
at most a.

The eigenvalues of * are $(Ao), 0(Ai),...,<t>(Xa), where Xo = k,
Xi,...,Xa are the eigenvalues of T. Since v eigenvalues of 6 are equal to
zero, we have the result.
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ON DESIGNS, FACTORS AND CODES 117

5. Nullity and minimum distance
DEFINITION. The minimum distance of a ^-covering X in r is

8 = min {d(x, y) | x, y e X and x ^ y}.

The minimum distance 8 is related to the nullity v, as we now show.
Since 8 is a more fundamental property than v, we often use this
relationship in the application of Theorem 1.

THEOREM 2. Using the above notation, we have v > [£(<5 — 1)].

Proof. With respect to a distinguished vertex z belonging to X
define

T<(z) = {ve VF | d(v, z) = i} (0<i<d).

Let r = [$((5 -1 ) ] . Then for 0 < *, j < r we have

(*) u e T«(z) and v e Tj[z) => d(u, v) < i+j < 8.

Suppose that z is in X, and choose automorphisms gi, g%,..., g& of T
such that 8{z, giz) = i(l < i < d). Then we have j-coverings Xo = X,
Xi = gi{X),...,Xd = ga{X), and X« contains at least one vertex,
gtz, belonging to T«(z) for 0 < i < d (if we take 0oz = z). Since 6 is the
minimum distance for each of these g-coverings, the statement (*)
implies that g& is the only vertex of Xi belonging to any one of Fo(z),
T\(z),..., Tr(z) for 0 < i < r. Thus, if w(*> is the weight vector of X(

with respect to z, then

So the vectors w<°), w<1>,..., w<r> are linearly independent, and since

6(w«»-w<0) = a(k-k) = 0,

we have r linearly independent vectors in the kernel of 0 .
In the classical case of a i-design in J(a, b) it follows from the defini-

tion that 8 is at least b-t = a, since two blocks can have at most t
common members. In the special case of a Steiner system we must
have 8 > a, since each t-set occurs only once in a block. In that case
we notice that the corresponding g-covering is sparse, and in fact we
have a general result.

LEMMA. For any sparse q-covering we have 8 > a.

Proof. From the definitions

« = a(v) = X q(d{x, v)) = q(0)90(v) +... +
XeX

where 6i(v) = \{x e X \ d{v, x) = »}|.
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118 N. BIGGS

Now if v is in X then 0o[v) = 1 and so

0a(*>) = 0.

But q(l),...,q(a) are all positive, so 9i(v) = ... = 6a(v) = 0. That is,
d > a.

6. Conclusion

We have shown that a necessary condition for the existence of a
g-covering having minimum distance 8, in a distance-transitive graph
T, is that at least [£(<5 — 1)] of the a zeros of 0 are eigenvalues of F. In
the case of a sparse g-covering the number [£(<5 — 1)] can be replaced
by [*a]. .

Let q be the function given by q(i) = 1 (0 < * < e), g(t) = 0 otherwise.
Then a sparse g-covering of a graph F is just a perfect e-code in F, as
defined in (2). We must have 8 > a = e, and in fact it is easy to see
that 8 = 2e + 1 , so that all zeros of $ are eigenvalues of F. This is the
generalisation of Lloyd's theorem, a theorem which plays an important
part in the non-existence proofs of van Lint (7) and Tietavainen (5)
concerning perfect codes in finite vector spaces.

At the other end of the utility scale we have the example of Section 3.
For that particular function q, the polynomial <j>{X) is just A+2, so
we require that, for a 1-factor in A, —2 must be an eigenvalue of i(A).
But it is well known that, provided A has more edges than vertices,
— 2 is necessarily an eigenvalue of L(A)!

In the classical case of a t-design in J(a, b) we encounter a similar
phenomenon. The zeros of the relevant polynomial <t> are all eigenvalues
of J(a, b), as may be shown by simple calculations involving the
Eberlein polynomials [(3), 70]. This may be disappointing for design
theorists, but from a more detached viewpoint it merely says that the
graphs J[a, b) are excellent candidates wherein to seek for designs.
In any case, the methods of this paper are not without interest for
design theory, for detailed consideration of the weight vector can lead
to useful results, as Delsarte has shown.

To end on a more positive note, we give an example of a 3-design in
a 'sporadic' distance-transitive graph. This is the graph F with inter-
section array

I(F) = {7 ) 6 ) 4 ,4 ;1 ,1 , 1,6},

which may be constructed as follows from the blocks of the Steiner
system S(5, 8, 24), given in (6). There are 330 blocks of this system
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ON DESIGNS, FACTORS AND CODES 119

which do not contain two given points; these are the vertices of I \ and
they are joined in T whenever they are disjoint. The polynomial </>(/l)
for a 3-design in T is just A+ 4 and —4 is an eigenvalue of F, so a
3-design is possible. In fact we may construct one by taking X to be
the set of vertices of T which do contain one given point. There are
120 such vertices and we find, using the q function for a 3-design with

£ q(d(x, v) = 40o(tf) + 0i(«) = 4 (v e VT).
xeX

Thus X is a sparse 3-design in P.
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