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A U T O M O R P H I C  G R A P H S  A N D  

T H E  K R E I N  C O N D I T I O N  

ABSTRACr. An automorphic graph is a distance-transitive graph, not a complete graph 
or a line graph, whose automorphism group acts primitively on the vertices. This paper 
shows that, for small values of the valency and diameter, such graphs are rare. The basic 
tool is the intersection array, for which there are several very restrictive feasibility condi- 
tions. In particular, a slight generalisation of the Krein condition of Scott and Higman 
is given, with a simplified proof. 

1. INTRODUCTION 

A g r a p h / '  with distance function a is said to be distance-transitive if, for 
any vertices u, v, x, y such that O(u, v)=O(x, y), there is an automorphism 
of  F taking u to x and v to y. Graphs with this property are rather scarce. 
For  instance, there are just twelve trivalent distance-transitive graphs [4], 
and finitely many 4-valent ones [14, 15, 16]. Nevertheless, they are sufficiently 
numerous to make the problem of  finding and classifying them highly non- 
trivial. In this paper we shall attack the problem by various theoretical and 
practical means. 

The basic method is to seek graphs which have the combinatorial prop- 
erties of  a distance-transitive graph. A g raph / "  is said to be distance-regular 
if  it is a regular graph, of valency k and diameter d, and the following 
condition holds. There are natural numbers 

bo = k ,  b l , . . . , b d - z ;  cl = 1, c2 . . . .  ,ca, 

such that for each pair (u, v) of vertices satisfying 0 (u, v) = j  we have 
(i) the number of  vertices w such that a(u, w ) = l  and O(v, w ) = j - 1  is 

cj(X <j<d) ;  
(ii) the number of  vertices w such that a(u, w ) = l  and ~(v, w ) = j + l  is 

bj(O<=j<_d-1). 
The array t(U) = {k, bl , . . . ,  bd- 1 ; 1, c2 . . . . .  cd} is called the intersection array 
ofF .  It follows that if aj (0 < j <  d) denotes the number of  vertices w such that 

(u, w)= 1 and a (v, w)=j,  then 

ao = 0 ;  a j = k - b j -  cj(1 < j < d -  1); 

aa = k - c a .  

This definition and the consequent theory may be found in [2]. For  com- 
pleteness we shall summarise briefly the main results. 
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Let n be the number of vertices of/~. We define d+ 1 matrices Ao, A1 . . . . .  
Aa, each having n rows and columns labelled by the vertices of/ ' ,  as follows: 

1, if 0 ( u , v ) = h ,  

(A~),v = 0, otherwise. 

The matrix A 1 = A is the usual adjacency matrix of/ ' .  The adjacency algebra 
d ( / ' )  is the algebra of polynomials in A (over C); in the case of a distance- 
regular graph this algebra has dimension d + l  and {Ao, AI . . . . .  Aa} is a 
basis for it. The multiplication of basis elements is given by 

d 

A A, = Z s ,jAj (h, i {0, 1 . . . . .  d}),  
j = O  

where the numbers sh,~ are called the intersection numbers of / ' .  They have 
the following combinatorial interpretation: 

s ~ i j = [ { w ~ V - P [ 8 ( u , w ) = h  and 8 ( v , w ) = i } ]  

whenever 8 (u, v) = j .  

Let Q[2] denote the ring of polynomials in 2 with rational coefficients, 
and let Vo(2), v1(2), ..., va(2) be the elements of Q[2] defined by the recursion 

Vo(2) = 1, v1(2) = 2, 

C i + l / ) i +  1 (~) ..~ (a i _ ~) vi(~ ) A~_ b i _ x v i _ l  (~) ~_. 0 

(i = 1,2 . . . . .  d -  1). 

The sequence {v,(2)} is called the eigenvector sequence of F. 
Since d ( / ' )  is the algebra of polynomials in A, each matrix Ai (0 < i_< d) is 

a polynomial in A; in fact As =v,(A). 
The multiplication formula in d ( / ' )  shows that the (d+ l) x (d+ l) 

matrices Bo, B1, ..., Bd defined by 

= s ,j 

generate an algebra isomorphic with d(/~). We find that Bo = I  and B=B1 
is the tridiagonal matrix 

0 1 0 
k a I c 2 

bl az 
b2 

• Ca 

[ 0 aa 
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Further, the isomorphism of algebras implies that B~ =v~(B) (2 < i<d), so 
that the matrices B~ can be calculated directly from the intersection array. 

B has d +  1 distinct eigenvalues 2o =k ,  21 . . . . .  2d, which are also the eigen- 
values of A. Their multiplicities as eigenvalues of A can be calculated from 
i(F) alone. 

In the rest of the paper we shall take d > 2 ;  the only distance-transitive 
graphs with d =  1 are the complete graphs. We also take k >  3, thereby dis- 
carding only the graph/£2 (k = 1) and the polygons (k = 2). 

2. F E A S I B I L I T Y  C O N D I T I O N S  

If  there is a distance-regular graph/1 with intersection array {k, bl . . . .  , bd_ 1; 
1, c2, . . . ,  ca} then many parameters associated wi2n/" can be calculated from 
the entries of this array. Conversely, if we wish to decide whether a given 
array arises from a graph then we can calculate the parameters of the putative 
graph and check that they satisfy certain 'feasibility' conditions. For example, 
the number 

= ( l ,  b l  . . .  b,_l)/(c c3 . . .  c,) (2 ___ i _ a) 

represents the number of vertices whose distance from a given vertex is i, 
and hence it must be a positive integer. (For uniformity, we set ko = 1, k l =  k.) 

Four such feasibility conditions are stated and proved in [2]. In the notation 
given above, they are: 

I: The numbers k~=(kbl i..b~_a)/(c2c3 ... c~) are integers (2 =< i _<_ d). 
II: k>=bl>=...>bd_l and 1~C2<. , .5~C a. 

III: nk =0(mod2) and k~a~ =0(mod2).  
IV: The number n/~r~ is a positive integer (1 <i<d),  where 

d 

= 2 k2%(z, )  2- 
j=O 

These four conditions are not sufficient for the existence of a graph, but they 
are very restrictive. In particular, condition IV rules out a high proportion 
of arrays. 

When the arrays which satisfy I, II, III and IV are listed for small values 
of k and d it appears that most of them do in fact correspond to a graph. 
But there are some awkward cases, and in order to deal with these it is 
helpful to have more conditions. There are three such conditions which have 
proved useful, and we shall present them here. The first two are elementary, 
and their justification is given in the next two propositions. The third is more 
subtle, and we shall devote the whole of Section 3 to it. 
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PROPOSITION.  Let k, aa, a2, ¢2 denote the parameters associated with an 
intersection array, in the notation given above. Then i f  there is a distance- 
regular graph corresponding to this array we must have: 

V: (e) a l = 0  anda2+O~a2>=c2; 
(~) al  = l ~ a 2  =>e2; 
(y) a 2 = 2  and 3Xk~c2>__2. 

Proof. (e) I f  a2 =~ 0 then there are vertices v, y, u such that  

O (v, u) = O (v, y) = 2 and O (u, y) = 1. 

There is some vertex x adjacent to v and y. Since al = 0 there are no triangles 
and x is not adjacent to u; thus O(x, u)=2 .  By the definition of c2, there 
are c2 paths of  length 2 f rom x to u. Let xwu be such a path. Then w is not  
adjacent to v, since a~ = 0, and so 0 (v, w)= 2. That  is, there are at least c2 
vertices w satisfying O(u, w)= 1 and 0(v, w)=2,  while 0(u, v)=2.  By the 

definition of  a2, we have a2 > c2. 
(~) The condition al = 1 means that for each pair of  adjacent vertices there 

is a unique vertex adjacent to both of  them. Choose two vertices u and v so 
that O(u, v ) = 2 ;  then there are c2 vertices adjacent to both u and v. For  each 
such vertex x there is a unique y adjacent to both x and u. I f  0 (v, y) = 1, then 
we should have both u and v adjacent to x and y, so 0 (v, y) = 2. These y 's  are 
all different, otherwise we should have x~ and x2 adjacent to y and u. Thus 
there are at least c2 vertices y satisfying 

O ( u , y ) = l  and a ( v , y ) = 2 ,  O ( u , v ) = 2 ;  

t h a t  is, a2 > c2. 

(y) I f  al = 2 then the vertex-subgraph induced by the vertices adjacent to u 
is a set of  polygons. I f  3Xk then these polygons are not all triangles. Choose 
v,x ,y ,  so that 8(v ,x)=O(x ,y)=l ,  O(v,y)=2, and y is not in a triangle 
adjacent to x. Then x and y have two common neighbours z and t. I f  

(z, t) = 1 we should have a triangle yzt of  vertices adjacent to x. So 0 (z, t) = 2. 
Since both x and y are adjacent to z and t, c2 >_- 2. 

PROPOSITION.  Let the array {k, b l ,  . . . ,  ba-1; 1, c2, . . . ,  ca} be given. 
Define Bo = land  let B1 be the tridiagonal matrix defined in terms of the array 
as in Section 1. Define B2, B3 . . . . .  Bd in terms of  the given array by the rule 
Bh=vh(B~). Then, i f  there is a distance-regular graph with this intersection 
array, 

VI: the entries of Bh are non-negative integers (O<h<=d). 
Proof. As we saw in Section 1, (Bh)~j=Shu, and the combinatorial inter- 

pretation of  the numbers shfj shows that they must be non-negative integers. 
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3. THE KREIN CONDITION 

Let/7 be a distance-regular graph. I f X i s  a matrix belonging to the adjacency 
algebra d ( / ' )  then X=x(A) for some polynomial function x. We may define 
characters ~o, ~1 . . . . .  ~d on d ( / ' )  by setting 

~,(X) = x(2i) (0 --< i < d), 

where 2o, 2~ . . . . .  2a are the eigenvalues of  A. So ~(X) is an eigenvalue of  X. 
In particular, since vj(A)=Aj, the eigenvalues of  the basic matrices are 
given by 

Putting i = 0  we have 2 0 = k  and ~o(Aj)=vj(k)=kj. 
We use the symbol o to denote pointwise multiplication of  matrices. The 

adjacency algebra is dosed under this operation since A, o Aj=  OfjA3. 
The following explicit formula gives a basis {do, J~, . . . ,  da} of mutually 

orthogonal idempotents of  ~¢(P): 

j ~ _  1 ~ Vr(2~) A, (o¢ = 0 , 1  . . . . .  d). 
a s r=o kr 

Consider the pointwise product J~  oJ~, . . . . .  J~, of  t such idempotents, not 
necessarily distinct. By a theorem of Schur this matrix has all its eigenvalues 
in the interval [0, 1 ], so for 0 =< fl =< d we have 

0 ____ ~p (J~ oJ~ . . . . .  J~) = 1. 

PROPOSITION. For any choice of t + l  numbers oq, o¢2 . . . . .  ~t,/3, (not 
necessarily distinct) from the set {0, 1, . . . ,  d} we have the 'generalised Krein 
condition': 

d 

v I t :  0 __ ~ k i  ~ vj(,L1) -.. v~(~.~,) vA2p) =< % %  ... % .  
j=O 

Proof. From the explicit formula for J .  we find 

_,,[(,. ,..> ,.} ..... ,}j 

(since Ar o . . . .  As # 0 only if r . . . . .  s) 

= (~ , " "  ~,1-~ 2 k2 ~ vX2-3 "" vj(,L,) vXb). 
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The result now follows from the remark preceding the statement of the 
theorem. 

We note that in the case t = 1 the bounds are necessarily attained: when 
cq ~: fl the lower bound applies, while for al  = fl the upper bound holds, by 
the definition of aa. 

Condition VII is a generalisation of the Krein condition of L. L. Scott [12] 
and D.G.Higman [10], who state it for the case t=2  only. In fact, the 
generalised condition is a consequence of the condition for t=2;  this 
was pointed out by P.J. Cameron and P. Delsarte. 

4. METHOD OF COMPUTATION 

The seven conditions now available make it possible to list by computer all 
the feasible arrays for small values of k and d. This project has been carried 
out intermittently during the years 1970-4, with the assistance of D. H. Smith, 
C. Penman and G. H. J. Meredith. The results are now complete for all pairs 
(d, k) in the range d<__5, k<13. For d=2, 3 (corresponding to rank 3 and 
rank 4 in permutation group terminology) the lists can be extended to much 
greater values of k. 

The method adopted is to generate the arrays which satisfy conditions I, 
II and III in sequence for fixed k and d. The conditions IV, V, VI and VII 
are then applied, and the arrays which pass all these tests are listed. The 
procedure is justified by the fact that a high proportion of the listed arrays 
can be shown to correspond to graphs. 

Condition IV is the most restrictive and also the most time-consuming. 
Originally it was applied in the form given in Section 2. That method involves 
the estimation of the eigenvalues ~ of B, calculation of values v~(21) from the 
recursion formula, calculation of a~, and testing n/a~ for integrality. Small 
errors in the estimation of the eigenvalues may accumulate in the subsequent 
calculations, and this leads to difficulties with the integrality test. An im- 
proved technique involves the direct estimation of the numbers (r~, and this 
can be done by means of the following result. 

PROPOSITION. The numbers ai (O<=i<=d) are the eigenvalues of the 
matrix 

/ 

Proof. The expression defining a~ and the fact that ~i is an eigenvalue of B1 
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shows that a~ is an eigenvalue of 

d d 

j=O j=O 

But BhB~=~s, ljB~ and so 

s = Z Z = Z B,, Z sJk . 
j h t~ j 

Now sjjhkh =s, jjkj. To see this, fix a vertex u in V/" and count the pairs (v, w) 
such that 

(u, v) = ] ,  ~ (u, w) = h and 0 (v, w) = j .  

Counting v first, we get kjs,z pairs, and counting w first we get khSjjh pairs. 
So we have 

= Z B, Z shj!.. ~ f tr Bh ~ Bh, as required. S 
J k~, = ~  \ k~ ] 

5. R E D U C T I O N  TO A U T O M O R P H I C  CASES 

At this point we are faced with the problem of analysing and interpreting 
the computed lists of arrays. In this task we are aided by several theorems 
of the following general kind. If an array of a certain type arises from a 
graph, then there is a corresponding 'smaller' array arising from a 'smaller' 
graph. 

The largest class of arrays of this kind are those corresponding to bipartite 
graphs. The intersection arrays of bipartite graphs are just those for which 

a l  = a 2  = . . .  = a a  = O ,  

and so they can be instantly recognised. Further, associated with a bipartite 
distance-transitive graph/" is a 'halved' graph ~,  also distance-transitive but 
not in general bipartite. The vertices o f /~  are those in one part of the 
bipartition of/ ' ,  and two such are adjacent in F when their distance in / ' i s  2. 
The intersection array of/~ is determined by that of P. 

Another class of arrays with such a property are those corresponding to 
antipodalgraphs [13]. An antipodal distance-transitive graph_P has a 'derived' 
graph/~' which is also distance-transitive, and the intersection array of _P' 
is determined by that o f / "  [6]. 

Thirdly, there are the line graphs. It has been proved [3] that the line 
graph L(/ ') is distance-transitive only i f / "  itself is distance-transitive and 
belongs to a very small class of graphs. The intersection arrays of distance- 
transitive line graphs can thus be readily identified. 



124 NORMAN BIGGS 

So if we set aside the feasible arrays corresponding to bipartite, antipodal, 
or line graphs, those that remain must be of three types: 

(i) those for which no distance-regular graph exists; 
(ii) those for which a distance-regular graph exists, but not a distance- 

transitive graph; 
(iii) those corresponding to an automorphic graph [2, p. 152]. 

The automorphic graphs are important from the group-theoretical view- 
point. They are the distance-transitive graphs for which the automorphism 
group acts primitively on the vertices [13], with the exclusion of the complete 
graphs (d= 1) and the line graphs. 

6. SURVEY OF AUTOMORPHIC GRAPHS 

In the range 3_<k_<13, 2_d_<5 there are more than a million arrays of 
natural numbers {k, b~ . . . . .  bd-1; 1, c2 . . . . .  ca} satisfying the elementary 
feasibility conditions I, II and III. Less than 60 of these satisfy the conditions 
IV, V, VI, VII and are of the type which might arise from an automorphic 
graph. This fact and the survey which follows are intended to justify the 
claim that automorphic graphs are especially interesting objects, worthy of 
further study. 

The case d= 2 has already been the subject of several investigations and will 
not be discussed here. An account may be found in [1], and in the works of 
D. G. Higman and his associates [8], [9]. In addition, we shall not investigate 
questions of uniqueness, being satisfied with finding one graph corresponding 
to each given array. 

To begin, we survey those arrays which belong to uniform families. These 
make up more than one-third of the total number under discussion. 

For any natural numbers m>2, q>2 the array 

{ m ( q -  1 ) , ( m -  1 ) ( q -  1) . . . . .  ( q -  1);1,2 . . . .  ,m} 

passes all our tests. It is the intersection array of the graph/ '(m, q) defined 
as follows. Let Q = { 1, 2, ..., q} and take the vertex-set to be Q x Q x. . .  × Q 
= Qm, with two vertices being joined by an edge if and only if they differ in 
just one coordinate./'(m, q) is distance-transitive, and it is automorphic if 
m>2  and q>2. (The graph F(k, 2) is antipodal and bipartite; it is the cube 
Qk [2, p. 138]. The graph/'(2, r) is the line graph of the complete bipartite 
graph K,. r.) So there are just six automorphic graphs/'(m, q) in the range 
being considered, corresponding to (m, q)= (3, 3), (4, 3), (5, 3), (3, 4), (4, 4), 
(3, 5). 

The derived graph of the antipodal graph Q~ is automorphic if k is odd, 
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and it is denoted by l-qk. The intersection array of [--]21+I is 

{21 + 1,21, . . . ,1  + 1; 1,2, . . . .  I}. 

The graphs [] 7, [] 9, [] 11 are relevant for us. 
The odd graphs Ok have been investigated in various connections [7], [11]. 

They are automorphic graphs with valency k and diameter k -  1. The inter- 
section arrays of those in our range are 

,(O,) = {4, 3, 3; 1, 1, 2} 

t(Os) = {5, 4, 4, 3; 1, 1, 2, 2} 

,(06) = {6, 5, 5, 4, 4; 1, 1, 2, 2, 3}, 

from which the general pattern may be inferred. 
The intersection array 

{xy, (x-  1 ) ( y -  1), (x - 2) (y - 2) . . . . .  ( y - x +  1); 
1, 4, 9, . . . .  x 2} 

for y>x> 1, is feasible. It is realised by the graph J(x+y, x) whose vertices 
are the subsets of  cardinality x chosen from a set of  cardinality x+y, and 
whose edges join subsets which intersect in a set of  cardinality x -  1. For our 
purposes, only g(7, 3) is relevant. 

In the range 3 ~< k ~< 13, 3 ~< d~< 5 there remain just 24 feasible arrays which 
might correspond to an automorphic graph. These can be divided as follows. 
There are six arrays for which it has been shown, by arguments special to 
each case, that no automorphic graph exists. They are: 

d = 3  

d = 4  

{5, 4, 3; 1, 1, 2} 
{7, 6, 6; 1, 1, 2} 
{8, 7, 5; 1, 1,4} 
{13, 10, 7; 1, 2, 7} 

{ 5 , 4 , 3 , 3 ; 1 , 1 , 1 , 2 }  
{10, 5, 4, 2; 1,2,2,  10} 

(n = 56) 
(n = 176) 
(n = 135) 
(n = 144) 

(n = 176) 
(n = 96) .  

Then there are eleven arrays 
unresolved. They are: 

d = 3  {10 ,8 ,7 ;1 ,1 ,4}  
{10, 6, 4; 1, 2, 5} 
i l l ,  10, 4; 1, 1, 5} 
{12, 10, 5; 1, 1, 8} 
{12, 10, 2; 1, 2, 8} 
{12, 10, 3; 1, 3, 8} 
{12, 9, 9; 1, 1, 4} 

for which the existence problem is, as yet, 

(n = 231) 
(n = 65) 
(n = 210) 
(n = 208) 
(n = 88) 
(n = 68) 
(n = 364) 
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d = 4  {10, 8, 8, 8; 1, 1, 1,5} 
{10,8 ,8 ,2;  1, 1 ,4,5} 
{12, 8, 8, 8; 1, 1, 1, 3} 
{12, 8, 6, 4; 1, 1, 2, 9} 

(n = 1755) 
(n = 315) 
(n = 2925) 
(n = 525) .  

Finally, there are seven arrays for which an automorphic graph is known 

d = 3  

d = 4  

to exist. 

{5,4,2;  1, 1,4} (n = 36) 
{6, 5, 2; 1, 1, 3} (n = 57) 
{6, 4, 4; 1, 1, 3} (n = 63) 

{3, 2, 2, l ;  1, 1, 1, 2} O* = 28) 
{7, 6, 4, 4; 1, 1, 1, 6} (n = 330) 
{9, 8, 6, 4; 1, 1, 3, 8} (n = 280) 
{11 ,10 ,6 ,1 ;1 ,1 ,5 ,11}  ( n = 2 6 6 ) .  

The graphs corresponding to these seven arrays are of great significance, 
from the viewpoint of both combinatorics and group theory. For instance, 
the 36 vertex graph [2] is related to the existence of an outer automorphism 
of the symmetric group of degree six (the only symmetric group admitting 
such an automorphism). The 330 vertex graph is constructed using the 
Steiner system S(5, 8, 24), and the 266 vertex graph is related to Janko's 
smallest simple group [5, p.223]. The resemblance between the sporadic 
nature of feasible arrays and the isolated occurrences of combinatorial and 
group-theoretical phenomena is remarkable, and it should provide impetus 
for the further study of automorphic graphs. 
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