COLOURING SQUARE LATTICE GRAPHS

NORMAN BIGGS

1. The colouring matrix

We shall approximate to the infinite plane square lattice graph by means of the finite toroidal square lattice graphs. Although the methods used are well-known in mathematical physics (see for example Baxter [1] and Lieb [7]) they have yet to be exploited fully in graph theory.

Let k be a natural number and let \mathbb{Z}_k denote the additive group of integers modulo $k, \mathbb{Z}_k = \{0, 1, ..., k-1\}$. For any natural numbers m, n, we define the toroidal square lattice graph $S_{m,n}$ as follows. The vertices are the elements of $\mathbb{Z}_m \times \mathbb{Z}_n$ and two vertices (i, j), (i', j') are adjacent if i = i' and j, j' differ by one, or if j = j' and i, i' differ by one. In particular, the graph $S_{1,n}$ is the *n*-circuit C_n $(n \ge 2)$. Let $c_n(z)$ denote the chromatic polynomial of this graph, that is [2, p. 59]

$$c_n(z) = C(C_n; z) = (z-1)^n + (-1)^n (z-1).$$

In addition to the assumption $n \ge 2$ we shall take z to be an integer not less than 3, so that $c_n(z)$ is a positive integer.

Let us say that two z-colourings γ , δ of C_n are compatible if $\gamma(v) \neq \delta(v)$ for each vertex v of C_n . Define a matrix $T_n(z)$, whose rows and columns correspond to the z-colourings of C_n , by the rule:

$$(T_n(z))_{\gamma\delta} = \begin{cases} 1 & \text{if } \gamma \text{ and } \delta \text{ are compatible;} \\ 0 & \text{otherwise.} \end{cases}$$

We shall show that the chromatic polynomial of $S_{m,n}$ is given by

$$C(S_{m,n};z) = \operatorname{trace} \left[T_n(z)^m\right]. \tag{1}$$

For the proof let $T = T_n(z)$. For each fixed *i* in \mathbb{Z}_m the vertices (i, j) of $S_{m,n}$ form an *n*-circuit $C_n^{(i)}$ and a *z*-colouring ζ of $S_{m,n}$ induces a *z*-colouring ζ_i of $C_n^{(i)}$. Conversely, if we are given such *z*-colourings of each $C_n^{(i)}$ then the expression

$$T_{\zeta_0 \zeta_1} T_{\zeta_1 \zeta_2} \dots T_{\zeta_{m-1} \zeta_0}$$

is equal to one if $\zeta_0, \zeta_1, ..., \zeta_{m-1}$ unite to give a z-colouring of $S_{m,n}$ and is equal to zero otherwise. Thus the number of z-colourings of $S_{m,n}$ is

$$\sum_{\zeta_0,\ldots,\zeta_{m-1}} T_{\zeta_0\zeta_1} T_{\zeta_1\zeta_2} \ldots T_{\zeta_{m-1}\zeta_0} = \operatorname{trace} (T^m).$$

2. The eigenvalues of $T_n(z)$

The expression (1) for the chromatic polynomial of $S_{m,n}$ may be written in terms of the eigenvalues of $T_n(z)$:

$$C(S_{m,n};z) = \sum \lambda(z)^m,$$
(2)

[BULL. LONDON MATH. Soc., 9 (1977), 54-56]

Received 26 November, 1974; revised 23 December, 1975.

where $\lambda(z)$ runs through the eigenvalues of $T_n(z)$. As an example, the case n = 2 is amenable to direct calculation; $T_2(z)$ is a matrix with z(z-1) rows and columns and its eigenvalues are $z^2 - 3z + 3$ (once), 3-z (z-1 times), 1-z (z-1 times) and 1 ($z^2 - 3z + 1$ times). This gives the result for $S_{m,2}$, the skeleton of an *m*-prism, in agreement with [4]:

$$C(S_{m,2};z) = (z^2 - 3z + 3)^m + (z - 1) \{(3 - z)^m + (1 - z)^m\} + z^2 - 3z + 1.$$

We shall require this result presently.

Since $T_n(z)$ is a matrix with non-negative entries, the classical theory of Perron and Frobenius [6; p. 286] may be applied. It is convenient to regard $T_n(z)$ as the adjacency matrix of a graph whose vertices are the z-colourings of C_n . Then it is easy to show that (except when z = 3) the graph is connected and is not bipartite. This means that among the eigenvalues of $T_n(z)$ there is a unique one $\lambda_n(z)$ with greatest absolute value, and $\lambda_n(z)$

- (i) is positive,
- (ii) has multiplicity one,
- (iii) is not greater than the maximum row sum $M_n(z)$ of $T_n(z)$,
- (iv) is not less than the mean row sum $m_n(z)$ of $T_n(z)$.

The exceptional case z = 3 is not a serious difficulty, since in that case we have the exact calculation of Lieb [7].

We wish to investigate the limit of the sequence $\{C(S_{n,n};z)^{1/n^2}\}$ for fixed z. This "chromatic limit" is the analogue, for the infinite square lattice graph, of the chromatic polynomial for a finite graph. It is known [3] that

$$L(z) = \lim_{n \to \infty} C(S_{n, n}; z)^{1/n^2}$$

exists for each $z \ge 4$, and that the same limit is obtained when $S_{n,n}$ is replaced by an $n \times n$ subgraph of the plane square lattice. The corresponding results for z = 3 may be deduced from a paper of Brascamp, Kunz and Wu [5].

The properties of $\lambda_n(z)$ and the formula (2) show that

$$L(z) = \lim_{n \to \infty} \lambda_n(z)^{1/n}$$

We shall obtain upper and lower bounds for this limit.

3. Bounds for
$$\lambda_n(z)$$

The mean row sum of $T_n(z)$ is easily found. The sum of all the entries of $T_n(z)$ is just the number of compatible pairs of z-colourings of C_n , and this is the same as the number of z-colourings of the *n*-prism $S_{2,n}$. Thus

$$m_n(z) = \frac{(z^2 - 3z + 3)^n + (z - 1) \{(3 - z)^n + (1 - z)^n\} + z^2 - 3z + 1}{(z - 1)^n + (-1)^n (z - 1)}$$

When n = 2 or n = 3 all colourings of C_n are alike and $M_n(z) = \lambda_n(z) = m_n(z)$. In fact $\lambda_2(z) = z^2 - 3z + 3$, $\lambda_3(z) = z^3 - 6z^2 + 14z - 13$. When n > 3 the bounds are not equal and the upper bound may be estimated as follows.

We wish to find an upper bound for the number of z-colourings of C_n which are compatible with a given such colouring γ .

Let v_0, v_1, \dots, v_{n-1} be the vertices of C_n and let u_0, u_1, \dots, u_{n-1} be the vertices of a path of length n. (The reason for choosing a path rather than a circuit is simply convenience; the order of magnitude of the result is not affected.) Let X_i ($0 \le i \le$ n-1) denote the number of z-colourings ε of the path from u_0 to u_i such that

$$\varepsilon(u_i) \neq \gamma(v_i) \quad (0 \leq j \leq i).$$

Then it is clear that

$$X_0 = z - 1, \quad X_1 = z^2 - 3z + 3, \quad X_{n-1} \ge M_n(z)$$

Each of the X_{i-1} colourings of the path from u_0 to u_{i-1} may be extended in (at least) z-2 ways to u_i , since we have only to ensure that $\varepsilon(u_i)$ is not either $\varepsilon(u_{i-1})$ or $y(v_i)$. Let Y_{i-1} be the cardinality of the subset of the X_{i-1} colourings which have the property $\varepsilon(u_{i-1}) = \gamma(v_i)$. Each of these colourings may be extended in z-1 ways to u_i , and so $X_i = (z-2) X_{i-1} + Y_{i-1}$. But every one of the Y_{i-1} colourings induces, by restriction, a colouring of the path from u_0 to u_{i-2} , and these induced colourings are all different. Consequently, $Y_{i-1} \leq X_{i-2}$ and we have

$$X_i \leq (z-2) X_{i-1} + X_{i-2} \quad (2 \leq i \leq n-1).$$

From this we deduce that

$$X_{n-1} \leqslant p_{n-2} X_1 + p_{n-3} X_0,$$

where the coefficients p_k are given by the recursion $p_0 = 1$, $p_1 = z - 2$,

$$p_k = (z-2) p_{k-1} + p_{k-2} \ (k \ge 2).$$

Explicitly

$$p_k = (\frac{1}{2})^k (z - 2 + \sqrt{(z^2 - 4z + 8)})^k + (\frac{1}{2})^k (z - 2 - \sqrt{(z^2 - 4z + 8)})^k.$$

Since $X_{n-1} \ge M_n(z)$ we have an explicit upper bound for $\lambda_n(z)$.

Taking the limit as $n \to \infty$.

$$\frac{1}{2}(z-2+\sqrt{(z^2-4z+8)}) \ge L(z) \ge \frac{z^2-3z+3}{z-1}.$$

When z = 3 the bounds are $\frac{1}{2}(1+\sqrt{5}) = 1.618...$ and 3/2 = 1.500... For this case the calculations of Lieb [7] give the exact result $L(3) = (4/3)^{3/2}$, which is numerically 1.540.... For larger values of z the bounds are better, since they differ by a term of order z^{-2} .

References

- 1. R. J. Baxter, "Three-colourings of the square lattice: a hard squares model", J. Math. Phys., 11 (1970), 3116-3124.
- 2. N. L. Biggs, Algebraic graph theory, Cambridge Tracts in Mathematics, 67 (Cambridge University 3. ——, "Chromatic and thermodynamic limits", J. Phys. A, 8 (1975), L 110–112. 4. ——, R. M. Damerell and D. A. Sanda " Derry, A, 8 (1975), L 110–112.
- -, R. M. Damerell and D. A. Sands, "Recursive families of graphs", J. Combinatorial Theory (B), 12 (1972), 123-131.
- 5. H. J. Brascamp, H. Kunz, and F. Y. Wu, "Some rigorous results for the vertex model in statistical mechanics", J. Math. Phys., 14 (1973), 1927-1932.
- P. Lancaster, Theory of matrices (Academic Press, 1969).
 E. H. Lieb, "Residual entropy of square ice", Phys. Rev., 162 (1967), 167–172.

Royal Holloway College, University of London, Egham, Surrey.