
COLOURING SQUARE LATTICE GRAPHS

NORMAN BIGGS

1. The colouring matrix

We shall approximate to the infinite plane square lattice graph by means of the
finite toroidal square lattice graphs. Although the methods used are well-known in
mathematical physics (see for example Baxter [1] and Lieb [7]) they have yet to be
exploited fully in graph theory.

Let k be a natural number and let Zk denote the additive group of integers modulo
A:, Z& = {0,1,..., A:— 1}. For any natural numbers m, n, we define the toroidal square
lattice graph 5m> „ as follows. The vertices are the elements of Zm x ln and two vertices
(}>j)t O'»/) we adjacent if i = i' and ; , / differ by one, or if 7 = / and i, i' differ by
one. In particular, the graph S1>n is the w-circuit Cn (n > 2). Let cn(z) denote the
chromatic polynomial of this graph, that is [2, p. 59]

cn{z) = C(Cn;z) = ( z - i y + ( - i y ( z - l ) .

In addition to the assumption n > 2 w e shall take z to be an integer not less than 3,
so that cn(z) is a positive integer.

Let us say that two z-colourings y, 5 of Cn are compatible if y(v) # 5{v) for each
vertex v of Cn. Define a matrix Tn(z), whose rows and columns correspond to the
z-colourings of Cn, by the rule:

(1 if y and 5 are compatible;
{Tu(z))n = [ 0 otherwise>

We shall show that the chromatic polynomial of Sm> „ is given by

C(Sm>n',z) = trace [Tn(z)ml (1)

For the proof let T = Tn(z). For each fixed i in 2m the vertices (i,j) of Sm> „ form an
n-circuit Cn

(<) and a z-colouring £ of Sm> „ induces a z-colouring £,- of Cn
(i). Conversely,

if we are given such z-colourings of each Cn
(l) then the expression

is equal to one if £0, d , •••> Cm-i unite to give a z-colouring of Sm>n and is equal to
zero otherwise. Thus the number of z-colourings of Smt „ is

2 TCoC1^,c2-Tu-1Co = trace (Tm).
CO Cm-!

2. The eigenvalues of Tn(z)

The expression (1) for the chromatic polynomial of Sm>n may be written in terms
of the eigenvalues of Tn(z):

, (2)
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where X(z) runs through the eigenvalues of Tn(z). As an example, the case n = 2 is
amenable to direct calculation; T2(z) is a matrix with z{z— 1) rows and columns and
its eigenvalues are z2 — 3z+3 (once), 3—z (z—1 times), 1—z (z—1 times) and
1 (z2 — 3z+l times). This gives the result for Sm>2, the skeleton of an m-prisrn, in
agreement with [4]:

We shall require this result presently.
Since Tn(z) is a matrix with non-negative entries, the classical theory of Perron and

Frobenius [6; p. 286] may be applied. It is convenient to regard Tn{z) as the adjacency
matrix of a graph whose vertices are the z-colourings of Cn. Then it is easy to show
that (except when z = 3) the graph is connected and is not bipartite. This means that
among the eigenvalues of Tn(z) there is a unique one Xn(z) with greatest absolute value,
and Xn(z)

(i) is positive,

(ii) has multiplicity one,

(iii) is not greater than the maximum row sum Mn(z) of Tjjz),

(iv) is not less than the mean row sum mn(z) of Tn(z).

The exceptional case z = 3 is not a serious difficulty, since in that case we have the
exact calculation of Lieb [7].

We wish to investigate the limit of the sequence {C(Sn>n;z)1/n2} for fixed z. This
" chromatic limit " is the analogue, for the infinite square lattice graph, of the chromatic
polynomial for a finite graph. It is known [3] that

L(z) = li y2

exists for each z ^ 4, and that the same limit is obtained when Sn> „ is replaced by an
nxn subgraph of the plane square lattice. The corresponding results for z = 3 may
be deduced from a paper of Brascamp, Kunz and Wu [5].

The properties of Xn(z) and the formula (2) show that

L(z) = limAn(z)1/n.
n-»oo

We shall obtain upper and lower bounds for this limit.

3. Bounds for Xn(z)

The mean row sum of Tn(z) is easily found. The sum of all the entries of Tn(z)
is just the number of compatible pairs of z-colourings of Cn, and this is the same as
the number of z-colourings of the H-prism S2>n. Thus

(22_3z+3)n+(z-l){(3-z)r t+(l-z) ' I}+z2-3z+l
mn[z) = .

When n = 2 or n = 3 all colourings of Cn are alike and Mn(z) = Xn{z) = mn(z). In
fact X2(z) = z 2 -3z+3, X3(z) = z3-6z2 + 14z-13. When n > 3 the bounds are not
equal and the upper bound may be estimated as follows.

We wish to find an upper bound for the number of z-colourings of Cn which are
compatible with a given such colouring y.
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Let v0, vu ..., yn_! be the vertices of Cn and let u0) ui}..., */„_! be the vertices of a
path of length n. (The reason for choosing a path rather than a circuit is simply
convenience; the order of magnitude of the result is not affected.) Let Xt (0 < i ^
n— 1) denote the number of z-colourings e of the path from u0 to uv such that

Then it is clear that
X0=z-l, Z1=z2-3z+3, Xn.^Mn{z).

Each of the X^^ colourings of the path from u0 to Mj_t may be extended in (at
least) z—2 ways to uh since we have only to ensure that e(w,) is not either £(MJ_!) or
y(Vi). Let Yj_ t be the cardinality of the subset of the Zf_ t colourings which have the
property e(wj_i) = y(vt). Each of these colourings may be extended in z— 1 ways to
Mj, and so Xt = (z-2)Xi_1 + Yi_1. But every one of the Yt_t colourings induces,
by restriction, a colouring of the path from u0 to Mf_2, and these induced colourings
are all different. Consequently, Yi_x < X;_2andwehave

From this we deduce that

Xn-

where the coefficients/^ are given by the recursionp0 — 1, pL = z—2,

Explicitly Pk = a)fc(z
Since Xn_x ^ Mn(z) we have an explicit upper bound for A,,(z).

Taking the limit as n -> oo.

z2 —3z+3
L( )

When z = 3 the bounds are HH"V 5 ) = 1-618... and 3/2 = 1-500... . For this case
the calculations of Lieb [7] give the exact result L(3) = (4/3)3/2, which is numerically
1-540.... For larger values of z the bounds are better, since they differ by a term of
order z~2.
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