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ABSIXACT 

There is a simple lower hound for the number of vertices of a regular graph 
whose girth and valency are specified. If the graph is required to have certain 
additional properties, then the number of excess vertices needed may be unbounded. 

- 

1. INTRODUCTION 

Let G be a regular graph with valency k > 3 and odd girth g =2r + 1 

(T > 2). There is a simple lower bound 

for the number of vertices of G, and it has been proved by Bannai and Ito 

[l], and by Damerell [4], that the bound can be attained only when g = 5 and 

k = 3, 7, or 57. On the other hand, attempts to find general constructions for 
graphs with given girth and valency seem to result, at best, in much larger 

graphs than the lower bound would predict. Bollobb [3] gives an account of 
the present state of knowledge, and asks some interesting questions. Many of 

these concern the behavior of the number of excess vertices, n - n,,( g, k), 
where n is the smallest possible order of a graph G with the required 

properties. 

Bollobris [3, p. 163] suggests that the excess cannot be arbitrarily large. In 
view of this, it may be of interest to show that for restricted ciasses of graphs 
the excess does tend to infinity as a function of g or as a function of k. 

Let C? be any property of graphs, and define n(9 ; g, k) to be the 
minimum number of vertices of a regular graph with property 9 which has 
girth g and valency k, if such a graph exists. The existence of n(9 ; g, k), and 

LINEAR ALGEBRA AND ZIS APPLZCATZONS 31:5.%59 (1980) 55 

Q Elsevier North Holland, Inc., 1980 9024-3795/80/a3oa55+5fo1.75 



56 NORMAN BIGGS 

the behavior of the excess 

provide interesting unsolved problems for several properties. Although we 
shall not discuss them here, the Hamiltonian property and the property of 
vertex transitivity seem to be worth investigating. Our first result concerns 
the following property 9. The graph G has property 9 if there is a subset C 
of its vertices such that the sets 

D(c)={x]x=corxisadjacenttoc} @EC) 

partition the vertex set of G. (Elsewhere, C has been called a perfect l-code 
in G.) We shall prove that if n(9 ;g,k) exists, then the excess e(q;g, k) tends 
to infinity with g for fixed k > 3, and it tends to infinity with k for fixed 
g> 5. 

Our second result concerns the property (& of being t-colorable, in the 
usual graph-theoretic sense. In this case, we shall show not only that the 
excess e(et; 5, k) tends to infinity with k, but that the “proportional excess” 
e/no is bounded away from zero. 

The proofs use fairly standard methods of algebraic graph theory, and 
these are explained more fully in [2]. Probably the results could be improved 
and extended by refining the basic approach. 

2. A LOWER BOUND FOR EXCESS 

Let G be a connected graph with n vertices and diameter d. For integers 
i in the range O<i<d we define the nXn matrixAi=Ai(G) as follows. The 
rows and columns of A, correspond to the vertices of G, and the entry in 
position (0,~) is 1 if the distance a(u, W) between the vertices u and w is i, 
and zero otherwise. Clearly, A,,= I, A, = A (the usual adjacency matrix of 
G), and 

igoAi=Jy 

where each entry of J is 1. 
Now suppose that G is regular, with valency k, and has girth g = 2r + 1 > 

5. We claim that 
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where F, is the polynomial expression defined by the recursion F,(x) = 1, 
F,(x)=x+l, F,(x)=xF,_,(x)-(k-l)F,_,(x) (s>2). This follows from the 
matrix identities 

A,=Af-kl, A,= A,A,_,-(k- l)A,_, (3 <s <r), 

which in turn follow from the fact that if u and w are vertices with 
a( u, w) = s < T, then there is a unique path (without repeated vertices) joining 
them. 

Since G is regular and connected, the matrix _I is a polynomial function of 
A [2, p. 151. Hence F,(A)+E=J, where E=A,+,+.** +Ad is also a 
polynomial E(A). Thus if A is an eigenvalue of A, then F,(A)+ E(A) is an 
eigenvalue of J. The eigenvalue A = k corresponds to the eigenvalue n of J, 
and we note that F,(k) = n,,( g, k), so that E(k) = n - n,, = e is an eigenvalue of 
E. In fact, each row and column of E sums to e, and it follows that every 
eigenvalue p of E satisfies ] ~1 <e. 

Now if h#k is an eigenvalue of A, then F,(X)+ E(A) is the zero eigen- 
value of J, and [E(A)1 <e. Thus (F,(A)1 <e. This is our lower bound for the 
excess. To summarize: if G is a graph with girth g, valency k, and order 
n,( g, k) + e, then every eigenvalue A # k of G satisfies 

e z lF,(% (*) 

where {F,} is the sequence of polynomials defined above. 

3. PROPERTIES WITH UNBOUNDED EXCESS 

It may be possible to derive general results from the inequality (*), by 
means of a careful study of the polynomials { FS}. Here we shall simply 
assume that G has certain properties which are known to have spectral 
consequences. 

Let ‘9 be the property of having a perfect l-code C, as defined in the 
introduction. We define a column vector Z, whose n rows correspond to the 
vertices of G, as follows: 

Ml= ( - k if UEC, 
1 if uec. 

It is easy to check that AZ = - z, so that - 1 is an eigenvalue of G. Thus (*) 
implies that 

(g=2r+ l), 
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where fi = F,( - 1) is determined by the recursion f0 = 1, fr = 0, f, = - f,_ r - 
(k-1)X-a (s>2). It is easy to see that fi is a polynomial of degree [i r] in 
k - 1, so that for fixed T > 2, 1 J.1 tends to infinity with k. Also, for fixed k > 3, 
]fi] tends to infinity with T, although this is rather more difficult to prove. 
(See, for example, [S].) 

In the preceding example, the excess e is of order (k - l);‘, while n,, is of 
order (k - 1)‘. Hence the proportional excess e/n,, tends to zero with 
increasing k, for fixed g> 5. We now give an example where the propor- 
tional excess is bounded away from zero. 

Let G be a graph with girth 5 and valency k which has the property e, of 
being t-colorable. A result of Hoffman [5] (see also [2, p. 541) tells us that the 
smallest eigenvalue hmin of G satisfies 

Our basic inequality (*) yields e(e,; 5, k) > ) Fz(Amin)l. Now the quadratic 
expression F,(r) = x2 + x - (k - 1) is positive and decreasing for x < X = $( - 1 

- w ). Thus if F,( - k/(t- 1)) > 0, we must have A,, < - k/(t- 1) < 
X, and F,(X,,) > F,( - k/( t- 1)). Consequently, 

e(e,;s,k)>F,(-k/(t-1)). 

In fact, this result is always true, since it is trivially satisfied if the right-hand 
side is negative. 

Explicitly, we have shown that 

Since no(5, k) = k2 + 1, we see that e/n0 has order (t- 1)-2 as k increases. 
For example, a graph of girth 5 and large valency must, if it is to have a 
S-coloring, possess about 25% more vertices than predicted by the simple 
lower bound no. 

4. DISCUSSION 

It will be noted that we have not discussed the existence problem for 
graphs with girth g, valency k, and a specific property ‘9’. It seems that such 
problems are best attacked by probabilistic methods. 
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Finally, it is worth remarking that, for trivalent graphs, and quite small 

values of g, there are still many open questions. Particularly remarkable is 
the case g=9 and k=3, for which n,=46. In spite of many attempts, no 

construction has produced a graph with fewer than 66 vertices. Some years 
ago I suggested that one might be able to set up a construction on the basis 
that a “perfect l-code” existed, and H. S. M. Coxeter succeeded in doing 
this. His graph was the fifth (9,3) graph with 60 vertices to be discovered. I 

understand that there are now at least twenty different graphs of this kind 
known. 
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