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1. Introduction. Let G be a regular graph with even girth g = 2r ^ 4 and valency
k > 3. It is well known, and easy to prove, that G must have at least n0 = no(g, k)
vertices, where

I t is also well known, but harder to prove, that, if there is a graph with the stated
properties and exactly n0 vertices, then g must be 4, 6, 8 or 12 (3,8,10). In the case
g = 4, the minimal number of vertices n0 = 2k is attained for each value of k by the
complete bipartite graph Kkk. In the case g — 6, the existence of a graph with
n0 = 2(k2 — k + 1) vertices is equivalent to the existence of a projective plane of order
k— 1, that is, a symmetric {v,k, l)-design with v = k2 — k+ 1. It is known that these
designs exist for prime power values of k — 1, but the existence question for many other
values remains unsettled. In the cases g = 8 and g = 12 it is again possible to construct
graphs with n0 vertices when k— 1 is a prime power (2), but here also the existence
question is unresolved for most other values.

In view of the scarcity of graphs which attain the minimal number n0, it is natural to
investigate what happens when the number of additional vertices is small. Precisely,
if G is a regular graph with girth g, valency k, and n vertices, then we define the excess
e of G to be n — no(g, k). This usage differs slightly from that employed in an earlier
paper (4), but there should be no possibility of confusion.

For any given values of g and k it is possible to construct a regular graph with girth
g and valency k: a recent survey of relevant methods is given by Bollobas (5). Thus the
number

min{e|3G! with girth g, valency k, excess e}

is defined for each g and k. I t is possible that, for even values of g =f= 4, 6, 8, 12, the
minimum tends to infinity with k. I t is also possible that this remains true when

1 PSP88

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100057303
Downloaded from https://www.cambridge.org/core. LSE London School of Economics, on 14 Jul 2020 at 15:00:36, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100057303
https://www.cambridge.org/core


2 N . L. BIGGS AND T. ITO

g = 6, 8, 12, if we exclude the graphs with e = 0 mentioned above. In this paper we
begin the investigation of such questions, for the general case g = 2r > 6.

First, we show that if e is small (e ^ k — 2) then G must be bipartite, and in particular
e is even. Then we use algebraic methods to show that e = 2 is impossible for all
g = 2r $5 8. This rather unexpected result means that, for example, when g = 8 and
k — 1 is prime power there is a gap in the possible values of e: either e = 0 or e ^ 4.
Finally, we investigate the case g = 6 in some detail. Here we obtain an interesting
analogy between the case e = 0, when the graph corresponds to a symmetric (v, k, 1)-
design, and some cases with e =}= 0, when the graphs correspond to symmetric (v, k, A)-
designs with 2(A— 1) = e. We use this correspondence to show that g = 6 and e = 2is
impossible if k = 5 or 7 (mod 8).

2. The bipartition theorem. We begin by introducing some notation, based on a
standard decomposition for a graph G of girth 2r. Choose an edge {cr, r} of G and define,
for 0 < i < r - 1 ,

8i = {aeVQ\d{<r,a) = i, 0(T,a) = t + l } ,

Ti = {<xeVG\d(a-,oc) = i + l, 8(T,a) = i}.

The fact that the girth of G is 2r implies that the sets Si,Ti(0 ^ i ^ r — 1) are mutually
disjoint and, since G is regular of valency k, we have \St\ = \Tt\ = (k— 1)\ Let X
denote the set of all remaining vertices of G, so that

X = {aeVG\8(a,a)^r and 8(r,a)^r}.

X is the excess set with respect to {<r, T}, and its cardinality is e, the excess of G.
Occasionally we must specify {<r, T}, and write Xaj for X.

Since the girth of G is 2r, there are no edges with both ends in St or both ends in
Tt (0 ^ i ^ r- 1), and no edges joining SitoTi(0 ^. i ^ r— 2). However, there will be
some edges joining Sr_1 to Tr_x, and there may be edges joining X to Sr_lt X to Tr_lt

and edges with both ends in X. For any vertex a and W c 7£ we denote the set of
vertices in W which are adjacent to a by N(W, a), and put n(W, a) = \N(W,a.)\.

LEMMA 2-1. Suppose that r ^ 3 awcZ a,/? are adjacent vertices of G, lying in Tr_1 U X.
Then

same result holds with Sr_1 and Tr_x interchanged.

Proof. The (k — I)*-1 vertices in jSr_j are partitioned into k — 1 subsets of cardinality
(k — 1 )r~2, each subset consisting of those vertices which are at distance r — 2 from a
given vertex in Sx.

The sets N(Sr_1, a) and iV(<5r_1,/?) are disjoint, otherwise C? would contain a 3-cycle.
Hence their union has cardinality n(8r_1,<x.) + n(Sr_1,P). If this sum is greater than
k — 1 then, by the pigeon-hole principle, at least one of the k— 1 subsets defined in the
previous paragraph must contain two vertices d, <j) belonging to N(Sr_1, a) U Ar(iSr_], /?).
Now 6 and <fi have a common vertex in Sx at distance r — 2 from both of them, and by
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Graphs with even girth and small excess 3

construction there is a path of the form Qafi(j>, or 6a(f), or dfi<j>. Thus in any case we have
a cycle of length 2r — 1 or less, and this contradiction gives the required result. |

LEMMA 2-2. Suppose that r > 3 and a, fi are adjacent vertices of G, with a e X, fi e Tr_v

Then
n(X,fi)>n(Sr_1,a),

and the same result holds with Sr_1 and Tr_1 interchanged.
Proof. The vertex fi has k neighbours in all: one is in Tr_2 and the others are in

$,._! or X. Hence
n(X,fi) = k-l-n(Sr_1,fi)
^ n(Sr_lsa) (by Lemma 2-1). |

THEOREM A. Let G be a regular graph with girth 2r ̂  6, valency k, and excess e. If
e ^ k — 2 then G is bipartite and its diameter isr+1.

Proof. We remark first that if a vertex in X has its k neighbours all in X then
e ^ k+ 1. Thus, with the given hypothesis, every vertex in X must be adjacent to
some vertex in Sr_1 U Tr_v

Suppose first that there is a vertex £ in X adjacent to a e Sr_x and fi e Tr_v Then the
sets N(X, g), N(X, a) - {£}, N(X, /?)-{£}, {£} are disjoint subsets of X, and so

e= \X\ >n(

by Lemma 2-2. Since the valency of £ is k, and all the neighbours of £ are in X, Tr_x,
or <Sr_1, it follows that e ̂  k—1, contrary to hypothesis. Hence every vertex in X is
joined to some vertices in one or other of Sr_1, Tr_lt but not both.

Define a partition X = Xs U XT, such that Xs, XT denote the subsets of X con-
taining vertices joined to <Sr_1, Tr_x respectively. Suppose that Xs contains two
adjacent vertices £, v. By definition of Xs, there are vertices a, fi in ST_lt adjacent
to £, r) respectively. The sets N(X, £,) -{n}, N(X,v)-{£,}, {£}, {v}, are disjoint subsets
of X, and so

e = |X|

= n(
Thus we have

> k+1,

by Lemma 2-1. This contradicts the hypothesis e < k — 2, and so we deduce that Xs

(and similarly XT) contains no pairs of adjacent vertices. Hence G is bipartite, the
two parts consisting of alternate sets from the sequence

O Q J O J , o 2 , . . . , o r_i,XS,XT, Jr_i,..., J2> J-\, JQ-

Since all the excess vertices are in X = Xs u XT, the diameter is r + 1. |
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4 N. L. BIGGS AND T. ITO

The result stated in Theorem A is not the best possible. By using more carefu
counting arguments we can show that e ^ k — 1 is sufficient to give the same con-
clusions. For our present purposes we need this stronger result only for k = 3 and
e = 2, when it can be established by fairly simple means.

3. Algebraic treatment of the case e = 2, g = 2r > 8. In this section we shall always
suppose that G is a regular graph with girth g = 2r ̂  8, valency k, and excess 2. We
set n = | VG\ = no + 2. By Theorem A and the remarks following it we know that G
is bipartite and has diameter r+1.

Let At (0 < i ^ r + 1) denote the n x n matrix whose rows and columns correspond
to the vertices of G, with

(1 if 8{a,fi) = i;
^W |o otherwise.

LEMMA 3-1. The matrices Ai (0 ^ i ^ r+ 1) satisfy the following identities (where

(i)

(ii)

(iii) ^(^r_!H-^r+1) = (k-l)Ar_2

Proof. We sketch the proof of (iii); (i) and (ii) are similar but simpler. The term in
row a and column /? of A(Ar_1 + Ar+1) is equal to the number of vertices y in G satis-
fying 8(a, y) = 1 and d(fi,y) = r± 1. If d(a,fi) =j= r — 2 or r, then there are no such
vertices. If &{&,/$) = r— 2, then there are k— 1: all vertices adjacent to a except the
unique one lying on a path of length r — 2 from a to /?. If 8(a, /?) = r, then all £ vertices
adjacent to y have the property, as a consequence of Theorem A. Thus

[A (Ar_x + Ar+1)]xfi = [{k-

as required. |
Let J denote the n x n matrix whose entries are all 1. It is clear that

The identities given in (i) and (ii) of Lemma 3-1 enable us to express each of the
matrices A0,Alt ...,Ar_x in turn as a polynomial in A, and using (iii) to deal with Ar,
we obtain

where {E^x)} is the sequence of polynomials denned by the recursion

E0(x) = 0, Ejfr) = 1,

Et(x) = zE^W-ik-VE^ix) (i > 2).

LEMMA 3-2. Ifco( 4= ±k)is an eigenvalue of A, then

where e = ± 1.
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Graphs with even girth and small excess 5

Proof. Since the excess is 2, every vertex of G has just one vertex at distance r + 1
from it. Thus Ar+1 is a permutation matrix satisfying A\+x = I, and its eigenvalues
are + 1. (The trace of Ar+1 is zero, so each value occurs \n times.)

Suppose that o> is an eigenvalue of A. Since G is regular, a result of Hoffman (3, p. 15)
implies that J is a polynomial in A, and so any eigenvector of A is an eigenvector
of J. The equation kJ = (A + kl) (Er(A) + Ar+1) shows that such an eigenvector is also
an eigenvector of Ar+1, whence (o» + k) (Er((o) ± 1) is an eigenvalue of kJ. But the
eigenvalues of kJ are kn (once) and 0 (n— 1 times). The eigenvalue kn corresponds
to putting u) = k, and so all remaining eigenvalues except w = — k satisfy (*). I

LEMMA 3-3. For either value ofe, the equation (*) has r — 1 distinct roots

0)1 < 0)2 < ... < (Or_1.

If we set s = *J(k — 1), then o>i = —2s cos (fit (0 < (j>t < n) and

in/r+ ^ <f>t ^ in/r if vi = 1,

in/r ^ ^j < in/r- if vi = —\,
where

r+ = r + s1~r, r- = r-s1~r.

Proof. Putting w = — 2s cos <j>, we find

and Er(o)) has zeros when <f> = in/r (1 ^ i ^ r — 1). Hence we put ^ = (in — d)/r, and
(*) becomes

sin S — tJi sx~r sin (in — S)/r = 0,
where ij{ = (— l)r+ie.

Suppose r\i = 1. The left-hand side of the equation is negative when 8 = 0, and
positive when S = min{^s1~r, (n — ^Js1"'}, since the sine function is convex upwards.
Hence there is a root ^ = (in — 8{)/r, with St between these bounds. This gives the
required bounds for <j>i.

The case vi = — 1 is similar. |

LEMMA 3-4. The multiplicity w ^ ) of o)i = — 2s cos fa as an eigenvalue of A is

™K) = -j- (! -s2~2r)P(cos

where

q(t) = {r(l-s*-

Proof. A standard method of calculating multiplicities, as in (l), leads to the formula

. . nk(k-l) Er a(w)

where E'T is the derivative of Er. Substituting our expressions for Er_Y and E'r, we
obtain the stated formula. I
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6 N. L. BIGGS AND T. ITO

LEMMA 3-5. Let Ax < A2 < ... < Ar_x be the roots of Er(x) - 1 = 0 and

/l!<fl2< ... <llr_x

the roots of Er(x) +1 = 0. Then we have:

(i) Ifris odd, m(Ai) = m(Ar_i), mfji^ = mi/t,.^), while if r is even, m(Ai) = mfji^
(1 ^ i < r-l).

(ii) Ifr is odd, then mfju,^ < mfajfor i = 2,..., r — 2, while ifr is even, m(Al) < m{Ai)
fori = 2 , . . . , r -2 .

(iii) If(r,lc) # (4,3), (4,4), (5,3), (6, 3), thenm(Ar_1) < m^fori = 2 , . . . , r -2 .

Proof, (i) Ifr is odd, Er{ — x) = Er(x) and so At + Ar_{ = /it+fir_i = 0, and the formula
for the multiplicity gives ra(Aj = w^A,.̂ ), ra(/^) = m(/ir_t) (1 ^ i ^ r - l ) . If r is
even, Er(-x) = -£"r(a;) and so A i + z ^ = 0, wi(AJ = m^ji^.

(ii) We remark that, in the notation of Lemma 3-4, p(t) is an even function, and is
convex upwards, while q(t) is monotonic increasing. Let /ii = — 2st{. Then it follows
that

P(h) <Pih) a n d ?(*i)

for 2 < i < r— 2. Since j ^ = — 1 when r is odd and e = — 1, we get mi/i^ < mljij) in
this case. The case when r is even is similar.

(iii) This is proved by direct calculation, using the inequality

(l-51- r)r+ < q(t) < (l+«1~r)r- {\t\ < 1).

THEOREM B. There is no regular graph 0 with girth 2r ^ 8 and excess 2.

Proof. For the major part of the proof we shall suppose that (r, k) is not one of the
exceptions listed in Lemma 3-5 (iii). The exceptional cases will be dealt with separately
at the end.

Suppose that r is even and (r, k) is not one of the exceptions. Then Lemma 3-5
implies that Ax and Ar-1 have multiplicities different from (in fact, strictly less than)
the other eigenvalues. Now the eigenvalues are all algebraic integers, and if one of
them is of degree I then its Z — 1 algebraic conjugates will be eigenvalues with the same
multiplicity. Hence Ax and Ar-1 are either rational integers or they are conjugate
quadratic irrationals. In either case A1 + Ar_1 is an integer.

But now Lemma 3-3 tells us that Ax + Ar-1 is positive and

The final expression is strictly less than 1 when r ^ 4 and k > 3, contradicting the fact
that Ax + Ar_x is an integer. Hence the result is proved in this case.

Suppose that r is odd and not one of the exceptions. By a similar argument using
Lemma 3-5 we find that Af—/i\ must be an integer, and using the bounds established
in Lemma 3-3 we obtain the contradiction 0 < Af—/i\ < 1.
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Graphs with even girth and small excess 7

For the exceptional cases (4,3), (4,4), (6,3), we note that ET(x) — 1 is irreducible
and the formula for m(A) in Lemma 3-4 leads to irrational, and therefore impossible,
values. Finally, the case (5, 3) can be excluded by direct elementary arguments. I

4. Graphs with girth 6. The algebraic methods used in the previous section do not
lead to any conclusion for graphs with girth 6. However, we can obtain some very
interesting results for this case by exploiting a relationship with symmetric designs.

As before, we assume e < k — 2, so that G is bipartite, its diameter is 4 and e is even.
In the minimal case e = 0 it is known (10) that the two parts of G may be regarded
as the sets of points and lines of a projective plane, adjacent vertices corresponding
to an incident pair.

Suppose that e 4= 0, and let <X> denote the vertex-subgraph induced on X. (X) is
bipartite, and the valency of each of its vertices is at least 1, since any vertex in X
is joined to at most k — 1 vertices in S2 or T2 (Lemma 2-1). Thus (X) has at least \z
edges. The case when (Xs) has just \e edges, so that the e vertices are joined in pairs
and there are no other joins, is of particular interest, as the next theorem shows. This
case certainly must happen when e = 2 (even when k = 3, in fact), and it may be that
it necessarily occurs if e is small compared with k. However, we have not succeeded in
proving a result of this kind.

In order to state the next theorem we shall need some definitions.
A symmetric (v, k, A)-design is a set P of v points and a set B of v blocks, such that

each block is a fc-subset of P, and any two distinct points belong to exactly A blocks.
I t follows that any two distinct blocks intersect in just A common points, and

Associated with a symmetric (v, k, A)-design there is a bipartite graph whose vertex-
set is P U B and whose edge-set consists of the pairs {p, b) with peb (peP,beB). We
shall denote a graph which arises in this way by D(k, A), noting that the parameters
k and A do not necessarily determine a unique graph.

A graph D(k, A) has the following four properties:

(1) it is regular, with valency k;
(2) it is bipartite;
(3) it has diameter 3;
(4) given any two vertices at distance 2 there are just A vertices adjacent to both

of them.
This is equivalent to saying that D(k, A) is a distance-regular graph with intersection
array

{k,k-l,k-A;l,A,k}.

Conversely, if we are given a graph with properties (l)-(4), then it gives rise to a
symmetric design in the obvious way, and so it is a D(k, A) graph.

A local isomorphism of two graphs G and H is a mapping / from VG onto VH such
that the neighbours of v in G are mapped in a one-to-one fashion onto the neighbours
of f(v) in H. We shall say that G is an s-fold cover of H if there is a local isomorphism
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8 N. L. BIGGS AND T. ITO

/ : VG-> VH such that |/~1(w)| = s for each WE VH. It follows that if {wl!w2} is an
edgeof//then there are just sedges {j)1;f2} such that/(v1) = w1,f(v2) = w2-

THEOREM C. Let G be a regular graph with valency k, girth 6, and excess e < k — 2.
Suppose that for each edge {<r, T} of G the excess set XaT induces a subgraph with just
\e edges; then G is a X-fold cover of a graph D(k, A), with A = \e + 1.

Proof. (I) We begin by constructing a graph G' such that G is a A-fold cover of G'.
Choose an edge {a, j) of G and let a, /? be distinct vertices in X = XaT, both at distance

4 from a. We claim that 8(oc, /?) = 4. If not, then since G is bipartite we should have
d(oc, /?) = 2, and there is some vertex y adjacent to both a and /?. Now y cannot be
in X, since (X) is 1-valent, so y must be in T2. There are at least two edges from y
to X, one edge from y to Tx, and so at most & — 3 edges from y to S2- Hence not all
vertices in 8X are at distance 2 from y, and there is a vertex S eSx such that d(y, 8) = 4.
But now the excess set Xat contains the vertices a, /?, y, and y has valency 2 in (XaS},
contrary to our assumption. Hence d(a,/?) = 4.

We have shown that G has the antipodal property: if d(o-,a) = d(a, ft) = 4 (the
diameter of G), then d(a,fi) = 4 also. Hence we may define an equivalence relation
~ on VG by the rule

fi ~ vod(ji, v) = 0 or 4.

Let fi' denote the equivalence class of u e VG, and let V denote the set of equivalence
classes. Define E' by the rule that {/*', v'}eE' if and only if there are vertices £e/*',
1) ev' such that {£, TJ) is an edge of G, and let G' denote the graph with vertex-set V
and edge-set W. The mapping / taking /i to ju,' is a local isomorphism of G onto (?',
and f~1(fi') consists of fi and the \e vertices at distance 4 from it, so G is a A-fold cover
of G', where A = \e + 1.

(II) We now check that G' is a graph satisfying the conditions (l)-(4) which char-
acterize a D(k, A) graph.

(1) Since/is a local isomorphism, the valency of G' is k.
(2) If VG = V1U F2 is the bipartition of G, then V = Fi U F2 is a bipartition of G'

where

(3) Since (? has diameter 4, the diameter cT of G' is at most 4. Vertices at distance
4 in G are identified in G', and so d' ^ 3. It is easy to check that some pairs fi, v of
vertices of G with d(/i, v) = 3 give d{/i', v') = 3 in G'. (The only other possibility is that
d(/i', v') = 1, and for a given fi there are too many vertices v for d(/i', v') = 1 to hold
always.) Hence d' = 3.

(4) Suppose that 3(0', ^ ' ) = 2 in (?', and choose 0O, ̂ 0 in (? covering <j>', yjr' respectively.
Let Xo D e t n e unique vertex of G adjacent to <p0 and xjr0. The excess set with respect to
{0o.Xo} consists of e = 2(A- 1) vertices ^, . . . ,Xx-i, </>i, ••- .^A-I . where &, ^ are at
distance 4 from 0O, ^0 respectively (1 =g i ^ A— 1). Also, there are A— 1 vertices at
distance 4 from ifr0. If we use the standard notation of Section 2 with a, r replaced
by 0O, Xo> then tyQeTx and its A— 1 antipodes are in $2; we may suppose they are
labelled ifrlt ...,^"A_1 so that ^ f is adjacent to Xi- Each ^\ is adjacent to a unique
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Graphs with even girth and small excess 9

vertex af in Sx, and since 8(i/rit xjfj) = 4, <xi and a;- are different when i 4= j . Now
3(a£,a;) = 2 and so aj =)= a'j. Thus we have, as required, A vertices %', a'lt ...,aA_!
adjacent to both 0' and \jr' in (?', and these are the only such vertices. Hence G' is a
Z>(fc,A) graph. I

I t is possible that for a given value of A > 1 there are only finitely many values of
k for which a symmetric (v, k, A)-design exists. If this is so, then Theorem C provides
some evidence in favour of the conjecture that the number

min{e|3C? with girth 6, valency k, and excess e 4= 0}

tends to infinity with k. However, the conjectured result on symmetric designs is
probably quite deep, and it may be easier to attack our graph-theoretic problem more
directly. This is certainly true when e = 2, as the next theorem will show.

If we are given that e = 2, then the condition that (X) has just \e edges is necessarily
satisfied: the two excess vertices must be joined by an edge. Theorem C now tells
us that a graph with e = 2 and g = 6 is a 2-fold covering of a D(k, 2) graph, which
corresponds to a symmetric (v, k, 2)-design, or biplane. Biplanes are known to exist
for k = 3, 4, 5, 6, 9, 11, 13 (6). The following theorem shows that, in general, the
existence of a biplane is not sufficient for the existence of a 2-fold covering of the
associated graph. (Results of this kind have been obtained independently by J. Kahn.)

THEOREM D. A graph G with girth 6, valency k and excess 2 cannot exist if k = 5 or
7 (mod 8).

Proof. We already know, by Theorem C, that G is a 2-fold covering of a graph
D(k, 2). A typical vertex 77 of D(k, 2) is covered by two vertices of G, which we shall
denote by n+ and n~ in some arbitrary fashion. A typical edge {77,/?} of D(k, 2) is
covered by two edges of G, and there are just two possibilities:

(i) the covering edges are {n+,fi+} and {77-,/?-};
(ii) the covering edges are {77+, /?-} and {n~, /?+}.

In case (ii) we shall say that {n, ft} belongs to the subset E~ of the edge-set E of D{h, 2).
Consider a typical 4-cycle (n,p,u>,y) of D(k, 2). If it contains an even number of

edges in E~, then the edges of G covering it will comprise two 4-cycles. Since G has
girth 6, this is impossible, and we conclude that every 4-cycle must contain just 1
or 3 edges in E~.

Let Cv C3 denote the number of 4-cycles in D(k, 2) which contain 1, 3 edges in E~
respectively. Since any two of the v points of the biplane determine a unique 4-cycle,
there are \v(v— 1) 4-cycles in all, and

Ci + Cs = it;(»-1).
Each edge of D(k, 2) corresponds to a point n and a block ft of the biplane and so it
belongs to k — 1 4-cycles (n, /?, w, y), where w runs through the k — 1 points of/? different
from 77 and y is the unique block containing 77 and w. Thus, counting the edges in E~,
we obtain

Eliminating Clt we have

4-cycles (n, /?, w, y), where w runs through the k — 1 points of/? dif
the unique block containing 77 and w. Thus, counting the edges

Ci + 3C3 = (ifc-l)|tf-|.

2C3=(k-\)\E~\-\v(v-\).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100057303
Downloaded from https://www.cambridge.org/core. LSE London School of Economics, on 14 Jul 2020 at 15:00:36, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100057303
https://www.cambridge.org/core


10 N. L. BIGGS AND T. ITO

Now v = \{k2 - k + 2), and if k = 5 or 7 (mod 8), we find that \v(v - 1) is odd and k - 1
is even, so that the equation for C3 has no integral solution. |

Theorem D shows that even if a biplane exists, its graph need not have a double
covering G of the kind we require. This is certainly the case when k = 5 or 13, for
example. For the other residue classes (mod 8) of k we can, for the moment, say no
more than that a biplane must exist. Necessary conditions for this are provided by the
Bruck-Ryser-Chowla theorem, and they may be summarized as follows (7, p. 104).

Let X(n) denote the square-free part of n. If there is a biplane with k points in a
block, then

(i) k s 2, 3,6(mod8)=>X(ft-2) = 0;

(ii) k = 0,1 (mod 8) => any odd prime dividing X(k— 2) is congruent to 1 or 7
(mod 8);

(iii) k s= 4 (mod 8) => any odd prime dividing X(k— 2) is congruent to 1 or 3
(mod 8).

For example, there are no biplanes for k = 7, 8, 10, 12. However, the conditions allow
biplanes with k = 3, 4, 6, 9, 11, and examples are known in each of these cases. The
first two values give unique biplanes, and there is a unique covering graph in both
cases. When k = 3 the graph D(Z, 2) is just the ordinary cube, and it has a unique
2-fold covering with girth 6: this graph was first discussed by R. M. Foster (9, p. 315).
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