COMMUNICATION

A TRIVALENT GRAPH WITH 58 VERTICES AND GIRTH 9

N.L. BIGGS and M.J. HOARE
Royal Holloway College, University of London, Egham, Surrey TW20 OEX, UK
Communicated by the Managing Editor
Received 23 January 1980

A regular graph with valency k and girth g will be referred to as a
 In general, the problem of finding a smallest (k, g)-graph is hard, an: the . m , wer is known only for a few values of k and g.

The particular case $k=3, g=9$ has been the subject of much ernanta, a lower bound of 46 for the number of vertices can be obtainec \because simple arguments, and it is easy to show that, in fact, this bound cannot be atained. With progressively more effort, it can be shown that 48,50 , and 52 vertices are bikwise impossible. The alter native approach is to establish an upper bound by ackatly constructing a (3,9)-graph. As long ago as 1952, R.M. Foster know of a (3.9)-graph with 60 vertices: this graph was mentioned by Frucht [3] in 1955, and included in a list of symmetric trivalent graphs distributed by Foster at a conference heid in 1966 at Waterloo, Canada. From about 1968 onwards many attempts have been made to improve on Foster's result. Balaban [1]. Coxeter. Evars, Harries, Wynn, and Foster himself, have all made contributions. The sum total of these efforts, up to November 1979. was the construction of no fewer than 19 mutually non-isomorphic (3,9)-graphs with 60 vertices-but no smaller ones. Little of this work has been published, since each attempt to prepare a paper has been overtaken by the discovery of a new graph or graphs. In fact. theee more $(3,9)$-graphs with 60 vertices were found in the preliminary stages of 'he present investigation.

The main purpose of this note is to announce the existence of a 3.91 -graph with 58 vertices. This graph is a significant, but not necessarily final, contribution to the problem, since it is possible that smalier (3,9)-graphs exist.

The graph is displayed in Figs. 1 and 2, demonstrating that it has ai least two different Hamiltorian cycles. There are 809 -cycles. The eigenvalues of the adjacency matrix are all distinct, and this means that any non-identity automorphism must be an involution [2, p. 103]. The automorphism group is a non-cyclic

Fig. 1

Fit. 2
group of order 4 , generated by α and β, where

$$
\begin{aligned}
\alpha= & (258)(357)(456)(555)(654)(753)(852) \\
& (919)(1018)(1117)(1216)(1315)(2049)(2150) \\
& (2251)(2335)(2434)(2533)(2632)(2731)(2830) \\
& (4048)(4147)(4246)(4345) . \\
\beta= & (136)(223)(322)(48)(57)(925)(1024) \\
& (1146)(1247)(1348)(1439)(1540)(1641)(1742) \\
& (1834)(1933)(2032)(2131)(2649)(2750)(3558) \\
& (4345)(5157)(5256)(5355) .
\end{aligned}
$$

The strategy employed in the search for this graph was based upon the use of a computer, mainly for the hard work involved in testing various suggested methocis of construction. This is a field where it is easy to conceive possible means of attack, but very tedious to carry them out in a systematic way. In fact, the successful approach which resulted in the graph depicted here involved using the computer rather less than might have been expected.

References

[1] A.T. Balaban, Trivalent graphs of girth nine and eleven, and relationships among cages. Rev Roumaine Math. Purec Appl. 7 (1973) 1033-1043.
[2] N.L. Biggs, Algeorai Graph Thcory (Cambridge U.P., London, $197+1$.
[3] R. Frucht. Remarks on finite groups defined by generating relations. Canad. J. Math. 7 (1053) $8-17$.

