CONSTRUCTING 5-ARC-TRANSITIVE CUBIC GRAPHS

N. L. BIGGS

1. Introduction

The theory of groups acting transitively on the s-arcs of cubic graphs was inaugurated by Tutte in his fundamental paper [3]. He set up the elements of the theory and proved that for a finite cubic graph we must have $s \leqslant 5$. He also gave the first example of a connected 5 -arc-transitive cubic graph. Conway (see [1, p.130]) showed that there are infinitely many such graphs, but his construction requires enormous numbers of vertices. In this paper we shall show how to construct 5 -arc-transitive graphs from 4 -arc-transitive ones. Since infinite families of the latter type are known, we recover Conway's result, but with much smaller graphs.

The stimulus for this work came from a particular example with 2352 vertices [2]. The author would like to acknowledge the generosity of Dr. J. H. Conway in allowing him to study unpublished work in which the existence of a 5 -arc-transitive graph on 2352 vertices is apparent.

2. The 4-arc-transitive case

Let \mathscr{G} be a finite connected cubic graph, with vertex-set $V \mathscr{G}$ and edge-set $E \mathscr{G}$. An edge e which joins the vertices v and w will be written $e=v w$. The usual distance function will be denoted by ∂, and for any edge $e=v w$ we shall write

$$
\mathscr{G}_{i}(e)=\{x \in V \mathscr{G} \mid \min \{\partial(x, v), \partial(x, w)\}=i\} .
$$

An s-arc in \mathscr{G} is a sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ such that $v_{i} v_{i+1}$ is an edge $(0 \leqslant i \leqslant s-1)$ and $v_{i} \neq v_{i+2}(0 \leqslant i \leqslant s-2)$. It has two successors ($\left.v_{1}, \ldots, v_{s}, w^{\prime}\right)$ and $\left(v_{1}, \ldots, v_{s}, w^{\prime \prime}\right)$, where v_{s-1}, w^{\prime} and $w^{\prime \prime}$ are the three vertices adjacent to v_{s}.

Let G be a group of automorphisms of \mathscr{G}. The pointwise stabilizer of an r-arc $\left(v_{0}, \ldots, v_{r}\right)$ will be denoted by $G\left(v_{0}, \ldots, v_{r}\right)$. The following basic results go back to Tutte's paper [3].

Theorem 0 . (i) If G acts transitively on the s-arcs of \mathscr{G}, but not on the $(s+1)$-arcs (in which case we say that G acts s-arc-transitively) then for any s-arc (v_{0}, \ldots, v_{s}) we have

$$
\left|G\left(v_{0}, \ldots, v_{i}\right)\right|=2^{s-i} \quad(1 \leqslant i \leqslant s),\left|G\left(v_{0}\right)\right|=3 \cdot 2^{s-1} .
$$

In particular, the pointwise stabilizer of an s-arc is trivial.
(ii) G acts s-arc-transitively on \mathscr{G} if and only if there are automorphisms g_{1} and g_{2} in G which take $\left(v_{0}, \ldots, v_{s}\right)$ onto its two successors and $G=\left\langle g_{1}, g_{2}\right\rangle$.

The base for our construction is a pair (\mathscr{B}, K) consisting of a connected cubic graph \mathscr{B} and a group K of automorphisms acting 4 -arc-transitively on \mathscr{B}. We begin by examining the special features of this case.

Lemma 1. Associated with each edge e of \mathscr{B} there is a unique involution \bar{e} in K such that
(i) \bar{e} fixes the vertices in $\mathscr{B}_{1}(e)$;
(ii) if u is in $\mathscr{B}_{1}(e)$, then \bar{e} switches the pair of vertices in $\mathscr{B}_{2}(e)$ which are adjacent to u.

Proof. Suppose that $e=v w$ and (u, v, w, x) is a $3-\operatorname{arc}$ in \mathscr{B}. The stabilizer $K(u, v, w, x)$ has order 2 , and so it contains a unique involution \bar{e}. If u^{\prime} is the remaining vertex adjacent to v, then since \bar{e} fixes u, v, w it must fix u^{\prime} also. Hence \bar{e} satisfies (i).

Let t, t^{\prime} be the vertices in $\mathscr{B}_{2}(e)$ adjacent to u. Since \bar{e} fixes u and v, it must either fix or switch t and t^{\prime}. If $\bar{e}(t)=t$, then e is a non-trivial automorphism fixing the 4 -arc (t, u, v, w, x), contradicting Theorem 0 . Hence (ii) is proved.

Convention. From now on the same symbol e will denote an edge of \mathscr{B} and its associated involution.

Lemma 2. If e, f, g are the three edges incident at a vertex of \mathscr{B}, then efg is the identity automorphism (we shall write efg $=\mathrm{id}$).

Proof. Let $e=v w_{1}, f=v w_{2}, g=v w_{3}$, and denote by $w_{i 1}, w_{i 2}$ the remaining vertices $(\neq v)$ adjacent to $w_{i}(i=1,2,3)$. Using both parts of Lemma 1 , we have

$$
e f g\left(w_{11}\right)=e f\left(w_{12}\right)=e\left(w_{11}\right)=w_{11},
$$

and so on. Thus efg fixes the $4-\operatorname{arc}\left(w_{11}, w_{1}, v, w_{2}, w_{21}\right)$, and so efg $=\mathrm{id}$.
Lemma 3. For any k in K and any edge e of $\mathscr{B}, k(e)=k e k^{-1}$.
(According to our convention, $k(e)$ here denotes the involution associated with the edge $k(e)$.)

Proof. Since k is an automorphism, $k e k^{-1}$ is an involution in K fixing $\mathscr{B}_{1}(k(e))$ pointwise, and hence it is the unique involution $k(e)$.

Let $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$ be a 5 -arc in \mathscr{B}. Since K acts 4 -arc-transitively there is a unique element b in K taking ($v_{0}, v_{1}, v_{2}, v_{3}, v_{4}$) onto ($v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$). We shall require the following additional notation for vertices and edges of \mathscr{B}, as displayed in figure 1: $v_{i}=b^{i}\left(v_{0}\right)(-3 \leqslant i \leqslant 6), e_{i}=v_{i-1} v_{i}(-2 \leqslant i \leqslant 6), u_{i}$ is the remaining vertex $\left(\neq v_{i-1}\right.$ or $\left.v_{i+1}\right)$ adjacent to $v_{i}, f_{i}=u_{i} v_{i}(-2 \leqslant i \leqslant 5)$.

Lemma 4. Let $a=e_{3} b$. Then a takes the 4 -arc $\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ onto $\left(v_{1}, v_{2}, v_{3}, v_{4}, u_{4}\right)$, and $K=\langle a, b\rangle$.

Proof. By Lemma 1, e_{3} fixes $v_{1}, v_{2}, v_{3}, v_{4}$, and switches u_{4} and v_{5}. Hence a acts as asserted, and a, b generate K, by part of Theorem 0 .

Theorem 1. Let L denote the subgroup of K generated by the involutions e ($e \in E \mathscr{B}$). Then
(i) if \mathscr{B} is bipartite, $|K: L|=2$,
(ii) if \mathscr{B} is not bipartite, $K=L$.

Proof. The following elements of K are defined in terms of the edges labelled in figure 1.

$$
c_{1}=e_{2}, \quad c_{2}=f_{1}, \quad c_{3}=f_{1} e_{0}, \quad c_{4}=f_{1} f_{-1}, \quad c_{5}=f_{1} f_{-1} e_{-2}
$$

Let $C_{i}=\left\langle c_{1}, \ldots, c_{i}\right\rangle(1 \leqslant i \leqslant 5)$. First, $C_{1}=K\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ since both groups have the same order and fix the specified vertices. Next, c_{2} fixes v_{0}, v_{1}, v_{2} but not v_{3}, so that C_{2} is a subgroup of $K\left(v_{0}, v_{1}, v_{2}\right)$ strictly larger than C_{1}, and by considerations of order, $C_{2}=K\left(v_{0}, v_{1}, v_{2}\right)$. In the same way, it can be verified that $C_{3}=K\left(v_{0}, v_{1}\right)$ and $C_{4}=K\left(v_{0}\right)$.

Let U denote the orbit of v_{0} under C_{5}. We have

$$
c_{5}\left(v_{0}\right)=f_{1} f_{-1} e_{-2}\left(v_{0}\right)=f_{1} f_{-1}\left(u_{-1}\right)=f_{1}\left(u_{-1}\right),
$$

and so

$$
\partial\left(v_{0}, c_{5}\left(v_{0}\right)\right)=\partial\left(v_{0}, f_{1}\left(u_{-1}\right)\right)=\partial\left(f_{1}\left(v_{0}\right), u_{-1}\right)=\partial\left(v_{0}, u_{-1}\right)=2 .
$$

If x is any vertex at distance 2 from v_{0} then, since K is 4 -arc-transitive, there is some k in K which fixes v_{0} and takes $c_{5}\left(v_{0}\right)$ to x. It follows that x is in U, because $k \in K\left(v_{0}\right)=C_{4} \leqslant C_{5}$.

Now we shall prove (by induction) that U contains every vertex whose distance from v_{0} is an even integer $2 r$. The result has just been established when $r=1$. Suppose it is true when $r=l-1$, and let $\partial\left(y, v_{0}\right)=2 l$. We can find a vertex z such that $\partial(y, z)=2, \partial\left(z, v_{0}\right)=2 l-2$, and by the induction hypothesis z is in U, say $z=c\left(v_{0}\right), c \in C_{5}$. Let $w=c c_{5}\left(v_{0}\right)$, so that $\partial(w, z)=2$. Then $K(z)=c K\left(v_{0}\right) c^{-1}$ is contained in C_{5} and it contains an element k^{\prime} fixing z and taking w to y. Hence y is in U.

Denote by V_{0} the set of vertices whose distance from v_{0} is even; we have shown that $V_{0} \subseteq U$. If \mathscr{B} is bipartite, each involution e fixes the two parts setwise, and so $U=V_{0}$. Now

$$
C_{5} \leqslant L \leqslant K \quad \text { and } \quad C_{5} \geqslant C_{4}=K\left(v_{0}\right)
$$

so that $C_{5}\left(v_{0}\right)=K\left(v_{0}\right)=L\left(v_{0}\right)$. Since the orbit of v_{0} under K has length $|V \mathscr{B}|=2|U|$, it follows that $|K: L|=2$. If \mathscr{B} is not bipartite then V_{0} contains an adjacent pair of vertices, and $U=V \mathscr{B}$. In this case the preceding argument shows that $L=K$.

3. Construction of 5-arc-transitive graphs

When \mathscr{B}, K, and L are as in the previous section, we may construct a covering graph \mathscr{C} of \mathscr{B} in the following way. The vertex-set $V \mathscr{C}$ is $L \times V \mathscr{B}$, and the vertices $\left(l_{1}, x_{1}\right),\left(l_{2}, x_{2}\right)$ are adjacent in \mathscr{C} if there is an edge $e=x_{1} x_{2}$ in \mathscr{B} and $l_{2}=l_{1} e$.

Given any vertex (l, x) of \mathscr{C}, there are just three vertices adjacent to it, namely $\left(l e_{1}, y_{1}\right),\left(l e_{2}, y_{2}\right)$ and $\left(l e_{3}, y_{3}\right)$, where $e_{i}=x y_{i}(i=1,2,3)$ are the three edges of \mathscr{B} incident with x. Thus \mathscr{C} is a cubic graph. At this stage, we make no assertion concerning its connectedness.

It is a consequence of Lemma 3 (or Theorem 1) that L is a normal subgroup of K; in other words, K acts by conjugation as a group of automorphisms of L. We have a split extension $H=L \rtimes K$, whose elements are the pairs $(l, k), l \in L, k \in K$, with multiplication defined by

$$
\left(l_{1}, k_{1}\right)\left(l_{2}, k_{2}\right)=\left(l_{1} k_{1} l_{2} k_{1}^{-1}, k_{1} k_{2}\right) .
$$

Lemma 5. H acts faithfully as a group of automorphisms of \mathscr{C}.
Proof. We define an action of H on \mathscr{C} as follows:

$$
\left(l_{1}, k_{1}\right)(l, x)=\left(l_{1} k_{1} l k_{1}^{-1}, k_{1}(x)\right)
$$

If $\left(l_{1}, k_{1}\right)$ acts trivially on \mathscr{C}, then it certainly fixes each vertex (id, x), $x \in V$, and this implies that $l_{1}=k_{1}=\mathrm{id}$. Hence H acts faithfully. It is straightforward to check that the action conforms with the multiplication in H, and that it defines an automorphism of \mathscr{C}.

The construction of \mathscr{C} and H is a special case of a well-known technique, and we could now proceed to show that H acts 4 -arc-transitively on \mathscr{C} (see, for example [$1, \mathrm{p} .129]$). The unusual feature of the construction is contained in the next simple lemma.

Lemma 6. The mapping ξ defined by $\xi(l, x)=\left(l^{-1}, l(x)\right)$ is an automorphism of \mathscr{C}.

Proof. Suppose that $\left(l_{1}, x_{1}\right)$ and $\left(l_{2}, x_{2}\right)$ are adjacent in \mathscr{C}. Then $l_{2}=l_{1} e$, where e is the involution corresponding to the edge $e=x_{1} x_{2}$ of \mathscr{B}. Now

$$
\xi\left(l_{2}, x_{2}\right)=\left(l_{2}^{-1}, l_{2}\left(x_{2}\right)\right)=\left(e l_{1}^{-1}, l_{1} e\left(x_{2}\right)\right)=\left(l_{1}^{-1} e_{1}, l_{1}\left(x_{2}\right)\right),
$$

where e_{1} is the involution $l_{1}(e)$ (by Lemma 3). But

$$
\xi\left(l_{1}, x_{1}\right)=\left(l_{1}^{-1}, l_{1}\left(x_{1}\right)\right),
$$

and since e_{1} is an edge of \mathscr{B} joining $l_{1}\left(x_{1}\right)$ to $l_{1}\left(x_{2}\right)$, it follows that $\xi\left(l_{1}, x_{1}\right)$ is adjacent to $\xi\left(l_{2}, x_{2}\right)$.

Suppose that we are given a configuration of vertices and edges of \mathscr{B} labelled as in figure 1 . Using the definition of adjacency in \mathscr{C}, and Lemma 2 , we may verify that \mathscr{C} contains a configuration labelled as in figure 2 . Let \mathscr{C}_{0} denote the component of \mathscr{C} containing this configuration.

Theorem 2. The group $G=\langle H, \xi\rangle$ acts 5 -arc-transitively on \mathscr{C}_{0}.
Proof. Let b be the automorphism of \mathscr{B} defined in Section 2, and let $\beta=\left(e_{3}, b\right)$. For any involution e we have

$$
\beta(e, x)=\left(e_{3} b e b^{-1}, b(x)\right)=\left(e_{3} e^{\prime}, b(x)\right)
$$

where $e^{\prime}=b(e)$. Now we can check that β takes the 'horizontal' 5 -arc in figure 2 onto its 'lower' successor; for example

$$
\begin{gathered}
\beta\left(f_{1}, v_{0}\right)=\left(e_{3} f_{2}, v_{1}\right)=\left(e_{2}, v_{1}\right) \\
\beta\left(f_{3} e_{5}, v_{5}\right)=\left(e_{3} f_{4} e_{6}, v_{6}\right)=\left(e_{3} e_{4} e_{5} e_{6}, v_{6}\right)=\left(f_{3} f_{5}, v_{6}\right) .
\end{gathered}
$$

Next we remark that ξ fixes the first five vertices of the horizontal 5 -arc, but

$$
\xi\left(f_{3} e_{5}, v_{5}\right)=\left(e_{5} f_{3}, f_{3} e_{5}\left(v_{5}\right)\right)=\left(e_{5} f_{3}, u_{4}\right)
$$

Also

$$
\beta\left(e_{5} f_{3}, u_{4}\right)=\left(e_{3} e_{6} f_{4}, u_{5}\right)=\left(e_{3} \cdot e_{6}\left(f_{4}\right) \cdot e_{6}, u_{5}\right)=\left(e_{3} e_{4} e_{6}, u_{5}\right)=\left(f_{3} e_{3}, u_{5}\right)
$$

Thus the automorphism $\alpha=\beta \xi$ takes the horizontal 5 -arc onto its 'upper' successor, and by Theorem 0 we conclude that G acts 5 -arc-transitively on \mathscr{C}_{0}.

It follows from Theorem 0 that the automorphisms α and β are shunts generating the 5 -arc-transitive group G. It is easy to compute their orders in terms of the orders of a and b. We have

$$
\begin{gathered}
\beta^{k}(l, x)=\left(a^{k} l b^{-k}, b^{k}(x)\right) \\
\alpha^{2 k}(l, x)=\left((a b)^{k} l(b a)^{-k},(b a)^{k}(x)\right),
\end{gathered}
$$

so that the order of β is the least common multiple of the orders of a and b, and the order of α is twice that of $a b$.

4. The components of the covering graph

Each component of \mathscr{C} is a connected cubic graph, isomorphic with the component \mathscr{C}_{0} which contains the configuration shown in figure 2.

We study first the possibility that \mathscr{C}_{0} is isomorphic to \mathscr{B}. Let Γ be a cycle in \mathscr{B}, whose edges are (in cyclic order) $d_{0}, d_{1}, \ldots, d_{r-1}$. The element $d_{0} d_{1} \ldots d_{r-1}$ of L defined in terms of the associated involutions is altered by conjugation when the initial edge of Γ is chosen differently, and so the statement

$$
\partial(\Gamma)=d_{0} d_{1} \ldots d_{r-1}
$$

may be regarded as defining $\partial(\Gamma)$ up to conjugacy.
Lemma 7. If $\partial(\Gamma)$ is the identity for every cycle Γ in \mathscr{B}, then \mathscr{C}_{0} is isomorphic to \mathscr{B}.
Proof. Define a function $\lambda: V \mathscr{B} \rightarrow L$ in the following way: set $\lambda\left(v_{0}\right)=f_{1}$ and if $\lambda(v)$ has already been defined, and $e=v w$ is an edge, set $\lambda(w)=\lambda(v) e$. Since \mathscr{B} is connected there is a sequence of edges joining v_{0} to any given vertex x, and the rule may be applied. To see that it defines a function, suppose that d_{0}, \ldots, d_{k} and $d_{0}^{\prime}, \ldots, d_{1}^{\prime}$ are two sequences of edges leading from v_{0} to x. Then the hypothesis implies that

$$
d_{0} \ldots d_{k} d_{l}^{\prime} \ldots d_{0}^{\prime}=\mathrm{id}, \quad \text { so that } \quad d_{0} \ldots d_{k}=d_{0}^{\prime} \ldots d_{l}^{\prime}
$$

Thus $\lambda(x)$ is well-defined.
Now the function I defined by $I(v)=(\lambda(v), v)$ maps the vertices of \mathscr{B} onto those of \mathscr{C}_{0}, and the definition of λ ensures that it is an isomorphism.

Suppose that the vertices of the cycle Γ are (in cyclic order) $w_{0}, w_{1}, \ldots, w_{r-1}$. Since K acts 4 -arc-transitively, there are unique elements $s_{i}(0 \leqslant i \leqslant r-1)$ of K such that

$$
s_{i}\left(w_{i}, w_{i+1}, w_{i+2}, w_{i+3}, w_{i+4}\right)=\left(w_{i+1}, w_{i+2}, w_{i+3}, w_{i+4}, w_{i+5}\right)
$$

where the subscripts are taken modulo r. Let

$$
t_{i}= \begin{cases}s_{i} & (i=0), \\ s_{0}^{-1} s_{1}^{-1} \ldots s_{i-1}^{-1} s_{i} s_{i-1} \ldots s_{1} s_{0} & (1 \leqslant i \leqslant r-1)\end{cases}
$$

Then it may be verified that each t_{i} takes the $4-\operatorname{arc}\left(w_{0}, \ldots, w_{4}\right)$ onto one of its successors in \mathscr{B}. Now there is a unique element m in K which takes (w_{0}, \ldots, w_{4}) onto the 'standard' 4 -arc $\left(v_{0}, \ldots, v_{4}\right)$, and $m t_{i} m^{-1}$ takes (v_{0}, \ldots, v_{4}) onto one of its successors. Hence

$$
m t_{i} m^{-1}=a \text { or } b \quad(0 \leqslant i \leqslant r-1)
$$

We shall define the K-signature of Γ to be the word in a and b given by

$$
\omega(\Gamma ; a, b)=\left(m t_{0} m^{-1}\right)\left(m t_{1} m^{-1}\right) \ldots\left(m t_{r-1} m^{-1}\right),
$$

remarking that, although the K-signature is an element of K, we do not consider it as such. The next lemma explains why.

Lemma 8. As an element of $K, \omega(\Gamma ; a, b)$ is the identity for every cycle Γ.
Proof. It follows from the definition that $\omega(\Gamma ; a, b)$ is conjugate in K to $t_{0} t_{1} \ldots t_{r-1}$. But

$$
\begin{aligned}
t_{0} t_{1} \ldots t_{r-1} & =s_{0} \cdot s_{0}^{-1} s_{1} s_{0} \cdot \ldots \cdot s_{0}^{-1} s_{1}^{-1} \ldots s_{r-2}^{-1} s_{r-1} \ldots s_{1} s_{0}, \\
& =s_{r-1} \ldots s_{1} s_{0} .
\end{aligned}
$$

Now the right-hand side is an element of K fixing the $4-\operatorname{arc}\left(w_{0}, \ldots, w_{4}\right)$, and so it is the identity.

Lemma 9. For any cycle Γ in $\mathscr{B}, \partial(\Gamma)$ is conjugate in K to $\omega(\Gamma ; b, a)$.
Proof. Suppose that Γ has vertices w_{0}, \ldots, w_{r-1} and edges $d_{0}=w_{0} w_{1}$, $d_{1}=w_{1} w_{2}, \ldots, d_{r-1}=w_{r-1} w_{0}$, and let $m, s_{i}, t_{i}(0 \leqslant i \leqslant r-1)$ be the elements of K defined above. By definition, $\delta(\Gamma)$ is conjugate to

$$
\begin{aligned}
d_{3} d_{4} \ldots d_{1} d_{2} & =d_{3} \cdot s_{0}\left(d_{3}\right) \cdot s_{1} s_{0}\left(d_{3}\right) \cdot \ldots \cdot s_{r-2} \ldots s_{0}\left(d_{3}\right) \\
& =d_{3} \cdot s_{0} d_{3} s_{0}^{-1} \cdot s_{1} s_{0} d_{3} s_{1}^{-1} s_{0}^{-1} \cdot \ldots \\
& =d_{3} t_{0} \cdot d_{3} t_{1} \cdot \ldots \cdot d_{3} t_{r-1} .
\end{aligned}
$$

Conjugating by m, we see that $\delta(\Gamma)$ is conjugate to

$$
\begin{aligned}
& =e_{3} m t_{0} m^{-1} \cdot e_{3} m t_{1} m^{-1} \cdot \ldots \cdot e_{3} m t_{r-1} m^{-1} \\
& =\omega(\Gamma ; b, a),
\end{aligned}
$$

since $a=e_{3} b$ and $b=e_{3} a$.
Theorem 3. The graphs \mathscr{C}_{0} and \mathscr{B} are isomorphic if and only if \mathscr{B} admits a group of automorphisms acting 5-arc-transitively.

Proof. If \mathscr{B} does not admit a 5 -arc-transitive group, then it cannot be isomorphic with \mathscr{C}_{0}, since \mathscr{C}_{0} does admit such a group.

Conversely, let G be a group acting 5 -arc-transitively on \mathscr{B}. It follows from Tutte's theorem that G is the full group of automorphisms of \mathscr{B}, so K is a subgroup of index two in G, and consequently normal in G. There is a (unique) element g in G taking the $5-\operatorname{arc}\left(v_{0}, \ldots, v_{4}, v_{5}\right)$ onto $\left(v_{0}, \ldots, v_{4}, u_{4}\right)$, and, since g^{2} fixes the first $5-\operatorname{arc}, g$ is an involution. Now gag acts like b on the 4 -arc $\left(v_{0}, \ldots, v_{4}\right)$, and both elements are in K (since K is normal in G). Thus $g a g=b$ and $g b g=a$, and $\omega(\Gamma ; b, a)$ is conjugate in G to $\omega(\Gamma ; a, b)$. It follows from Lemmas 7, 8 and 9 that \mathscr{C}_{0} is isomorphic with \mathscr{B}.

5. Examples

In a sense, the trivial first part of Theorem 3 is the more significant. If we are given a known graph \mathscr{B}, which admits a 4 -arc-transitive group K, but not a 5 -arc-transitive one, then we can be sure that our construction will produce a 'new' 5 -arc-transitive graph. For example, when \mathscr{B} is Heawood's graph on 14 vertices it turns out that $\mathscr{C}_{0}=\mathscr{C}$ and we obtain a graph with 2352 vertices [2]. However, when \mathscr{O} is Tutte's graph on 30 vertices (which is 5 -arc-transitive and admits two distinct 4 -arc-transitive groups), we know from the second part of Theorem 3 that $\mathscr{C}_{0}=\mathscr{B}$ and nothing new is obtained.

There are several infinite families of cubic graphs which are known to admit 4 -arc-transitive groups but not 5 -arc-transitive ones. They are associated with the octahedral subgroups of linear fractional groups. If p is a prime congruent to ± 1 $(\bmod 16)$, the group $K=\operatorname{PSL}(2, p)$ acts 4 -arc-transitively on a cubic graph with $p\left(p^{2}-1\right) / 48$ vertices [4]; the action is primitive, and so the graph cannot be bipartite and $L=K$. Thus our construction yields a 5 -arc-transitive graph with (at most) $p^{2}\left(p^{2}-1\right)^{2} / 96$ vertices.

References

1. N. L. Biggs, Algebraic graph theory (Cambridge University Press, London, 1974).
2. N. L. Biggs, 'A new 5 -transitive cubic graph', J. Graph Theory, to appear.
3. W. T. Tutte, 'A family of cubic graphs', Proc. Cambridge Philos. Soc., 43 (1947), 459-474.
4. W. J. WONG, 'Determination of a class of primitive permutation groups', Math. Z., 99 (1967), 235-246.

Department of Mathematics,
Royal Holloway College, University of London, Egham, Surrey TW20 0EX.

