
CONSTRUCTING 5-ARC-TRANSITIVE CUBIC GRAPHS

N. L. BIGGS

1. Introduction

The theory of groups acting transitively on the s-arcs of cubic graphs was
inaugurated by Tutte in his fundamental paper [3]. He set up the elements of the
theory and proved that for a finite cubic graph we must have s ^ 5. He also gave the
first example of a connected 5-arc-transitive cubic graph. Conway (see [1, p. 130])
showed that there are infinitely many such graphs, but his construction requires
enormous numbers of vertices. In this paper we shall show how to construct
5-arc-transitive graphs from 4-arc-transitive ones. Since infinite families of the latter
type are known, we recover Conway's result, but with much smaller graphs.

The stimulus for this work came from a particular example with 2352 vertices
[2]. The author would like to acknowledge the generosity of Dr. J. H. Conway in
allowing him to study unpublished work in which the existence of a 5-arc-transitive
graph on 2352 vertices is apparent.

2. The 4-arc-transitive case

Let ^ be a finite connected cubic graph, with vertex-set V& and edge-set E$. An
edge e which joins the vertices v and w will be written e = vw. The usual distance
function will be denoted by d, and for any edge e = vw we shall write

^i(e) = {x e V& | min {d{x, v), d{x, w)} = i} .

An s-arc in ^ is a sequence of vertices (v0, u l s . . . , vs) such that v{vi+l is an edge
(0 ^ i ^ s— 1) and v{ ^ vi + 2 (0 ^ i < s — 2). It has two successors (ul5..., vs, w') and
(ul5..., vs, w"), where us_i, vv' and w" are the three vertices adjacent to vs.

Let G be a group of automorphisms of <S. The pointwise stabilizer of an r-arc
(v0,..., vr) will be denoted by G{v0,..., vr). The following basic results go back to
Tutte's paper [3].

THEOREM 0. (i) IfG acts transitively on the s-arcs of^, but not on the (s + l)-arcs
(in which case we say that G acts s-arc-transitively) then for any s-arc (v0,..., vs) we
have

\G(vo,...tvt)\ = 2s-1 (1 O - < s ) , |G(i>0)l = 3-2 '"1 .

In particular, the pointwise stabilizer of an s-arc is trivial.

(ii) G acts s-arc-transitively on <& if and only if there are automorphisms gx and g2

in G which take (v0,..., vs) onto its two successors and G = <gfl5 g2)-
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The base for our construction is a pair (88, K) consisting of a connected cubic
graph 88 and a group K of automorphisms acting 4-arc-transitively on 88. We begin
by examining the special features of this case.

LEMMA 1. Associated with each edge e of 88 there is a unique involution e in K
such that

(i) e fixes the vertices in 88t(e);

(ii) ifu is in 8ft x(e), then e switches the pair of vertices in 882{e) which are adjacent
to u.

Proof Suppose that e = vw and (u,v,w,x) is a 3-arc in 88. The stabilizer
K(u,v, w,x) has order 2, and so it contains a unique involution e. If u' is the
remaining vertex adjacent to v, then since e fixes u, v, w it must fix u' also. Hence e
satisfies (i).

Let t, t' be the vertices in 882(e) adjacent to u. Since e fixes u and v, it must either
fix or switch t and t'. If e(t) = t, then e is a non-trivial automorphism fixing the 4-arc
(t, u, v, w, x), contradicting Theorem 0. Hence (ii) is proved.

Convention. From now on the same symbol e will denote an edge of 88 and its
associated involution.

LEMMA 2. If e, f, g are the three edges incident at a vertex of 88, then efg is the
identity automorphism {we shall write efg — id).

Proof. Let e = vwx, / = vw2, g = vw3, and denote by wn, wi2 the remaining
vertices ( ^ v) adjacent to w,- (i = 1, 2, 3). Using both parts of Lemma 1, we have

efg(wn) = ef(wl2) = e{wu) = wn ,

and so on. Thus efg fixes the 4-arc ( w u , w1, v, w2, w2l), and so efg = id.

LEMMA 3. For any k in K and any edge e of 08, k(e) = kek'1.

(According to our convention, k(e) here denotes the involution associated with the
edge k(e).)

Proof. Since k is an automorphism, kek~l is an involution in K fixing 88x(k{e))
pointwise, and hence it is the unique involution k(e).

Let (v0, vx, v2, v3, vA, v5) be a 5-arc in 88. Since K acts 4-arc-transitively there is a
unique element b in K taking (vo,vl,v2,v3,v4.) onto (vlt v2, v3, u4, v5). We shall
require the following additional notation for vertices and edges of 88, as displayed in
figure 1: v{ = b'{v0) ( —3 ^ i ^ 6), e{ = vi^lvi ( —2 ^ i ^ 6), u,- is the remaining
vertex ( ^ vt_x or vi + l) adjacent to vh f = uivi ( —2 ^ t ^ 5).

L E M M A 4. Let a = e3b. Then a takes the 4-arc (vo,vl,v2,v3,vA) onto

{vl ,v2,v3, v4, u 4 ) , and K = <a , by.
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Proof. By Lemma 1, e3 fixes ul5 u2, y3, t>4, and switches u4 and u5. Hence a acts
as asserted, and a, b generate K, by part of Theorem 0.

THEOREM 1. Let L denote the subgroup of K generated by the involutions e
(e e E@). Then

(i) if 0& is bipartite, \K:L\ = 2,

(ii) if 08 is not bipartite, K — L.

Proof. The following elements of K are defined in terms of the edges labelled in
figure 1.

Cl = e2 > C2 = J\ > C3 = J\ed > C4 = JlJ-l 5 C5 = flJ-le-2 •

Let C; = ( C i , . . . , ^ ) (1 ^ i ^ 5). First, C : = X(y0, u l 5 u2, u3) since both groups
have the same order and fix the specified vertices. Next, c2 fixes vo,vl, v2 but not u3,
so that C2 is a subgroup of X(u0, u l s v2) strictly larger than Cx, and by
considerations of order, C2 = K(v0, ul9 u2). In the same way, it can be verified that
C3 = K(v0, Vi) and C4 = K{v0).

Let t/ denote the orbit of v0 under C5. We have

and so

(yo)) = d{v0, = d(u o ,"- i ) = 2

If x is any vertex at distance 2 from v0 then, since K is 4-arc-transitive, there is some
k in K which fixes v0 and takes c5(u0) to x. It follows that x is in U, because
keK(v0) = C4 ^ C5.
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Now we shall prove (by induction) that U contains every vertex whose distance
from v0 is an even integer 2r. The result has just been established when r = 1.
Suppose it is true when r = /—I, and let d(y, v0) = 21. We can find a vertex z such
that d{y, z) = 2, d{z,v0) = 21 — 2, and by the induction hypothesis z is in U, say
z = c(v0), ceC5. Let w = ccs(v0), so that d(w,z) = 2. Then K(z) = cK(vo)c~l is
contained in C5 and it contains an element k' fixing z and taking w to y. Hence y is
in U.

Denote by Vo the set of vertices whose distance from u0 is even; we have shown
that Vo £ U. If 38 is bipartite, each involution e fixes the two parts setwise, and so
U = Vo. Now

C5 ^ L^ K and C5 ^ C4 = K{v0),

so that C5(u0) = /C(t>0) = L(u0). Since the orbit of v0 under K has length
|K^| = 2\U\, it follows that \K: L\ = 2. If 0& is not bipartite then Ko contains an
adjacent pair of vertices, and U = V<%. In this case the preceding argument shows
that L = K.

3. Construction of 5-arc-transitive graphs

When 33, K, and L are as in the previous section, we may construct a covering
graph # of 3d in the following way. The vertex-set K# is L x V^, and the vertices
(/l5 Xj), (/2, x2) are adjacent in # if there is an edge e = xYx2 in <% and l2 = f^.

Given any vertex (/, x) of # , there are just three vertices adjacent to it, namely
Cen )>i)> (^2» ^2) a n d (̂ 3> ^3)' where e,- = xy( (i = 1, 2, 3) are the three edges of 3d
incident with x. Thus # is a cubic graph. At this stage, we make no assertion
concerning its connectedness.

It is a consequence of Lemma 3 (or Theorem 1) that L is a normal subgroup of
K; in other words, K acts by conjugation as a group of automorphisms of L. We
have a split extension H = L x K, whose elements are the pairs (/, k), I e L, k s K,
with multiplication defined by

LEMMA 5. H acts faithfully as a group of automorphisms of$.

Proof. We define an action of H on # as follows:

If (lx, /q) acts trivially on <&, then it certainly fixes each vertex (id , x), x e V, and this
implies that lx = kv = id. Hence H acts faithfully. It is straightforward to check that
the action conforms with the multiplication in H, and that it defines an
automorphism of %>.

The construction of # and H is a special case of a well-known technique, and we
could now proceed to show that H acts 4-arc-transitively on # (see, for example
[1, p. 129]). The unusual feature of the construction is contained in the next simple
lemma.
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LEMMA 6. The mapping £, defined by £(/, x) = (l~l,l(xj) is an automorphism

Proof. Suppose that (/l9 x t ) and (/2, x2) are adjacent in <%'. Then /2 = /xe, where
e is the involution corresponding to the edge e = xtx2 of ^ . Now

where ^ is the involution /j(e) (by Lemma 3). But

and since ex is an edge of ^joining ^ ( x j to /1(x2), it follows that £(/l5 x j is adjacent

Suppose that we are given a configuration of vertices and edges of ^ labelled as
in figure 1. Using the definition of adjacency in <&, and Lemma 2, we may verify that
# contains a configuration labelled as in figure 2. Let # 0 denote the component of <€
containing this configuration.

• • • •
(fi,v0) (e2.Ui) Od,u2) (e3,y3) (/3, u4) (/3e5,t;5)

FIG. 2

THEOREM 2. 77ie gfrowp G = <H, O acts 5-arc-transitively on # 0 .

Proo/. Let 6 be the automorphism of 38 defined in Section 2, and let /? = (e3, b).
For any involution e we have

P(e,x) = {e2beb-\b(x)) = {e2e',b(x)),

where e' = b{e). Now we can check that /? takes the 'horizontal' 5-arc in figure 2 onto
its 'lower' successor; for example

6) = {e3e^e5e6,v6) = (f3fs,v6).

Next we remark that ^ fixes the first five vertices of the horizontal 5-arc, but

Also

^ 5 / 3 , M4) = (e3e6 / 4 , M5) = (e3 • e6(/4) • e6, u5) = (e3e4e6, u5) = (/3e3, u5).
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Thus the automorphism a = /?£ takes the horizontal 5-arc onto its 'upper' successor,
and by Theorem 0 we conclude that G acts 5-arc-transitively on # 0 .

It follows from Theorem 0 that the automorphisms a and /? are shunts generating
the 5-arc-transitive group G. It is easy to compute their orders in terms of the orders
of a and b. We have

jff*(/,x) = (aklb-k,bk(x))

0L2k(l,x) = ((ab)kl(ba)-k,(baf(x)),

so that the order of j} is the least common multiple of the orders of a and b, and the
order of a is twice that of ab.

4. The components of the covering graph

Each component of ^ is a connected cubic graph, isomorphic with the
component # 0 which contains the configuration shown in figure 2.

We study first the possibility that # 0 is isomorphic to (%. Let T be a cycle in <%,
whose edges are (in cyclic order) do,d1, ...,dr_l. The element dQdx ...rfr_1 of L
defined in terms of the associated involutions is altered by conjugation when the
initial edge of T is chosen differently, and so the statement

= dod1...dr.1

may be regarded as defining d(T) up to conjugacy.

LEMMA 7. Ifd(V) is the identity for every cycle T in &, then %>0 is isomorphic to $b.

Proof. Define a function k : V3S -*• L in the following way: set k(v0) = fl and if
A(y) has already been defined, and e = vw is an edge, set k(w) = k(v)e. Since 88 is
connected there is a sequence of edges joining v0 to any given vertex x, and the rule
may be applied. To see that it defines a function, suppose that d0,..., dk and d'o, ...,d',
are two sequences of edges leading from vQ to x. Then the hypothesis implies that

d0 ... dkd\... d'o = id , so that d0 ... dk = d'o ... d\.

Thus k(x) is well-defined.
Now the function / defined by I(v) = {k(v), v) maps the vertices of & onto those

of ^ 0 , and the definition of k ensures that it is an isomorphism.

Suppose that the vertices of the cycle F are (in cyclic order) w0, wl5..., wr_x.
Since K acts 4-arc-transitively, there are unique elements s, (0 ^ i ^ r — 1) of K such
that

S.-K-, W I + 1 , Wi + 2, Wi + 3 , W( + 4 ) = (W,-+ 1 > W,. + 2 , W,. + 3 , W , + 4 , W, + 5 ) ,

where the subscripts are taken modulo r. Let

( s, 0 = 0),
t> = \

U o l s i ' • • • s i - \ s i s i - i • • • s l s 0 ( 1 < / < r - l ) .
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Then it may be verified that each t{ takes the 4-arc (wo,...,w4) onto one of its
successors in ^ . Now there is a unique element m in K which takes (w0,..., w4) onto
the 'standard' 4-arc {v0,..., u4), and mt^'1 takes (uo,...,t;4) onto one of its
successors. Hence

mtim~1=aorb ( 0 < i ^ r — 1 ) .

We shall define the K-signature of F to be the word in a and b given by

oj(F ; a, b) = (mtom~1)(mt1m~l)... (mtr_lm~x),

remarking that, although the K-signature is an element of K, we do not consider it
as such. The next lemma explains why.

LEMMA 8. As an element of K, co(F ; a, b) is the identity for every cycle Y.

Proof. I t follows from the defini t ion t h a t o(T ;a,b) is c o n j u g a t e in K t o

tQtx...tr_i. But

t o t 1 . . . t r _ i = SQ • SQ S^SQ • . . . • SQ Sl ... Sr_2Sr-l ••• 5 l s 0 '

Now the right-hand side is an element of K fixing the 4-arc (w0,..., w4), and so it is
the identity.

LEMMA 9. For any cycle T in £&, d(T) is conjugate in K to a){T ; b, a).

Proof. Suppose that T has vertices w,) , . . .^ , . ! and edges dQ = wowl5

dx = WiW2,..., dr_i = wr_1w0, and let m, sh t{ (0 ^ i ^ r— 1) be the elements of K
defined above. By definition, d(T) is conjugate to

d3dA ... dxd2 = d2 • so(d3) • s1s0(rf3) •... • sr_2 ... so{d2)

= o3 • s o a 3 s o " S i S o ^ S ! s0 • . . .

= d z t 0 - d ^ t x • . . . • d 2 t r _ l .

Conjugating by m, we see that S(T) is conjugate to

= e2mtom~1 • e^mt^m'1 •... • e3mtr_1m~1

= o)(T;b,a),

since a = e3b and b = e3a.

THEOREM 3. The graphs # 0 and ^ are isomorphic if and only if 38 admits a group
of automorphisms acting 5-arc-transitively.

Proof If & does not admit a 5-arc-transitive group, then it cannot be
isomorphic with #0, since # 0 does admit such a group.
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Conversely, let G be a group acting 5-arc-transitively on $b. It follows from
Tutte's theorem that G is the full group of automorphisms of ^ , so K is a subgroup
of index two in G, and consequently normal in G. There is a (unique) element g in G
taking the 5-arc (v0,..., u4, u5) onto {v0,..., y4, u4), and, since g2 fixes the first 5-arc, g
is an involution. Now gag acts like b on the 4-arc (y0,..., t>4), and both elements are
in K (since K is normal in G). Thus gag = b and gbg = a, and o j ( r ;b ,a ) is
conjugate in G to cw(F; a, b). It follows from Lemmas 7, 8 and 9 that # 0 is
isomorphic with $8.

5. Examples

In a sense, the trivial first part of Theorem 3 is the more significant. If we are
given a known graph ^ , which admits a 4-arc-transitive group K, but not a
5-arc-transitive one, then we can be sure that our construction will produce a 'new'
5-arc-transitive graph. For example, when & is Heawood's graph on 14 vertices it
turns out that # 0 = # and we obtain a graph with 2352 vertices [2]. However, when
& is Tutte's graph on 30 vertices (which is 5-arc-transitive and admits two distinct
4-arc-transitive groups), we know from the second part of Theorem 3 that # 0 = @
and nothing new is obtained.

There are several infinite families of cubic graphs which are known to admit
4-arc-transitive groups but not 5-arc-transitive ones. They are associated with the
octahedral subgroups of linear fractional groups. If p is a prime congruent to ± 1
(mod 16), the group K — PSL(2,p) acts 4-arc-transitively on a cubic graph with
p{p2 —1)/48 vertices [4]; the action is primitive, and so the graph cannot be bipartite
and L= K. Thus our construction yields a 5-arc-transitive graph with (at most)
p2{p2 —1)2/96 vertices.
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