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We show how to construct cubic graphs which have automorphism groups acting regularly 
on the s-arcs, s=4 or 5. 

1. Introduction 

In this paper we shall show how to construct families of  cubic graphs which 
have automorphism groups acting regularly on the s-arcs, s---4 or 5. It  is a famous 
theorem of  Tutte [8] that s =  5 is the largest value for which this can happen. 

Our construction is purely combinatorial,  and it yields what we shall call a 
"'sextet graph" S(p) lbr each odd prime p. In order to describe the automorphism 
groups of S(p) it is necessary to consider separately the congruence classes of  p 
modulo 16. When p = 3 ,  5, 11, 13 (rood 16) the graph S(p) admits a 5-arc transitive 
group of automorphisms. The graph S(3) is Tutte's 8-cage with 30 vertices, which is 
the smallest 5-arc transitive cubic graph. The graph S(5), which has 650 vertices, 
had previously been noticed (but not published) by J. H. Conway and R. M. Foster. 
Foster's construction of the graph "'by hand" was a remarkable achievement. 

No other graphs in the family S(p), 1;=3, 5, 1 l, 13 (rood 16) have been no- 
ticed before, and it seems that it has not been recognised that an infinite family of  5-arc 
transitive graphs can be constructed in this way. On the other hand, the group-theo- 
retical counterpart  of  our construct ion--the use of  octahedral subgroups of  projec- 
tive linear groups--has  been known ill some cases since the paper of  Wong [10] in 
1967. Specifically, Wong showed that the only cubic graphs which admit a primitive 
group acting regularly on the 4-arcs are the graphs S(p) with p - 1 ,  15 (rood 16). 

The original motivation for this investigation was a question raised by Djoko- 
vic and Miller [4]. In our terminology, they asked for the girth of  S(p) in the cases 
p ~  1, 15 (mod 16). We conjecture that the girth of S(p) is unbounded as a function 
o f p  in all cases, and in Section 5 we prove a result which lends support  to this con- 
jecture. One of  us (MJH) has computed the girth of  S(p) for many values o fp .  The 
results tend to confirm the conjecture, and in several cases they provide specific exam- 
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pies of  cubic graphs  with relatively large girth. For  example,  S(313) has girth 30, and  
its order  is 1.277,666, which is approximate ly  2 z°. Previously the only known results 
abou t  cubic graphs with girth 30 were the general  theorems stating that  about  2 a6 
vertices are necessary and abou t  23° vertices are sufficient. 

2. Generalities on cubic graphs 

In this section we shall summarise  those parts  o f  the general theory of  cubic 
graphs which are required subsequently.  

Let F be a finite cubic graph with vertex-set V and edge-set E. An edge e 
which joins the vertices c and w will be written e = v w .  An s-arc in F is a sequence 
of  vertices (vo, v~ . . . . .  v~) such that  viv~+~ is an edge ( O ~ i ~ s -  1) and vi~v~+,z(O<=i:~ 
_<-s-2). It has two successors (v~, v~ . . . . .  v,, w) and (v~, v~ . . . . .  v~, w'), where v,_~, 
w, and w' are the three vertices adjacent  to v,. 

Now let F o be a connected cubic graph and G a group o f  au tomorph i sms  of  F, .  
The  pointwise stabilizer o f  an r-arc (co, v~ . . . . .  ~'~) will be denoted by G(vo, va . . . . .  rr). 
The following three results may be extracted f rom Tut te ' s  paper  [8]. 

Proposition A. lJ G acts transitively on the s-arcs o f  Fo, but not on the ( s + 1)-arcs' 
then .for any s-arc (vo, rl . . . . .  v~) we hate 

IG(vo, v 1 . . . .  ,vi) ! = 2 ' - ;  (1 ~ i Ns ) .  

[G(;'0)] = 3 . 2  ~- ' .  

In particular,  the pointwise stabilizer of  any s-arc is trivial. (In this si tuation we say 
that  G acts s-regularly.) 

Proposition B. l f  G acts transitively on the l-arcs o f  Fo then it acts s-regularly fo r  some 
s with I - : s ~  5. In the case s=4 ,  G(v o) is isomorphic to the octahedral group 5;.4 
while i f  s = 5 ,  G(v o) is isomorphic to SaXZ~.  

Proposition C. G acts transitively on the s-arcs o f  Fo i f  and only i f  there are au:omor- 
phisms "a'" and "'b'" in G which shunt a given s-arc onto its two sttccessors. 

We shall be concerned mainly with the following situation. A s tandard  4-arc 
(co, cl, ~,,, v:~, v~) is given in a (not necessarily connected) graph F, and a, b are shunt  
au tomorph i sms  taking it onto  its two successors. By Proposi t ion C the group H =  
= ( a ,  b) must  act transitively on the 4-arcs of  the componen t  F0 of  F which contains 
(v0, vl, v~, ,v;~, z'4). Fur thermore ,  by Proposi t ion B. H must  act s-regularly with s = 4  
or 5. Thus the order  o f  H and the order  n o f  F,  are related by 

J'24n if s = 4 ;  
IHI 

148n if s = 5 .  

It follows that  in order  to determine u we must  find both s and IHI. 
In our  study o f  the girth (length of  the shortest  cycle) o f  F0 we shall use a re- 

lationship between tile cycles of  Y o and the shunts a, b. 
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A word of  length I in two non-commut ing  variables ~, ~/is a string o f  l symbols 
w =  w, wz... w~ where each vv~ is either ~ or q. I f  ~, r/ are members o f  a monoid  ~JJl 
then w(G r/) is also in 93L 

Proposition D. Le t  Fo be a connected cubic graph, and suppose G is a group o f  auto- 
moiThisms aeting s-regularly on Fo and generated by the shunt automorphisms a and b 
with respect to the s-arc (vo, v, . . . . .  G). Then F o has girth g i f  and onh, i f  the shortest 
word w such that w(a, b) is the identity hr G has length g. 

Proof.  Suppose that  w = w ( ¢ ,  q) is a word of  length I such that w(a, b) is the identity 
in G. Let  

Ja if w i - "~, 
.V', I.b if w i = r / ,  

and define vertices vi(l <=i~l) of  G, by the rule 

vi = 3'1 Y" "" Yi(V0)" 

It can be verified that  r~, v,,, ..., G coincide with the vertices o f  the s tandard s-arc 
previously designated by those sylnbols. Also vi=y~y2...yi_~(~,x), Vi_l=Ylyz. . .  
-..Y~_~(v0), and since v~ is adjacent to v0 it follows that v~ is adjacent to v~_~. Further- 
more, .v, yz . . .  Yl= w(a, b) is the identity, so v~= v0. Hence we have a cycle o f  length 
1 in Fo. 

Conversely, suppose C is a cycle whose vertices (in cyclic order) are u0, u~, ... 
..., l#_~. Since G acts s-regularly there are unique elements x~ (1 ~ i ~ r )  in G such 
that 

x~(.i-~, u; . . . .  , z t i + ~ _ 0  = ( ,~,  .~+~ . . . . .  u , + 3 ,  

where the subscripts are taken modulo  r. Let 

-1 .-~ x i - ,~x lx i - ,  ... y i = x l  ,x2 ... xt (1 - < i ~ r ) .  

Then it may be verified that  each y~ takes the s-arc (u0, u~ . . . .  , G) onto one o f  its 
successors. Let m be the unique element o f  G taking u0, u~ . . . . .  G onto  v0, v~ . . . . .  'G, 
so that my, m -~ takes (%, vL . . . .  , %) onto  one o f  its sucessors and is consequently 
either a or  b. Define a word Wc of  length r by 

Then 

J~ if m y  irn - l  = a, 
(w0 ;  

= [q if myi m - 1  = b. 

wc(a, b) = m - t ( y l y 2  ... y , ) m  = m - l ( x , x , _ t  . . .  x l ) m .  

But xrxr -1 . . ,  xl  fixes the s-arc (uo, ul . . . . .  us), and so it is the identity. Hence wc(a, b) 
is the identity. 

We have established a correspondence between the cycles o f  length l in Yo and 
the words w of  length I such that  w(a, b) is the identity in G. F rom this the required 
result follows immediately. II 
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3. The Sextet Construction 

Let q be an odd prime power, and let GF(q)  denote the field of order q. The 
projective line PG(I ,  q) may be identilied with the set L = G F ( q ) U  {~}, with the 
usual conventions about ~o. We shall say that a duet is an unordered pair of  points 
{a, b} on L, and a quartet is an unordered pair of duets whose cross-ratio is - 1. 
That  is, {ablcd } is a quartet if and only if 

( a  - c)  ( b - d )  

(a - d ) ( b - c )  

with the conventions about co being interpreted so that {o~b]ed} is a quartet if and 
only if 

b - d  
- -  1 .  

b - -  c 

We define a sextet to be an unordered triple of duets {ab]cdlef} such that 
each of  {ab]cd}, {cdlef}, {ef[ab}, is a quartet. 
Lemma 1. The mmTber of  quartets is q(q"-- 1)/8. The mmTber oJ sextets is q(q"-- 1)/24 
i f  q=--I (rood 4) and zero ~" q - 3  (mod 4). 

ProoL Recall that the group PGL(2,  q) of projective linear transformations 

t ~ - + - -  
? t+3  

(~, [L 7, 6~GF(q),  ~5-[~,? ¢ O) 

acts sharply 3-transitively on L, and its order is q(q"--1). Clearly FGL(2, q) acts 
transitively on the duets, so we may consider the typical duet {0, ,~}. Now {O~,l.x;v} 
is a quartet  if and only if x + y = 0 ,  so there are 1 /2 (q-  1) quartets containing {0, ~o}. 
The total number of quartets is therefore 1 /2- l /2q(q+ 1). l / 2 (q - l )=q (q ' - ' - 1 ) / 8 .  

Since the points 0 , ~ ,  I, determine the unique quartet {0~,11 -1} ,  and 
PGL(2,  q) acts 3-transitively on L, it acts transitively on the quartets. The conditions 
that {0oo]1 - l l u v }  be a sextet are u + v = 0 ,  uc= 1, so that u, v must be primitive 
lburth roots of unity in GF(q). If q -  1 (rood 4) there is a unique pair of solutions 
i, - i ,  so that each quartet determines a unique sextet. Since each sextet arises from 
three quartets, the total number of sextets is q(q~--l)/24. If q=-3 (rood 4) there 
are no primitive fourth roots of  unity, and so no sextets. | 

F rom now on we shall assume that q -  1 (med 4) and that i, - t  are primitive 
fourth roots of unity. The following result may be checked by a calculation involving 
a single sextet, since PGL(2, q) acts transitively on the sextets. 

Lemma 2. An imolulion in FGL(2.  q) is ul;iquel, v detelmined by two pairs o f  
corresponding points, and, ( / Ihe I wo Fairs Jbl m a quartet, /hen lhe jSxed points o f  111e 
invoh~tion are fke third pair in tl~e ut~@ue se_vtef determi~:ed by the gieell quartet. | 

Fo r  example, if the quartet is Q =  {l - 1 [ i  - i } ,  then the involution is given 
by j e ( t )  = - t  and the fixed points are 0, co. The four points of Q may be split into 
two duets in two other ways, that is, R={I  i l - I  - i }  and S = { I  - i l - I  i}, where 
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we remark that R and S are not quartets. The corresponding involutions are 

jR(t) = i/t, j s ( t ) = - i / t .  

Solving tbrmally to obtain the fixed points of jR and.is we see that we require a square 
root of  i, that is, a primitive eight root of  unity. 

Suppose then that q =  l (rood 8) and ~ is a primitive element of  GF(q).  f f  
q = S r +  1 then ~=~z ~ is a prinfitive eighth root of  mlity, and we may take i=a ~. 
With this notation the fixed points of./Q, JR, Js are 0, ~ ; a, - a ;  a :~, _a3. It can 
easily be checked that this is a sextet. 

This remark is the basis for our construction. We must assume that q =  1 (rood 
8); then we say that the sextets 

are adjacent if {~,  ~}, {/3~,/7"} {7~, T.~} are the fixed points of the involutions 
JQ, JR, is ,  where Q, R and S are given by 

It  follows from Lemma 2 that {~, ~} is the same as {~, ~}. There are three 
sextets adjacent to a given sextet, each having one duet in common with the given 
sextet. Furthermore, the relation of adjacency is symmetr ic-- i t  is only necessary to 
check at one sextet, since we already know that PGL(2,  q) acts transitively on the 
sextets. Thus we have a cubic graph whose vertices the q(q"-  1)/24 sextets, with adja- 
cency as defined above. This graph will be denoted by Z(q). In general Z(q) will 
not be connected, and our major task (in Section 4) will be to determine the size of its 
components.  

Lemma 3. The glvup PGL(2,  q) acts as a group o f  automorphisms of  Z(q). 

Proof. We have already remarked that PGL(2,  q) acts on the sextets - tha t  is. the 
vertices of  Z(q). In order to show that an element g of  PGL(2, q) is an automorphism 
of Z(q) we remark that if G ,  02 are the fixed points of  an involution jQ, then gG, gG_ 
are the fixed points of  gjQg-~=.j~Q. Hence g preserves adjacency in Z(q). II 

At this point we can describe the relationship, mentioned in the introduction, 
between the sextet constructioq and the octahedral (Sa) subgroups of PGL(2, q). 
The stabilizer of  a sextet, say {0 oo [I - 1 ] i  - i }  contains the projective linear trans- 
formations 

t~-*I/t, t~-*-it, t~ -~( l - t ) / ( l+ t ) ,  

which generate a subgroup isomorphic to $4. Indeed, it is possible to think of  the 
elements of  a sextet as the vertices of  an octahedron, where each duet represents a 
pair of opposite vertices. 

4. Properties of  the sextet graphs 

The graphs Z(q) constructed in the previous section are not necessarily con- 
nected. In this section we shall investigate the size of  their components and their auto- 
morphism groups. 

It will be convenient to work with matrices (elements of  GL(2, q)) as well 

2* 
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as with PGL(2, q). We shall say that a matrix 

M = [  c~ //1 (~t, [t, 7, 6EGF(q),  c~6-[l, -~ O) 
7 6 • "- 

induces the automorphism m of 2(q) corresponding to the action of the projective 
linear transformation 

c~ t -',-[1 

7 t+# 

on the sextets. Clearly, the matrices M and kM induce the same automorphism for 
all non-zero k in GF(q). 

Let q=p", p an odd prime, and suppose henceforth that p " = l  (rood 8), 
so that the graph 2(p") exists. For each such p" we shall choose a primitive eighth 
root of unity in GF(p"), and denote it by ~. The symbols i and ]/2-2 will always denote 
the elements of  GF(p") defined as follows: i=~r 2, t722=~r+cr -~. 

We shall denote by S0(p") the component of  X(p") containing the vertex 
(sextet) k~ = {0 ~ I I - l l i  - i} .  Let a, b denote the automorphisms of So(p") induced 
by the matrices 

O" 

and let ko, ka, k~, k a, k4 be the vertices of X0(p") defined by 

k, = a"-Z(k~) (0 ~ r _~ 4). 

It can be verified that k0, k~, k~,, k?,, k., are the vertices of a 4-arc in X.(p") and that 

b ~ ~(k,)=k~ ( 0 ~ r ~ 3 ) ,  

b J(kO ~ a4(kl). 

Hence a and b are shunt automorphisms for this 4-arc. It follows from Proposition C 
that a and b generate a group of automorphisms of  ,5o(p") which acts transitively on 
the 4-arcs. We shall denote this group by H=(a ,  b). The subgroup of H generated 
by the elements a~-'b"a -~ (l ~ r ~ 4 )  fixes k,; indeed it is just the octahedral sub- 
group described at the end of  Section 2. 

As motivation for the first theorem, let us remark that the smallest power of  
an odd prime p which is congruent to 1 modulo 8, and for which consequently, the 
sextet constructions works, is either p or lf'. 

Theorem 1. The components Xo(p") sati,~v 

~X0(p) if p =  1 (mod8) 
20(p") 

""[X0(p z) if p ~ 3 . 5 , 7  (rood8). 

Proof. The eighth root of  unity a in GF(p")  can be chosen to lie in the subfield 
GF(p)  or GF(p2), according as p is or is not congruent to 1 modulo 8. The coeffi- 
cients of  a and b lie in this subfield, and the group H =  (a, b) acts transitively on the 
vertices of  S0(p"). Since the vertex k~ has elements which lie in the subfield, all verti- 
ces of  I;o(p") have this property, and the result follows. I 
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For any odd prime p we define the sextet graph S(p) to be So(p) or S0(p2), 
according as p is or is not congruent to 1 modulo 8. In other words, S(p) is a compo- 
nent of the graph S(q) ,  where GF(q) is the smallest field of characteristic p for which 
the sextet construction works. 

In the following discussion it will be necessary to consider separately the con- 
gruence classes o f p  modulo 16; we shall use the terminology Case n to refer to the 
case when p_=n (mod 16). The following table may be useful. 

Table I 

p (rood 16) 
Case number} 1 3 5 7 9 11 13 15 

pZ (rood 16) I 9 9 1 l 9 9 1 

r ~ " ~ '~o(J"2)  - -  S(p) ~o(p) ~,,(p-) L,(p) 

By virtue of the remarks about the coefficients of a and b contained in the proof 
of  Theorem 1, the group H={a, b) is a subgroup of PGL(2, p) in the Cases l and 9 
and a subgroup of PGL(2, p2) in the other cases. 

For any odd prime power q, PGL(2, q) has a subgroup PSL(2, q) consisting 
of  those projective linear translbrmations t~+(~t+fl)/(Tt+6) for which c~6-fl 1, 
is a non-zero square in GF(q). Since the matrices M and k M  induce the same projec- 
tive linear transformation, a member of PSL(2, q) can be induced by a matrix of 
determinant 1. Conversely, a matrix whose determinant is any non-zero square in- 
duces a member of PSL(2, q), We have: 

detA = 2 a ,  d e t B =  -20-; 

and when q=  1 (rood 8) both 2 and - 2  are squares ((2-=0-+0- 1, }/----~=~_a-,) .  
However o- itself is a square if q=  1 (rood 16) but not if q--9 (rood 16). It follows 
that H = ( a , b )  is a subgroup of: 

PSL(2, p) in Case 1, 
PSL(2, pe) in Case 7 and 15, 
PGL(2, p) in Case 9, 
PGL(2, pa) in Cases 3, 5, 11, 13. 

In order to determine H precisely we shall require the list of subgroups of 
PSL(2, q). Fortunately, this has been known since the time of L. Dickson: modern 
treatments are given by Huppert [6] and Suzuki [7]. 

Proposition E. l f  p is an odd prime, then a subgroup of" PSL(2, p") is isomorphic to 
one of the following groups. 

(i) The dihedral groups of order p"+_ 1 and their subgroups. 
(ii) The semidirect product of an elementary abelian p-group with a (possibly trivial) 

cyclic group. 
(iii) A4, $4, or As. 
(iv) PSL(2, r) or PGL(2, r) where r=p m dicides p". 
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We remark that no subgroup isomorphic to S4XZ2 occurs. It is also true that 
there are no such subgroups of PGL(2, p"), since this group itself does occur as a 
subgroup of PSL(2, p-'") [7, p. 414]. So we have immediately: 

Theorem 2. h~ ell[ cases H = ( a ,  b) acts 4-regularly oJt S(p) .  

Proof. We have seen that H acts transitively on the 4-arcs, so that it is either 4-regular 
or 5-regular. Also H is a subgroup of a PSL or PGL group and so it cannot contain 
the subgroups of type S4XZ~ required as the vertex-stabilisers in the 5-regular case. 
Thus H is 4-regular. I 

Recalling the remarks following Proposition C, we see that the determination 
of the order n of  S(p)  now depends on the order of  H: we must have I1=1H1/24. 
To find IH[ we return to Proposition E. and its useful corollary that a subgroup of  
PSL(2, p") which strictly contains an $4 subgroup must be of  type (iv). 

Theorem 31. I~z Ca.se I, H = P S L ( 2 ,  p). 

Proof, We know that H contains the $4 subgroup fixing the vertex kl ,  and the element 
a which does not fix k~. Hence, by Proposition E, H =  PSL(2, p). 1 

Theorem 3,,, In Case 9, H = P G L ( 2 ,  p). 

Proof. The generators of  the stabilizer o f / q  are induced by matrices with square 
determinants, and so they belong to H ~  PSL(2, p). The elecnent a z also belongs to 
Hf ' iPSL{2, p) and it is not in the stabilizer of  k, ,  so H ~ P S L ( 2 ,  p )=PSL(2 ,  p). 
Since H contains the element a not in PSL(2, p) we must have H =  PGL(2,  p). I 

Theorem 31~,. In Case 15, H ~ P S L ( 2 ,  p). 

Proof. Since p2_=l (mod 16) in this case, we can choose a primitive 16th root of  
unity z in GF(p")  and put a = r  ~'. The matrix d , , = ( r l / ~ ) - l A  induces the automor- 
phism a, and it has the properties 

d e t A o =  1, Ao&] = t, 

where Ag is the transposed conjugate of  Ao with respect to the field automorphism 
.r~-~x p of GF(p").  In other words A o belongs to the special unitary group SU(2, pZ). 
The same is true for B0= (zl/-2)-aB, and so H=(a ,  b) is a subgroup of PSU(2, pZ). 
But it is known (see [7, p. 410]) that PSU(2, p2)..~ PSL(2, p). Hence the argument 
given for Case 1 can be repeated, and H ~ P S L ( 2 ,  p). II 

Theorem 3 7. 1tl Cas~" 7, H-'--:PGL(2, p). 

Proof. In this case we cannot normalize A so that it is both special and unitary 
this is because z P + ~ = r s = - I  when p = 7  (rood 16), whereas zP+~=z 16=1 when 
p-= 15 (mod 16). So we must proceed rather differently. 

Let H~ denote the stabilizer ofk~ and let K=(H~,  a"-, b"-). We have seen that 
H~ is generated by the elements a ~ ~bra -j  (1 <_---:r~4). or by the transformations 
t , -+- I/l, t~-~it, t~-~([ t ) / ( l  + t). We can choose matrices representing the trans- 
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formations as follows: 

[0-;1 [o °o-,1 / ' ' 

which all belong to SU(2, p"). Also a 2 and b ~ are induced by the matrices (2a)-lA 2, 
( - 2 a ) - ~ B  2, which belong to SU(2, p2). Thus, as before, we have K =  PSU(2, p"')~- 

PSL(2, p). 
Now, for each generator a l - rbra- t ,  a"-, b ~- of  K the result of conjugating by a 

is also in K; that is  aKa-IC=K, or aK=--Ka. Similarly bK=Kb ,  and since b a - l E K  
we must have a K = b K = K b = K a .  It tbllows that there are just two cosets of  K in H, 
and from Proposition E we deduce that H ~  PGL(2, p). II 

It must be remarked that in Cases 7 and 15 the group H is not a 'canonical' 
subgroup PGL(2, p) or PSL(2, p) of  PGL(2, p~-): the coefficients of  the generators 
do not lie in GF(p).  

Theorem 3a, r~,11,1. ~. In Case 3, 5, 11, 13, H = P G L ( 2 ,  p2). 

Proof. Let Ho=H,~  PSL(2, p='). By the usual arguments, the stabilizer of k~ and 
th element a" belong to H 0, so H 0 is a subgroup of PSL(2, p~-) strictly containing an $4 
subgroup. It tbllows from Proposition E that H0 is isomorphic to one of PSL(2, p), 
PGL(2, p), PSL(2, p~). 

Since it is known [6] that PSL(2, p) contains an $4 subgroup if and only if 
q ~  1 (rood 16), it follows that H0 is not isomorphic to PSL(2, p). If  H 0 ~ P G L ( 2 ,  p) 
then, since it has index 2 in 1t, and consequently is normal, and since PGL(2, p) 
has no outer automorphisms, we must have H isomorphic to PGL(2, p)XZ.z. 
A Sylow-2-subgroup S of H is isomorphic to D~ XZ.2, and this is the stabilizer of  some 
edge {x, v}. Since we know that the stabilizer of the l-arc (x, y) is Ds, there is an auto- 
morphism in S which switches x and y and commutes with this D8. It follows that 
for some 3-arc (w, .v,y,z)  we have H0,v, x, y) = H(x,  y, z), or H(w, x, y, z )=  
=H(w,  x, y), which is impossible (by Proposition A). 

Hence H0= PSL(2, p"), and since H contains a, which is not in PSL(2, p~-), 
H = P G L ( 2 ,  p"). (Tile authors are extremely grateful to the referee for suggesting 
this shnplification of their original proof.) II 

We can now list tile orders of the sextet graphs in all cases. Roughly speaking, 
in Cases I and 9 the construction of  S(p)  takes place in GF(p)  and the graph has the 
"appropriate" size, while in Cases 3, 5, 11, 13 the construction takes place in G F ( p  ~) 
and S(p)  again has the appropriate size. However, in Cases 7 and 15 the construction 
takes place in GF (p'-') but the graph has the size appropriate to a construction in GF(p) .  

We may also remark that in the cases when H is a PGL group it has a PSL 
subgroup of index 2. and the orbits of the latter group form a bipartition of  S(p) .  

In those Cases (13, 5, 7, 11, 13, 15) when the construction takes place in G F ( p  2) 
it is reasonable to enquire about the action of the non-trivial field automorphism 
~o : t~--~tP on S(p) .  If we extend the field automorphism to the projective line by setting 
qo(o~) = ~ ,  and adjoin ~p to the group PGL(2, p") we obtain the group usually denoted 
by PFL(2, p~). Since q~(- 1 ) = ( - I F =  - t the cross-ratio of a quartet is preserved 
by (p, and q~ induces a permutation of  the sextets. Moreover, i f j  is an involution in 
PGL(2, p") in which 7t, cq and /?~,/L are corresponding pairs, then j'=cpj~o -x 



162  N . L .  B I G G S  znd M. J. HOARE 

Table 2 

Case Order of  S(p) Bipartite? 

1 p (pz - 1 ) /48  N o  
3,5, 11, 13 S ( p I -  1)/24 Yes 
7 p ( p " -  I)/24 Yes 
9 p (l/' - 1 )/24 Yes 

15 p (p'-' - 1 ) /48  N o  

is the involution in which ~f, ~ and [3 p, fi~ are corresponding pairs. Also, if 7~, ?'z 
are the fixed points of./', then 7f, 7'~ are the fixed points o f f .  Hence Cp preserves adja- 
cency in the sextet graph S(p), and PFL(2, p~) acts as a group of automorphisms of  
S(p). 

In the Cases 7 and 15 it can be verified that (p induces the same automor- 
phism of  S(p) as the projective linear transformation t~+-l / t .  In other words, 
PFL(2, p'-') does not act faithfully on S(p), and we obtain no new information about 
the graphs. However, in the other cases ~p induces a new automorphism. 

Theorem 4. h? Cases 3, 5, 11, 13 the group PFL(2, pZ) acts 5-regularly on S(p). 

ProoL Consider the 3-arc (k0, kl, k2, k3) where k~ is the sextet {0 ~ [1 - l l i  - i }  and 
ki=ai-l(kO as usual. I f a  duet is fixed by an automorphism then that automorphism 
must either fix or switch the two adjacent sextets having the duet in common. Now q~ 
fixes the duets {0, ~}, {i, - i} ,  {I + 1/~1 - 1"9~} which are common to k0 and k~, /q 
and k2, kz and ka respectively. Thus ~p fixes the 3-arc pointwise. 

The duet {a, - a }  is fixed by ~p if p - 5  (rood 8) but not if p - 3  (rood 8); 
however the reverse is true tbr the duet {(3il/2--1) -1, (1 - i t /~) -1} .  The lbrmer duet 
is common to k o and k_~=a-"-(kO, while the latter is common to k:~ and k4=a3(kO. 
Thus in both cases 4o fixed a 4-arc. But we have shown that PGL(2, p2) acts 4-regu- 
larly, and so it contains only one automorphism (the identity) fixing a 4-ai'c. It follows 
that ~p induces a new automorphism, and PFL(2, p~) acts 5-regularly. I 

Wong [10] showed that there is only one cubic graph which admits a group 
acting 5-regularly and primitively. It has 234 vertices and the group is Aut SL(3, 3); 
an alternative construction may be found in [1, p. 125]. Other constructions of 5-regu- 
lar cubic graphs are due to Conway (see [I, p. 130]) and Biggs [2]. In both construc- 
tions the graphs are coverings of  smaller graphs, and so the groups act imprimitively 
in a corresponding way. However, the groups of the 5-regular sextet graphs act ira- 
primitively in only one, essentially trivial, way. corresponding to the bipartition of the 
graph. This situation has been called the semi-primitive case by Gardiner [5]. We con- 
jecture that the only 5-regular semi-primitive cubic graphs are the sextet graphs S(p) 
for p ~ 3 ,  5, 11, 13 (rood 16) and an exceptional graph on 468 vertices (a bipartite 
double cover of Wong's graph). 
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5. Girth of sextet graphs 

In this section we shall prove a result on the girth of S(p)  which lends support 
to the conjecture that the girth tends to infinity as a function ofp .  We shall use the 
correspondence, established in Section 2, between the cycles of length l in S(p) and 
the identity words of length / in the shunt automorphisms a and b. 

For simplicity we shall consider only Cases l and 9. Thus p will be a prime con- 
gruent to I modulo 8, and there is a primitive eighth root of unity a in Zp =G F(p ) .  
We shall fix a for each p. 

Let 

be elements of the ring R of 2 × 2 matrices whose terms belong to Z[t]. Let W denote 
the set of words in two non-commuting variables. For each w in W the matrix 

,,,<,) = , , . ( A  <,>. e c , ) )  = 
ty,:,(t) 6,,(01 

belongs to the ring R. If w has length/, then c~.,(t) and flw(t) are polynomials of degree 
l, whereas yw(t) and aw(t) have degree I - 1 .  The leading coefficients are all + 1. 

Let ~(t)  denote the matrix w(t) when the coefficients of the polynomials are 
reduced modulo p; that is, the corresponding polynomials ~,,,(t), fi.,(t), 9.,(t), 6.,(t) 
belong to Zp[t]. The chain w ~ w ( t ) + ~ ( t ) ~ ( a )  defines a function from W to 
GL(2, p). If we now take the projective linear transformation induced by the matrix 
by the matrLx f0(a) we have a function 

e~,: W ~ PGL(2, p). 

The image of the word wa(~, q)=~ is the automorphism a of S(p)  and the image of 
w.,(~, q)=~/ is b. In general, the value of e~(w) is the autonlorplfism w(a, b) of S(p).  

The following lemma is an immediate corollary of the results in Section 2. 

Lemma 4. S(p)  has a cycle of  lengzh l i f  and onl)" (f  there is a word w oJlength l for 
which ep(w)=id, the identin" in PGL(2, p). I 

Lemma 5. Suppose w is" a given member o f  W. I f  ep(w)= id ./or #~nitety many primes 
p, then ep(w)=M for  all p. 

Proof. If ep(w) is the identity then ~(~) is a matrix cI, for some c in Z~. In particular, 
the polynomial fi,,(t) vanishes when t = a .  Since a4+ 1 = 0  in Zp, we may say that 
the polynomials /7,,(t) and t a + l  have a non-trivial common factor in Zp[t]. The 
resultant matrix (see [9]) of these polynomials is a matrix Mp[w] over Zp with 
/ + 4  rows and columns, where 1 is the length of w. The determinant of Mp(w) van- 
ishes in Zp if and only if the polynomials have a non-trivial common factor. 

Let M(w) denote the resultant matrix of  the polynomials f l ,At)and t4+ 1 over 
Z. Then 

d e t M ( w ) = - 0  ( m o d p ) ~ d e t M p ( w )  = 0  in Zp. 
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Now if det M(w)¢ 0 then it is divisible by only a finite number of  primes, Hence, 
if ep(w) is the identity for infinitely many primes p, we must have det M ( w ) = 0 .  
Consequently det Mp(w) = 0 for all primes p and ep(~9 = id for all p. | 

Theorem 5. Suppose p=-I (mod 8). Then either 

(i) there is a "universal" word u such that ep(u)= id for all such p, or 
(ii) the girth of S(p) temls to it{finity with p. 

Proof. Suppose that the tirst alternative does not hold. Then every word w has the 
property that ep(W) ~id  for some p. It follows from Lemma 5 that %(w)=id  for 
only finitely many p. Let p(w) be the largest p - 1  (mod 8) such that ep(W)=id 
(and define p(w)= 1 if there is no such p), Let 

p(I) = max {p(w)]w has length ~ 1}, 

which is finite since the set of  words with length at most l is finite. It follows from 
Lemma 4 that if p>p(I) then the girth of  S(p) is greater than 1. I 

It is hard to believe in the existence of the universal word u. Certainly, it 
cannot have odd length, since the graphs S(p) are bipartite when p - - 9  (mod 16) 
and have no odd cycles. Also it must have length at least 30, since S(313) has girth 30. 

In Table 3 we tabulate the girths of  the sextet graphs S(p) with p-= 1 (rood 8) 
and p<500.  These values were obtained by explicit computation of the shortest 
cycle through a specified vertex. The value for p=433  is unknown, but it does not 
exceed 32, since the word (abaa2baba6b) "z is an identity word in that case. We also give 
the values of  c =  (log., n)/g, where n is the number of  vertices of  S(p), that is, 
n=p(p"-1)/48 or p(p2_ 1)/24 according as p is congruent to 1 or 9 modulo 16. 
General theorems [3, pp. 107--110] assert that there is a cubic graph with girth g and 
1 / 2 < c <  1 for each g, but no better bounds are known. It is tempting to conjecture 
that the asymptotic value of c for the sextet graphs is strictly less than I, but the evi- 
dence for this is not wholly convincing. The values o f c  marked with a star in Table 1 
are those for which S(p) is the smallest currently known graph with that girth. 

Table 3 

p 17 41 73 89 97 113 193 233 241 257 

g 9 14 22 22 20 21 25 28 25 25 

e .741 .821 .635* .674 . 7 1 1  .708* .688* .678* .826 .737 

p 281 313 337 353 401 409 433 449 457 

g 28 30 27 27 30 30 '~ 27 30 

c .707 .676* .726 .733 .678 ,714 9 .772 .722 
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Tahle 4 

p 3 7 31 71 151 

g 8 6 15 2O 26 

c .~ 1 .~ .6M .618* .693* .659*' 

In Table 4 we give a few results ['or the sextet graphs with p ~ I (rood 8). In 
all the cases listed there the graphs are the smallest currently known with the stated 
girth. 
Note added in proof. A. Weiss has shown that the asymptotic value of  c for the sextet 
graphs with p ~  +_1 (rood 16) is 3/4. 
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