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ABSTRACT

The homology group of a graph, with any coefficient ring, can be used to construct covering graphs.
The properties of the covering graphs are studied, and it, is proved that they admit groups of
automorphisms related to the group of the base graph. In the case of cubic graphs the construction throws
some light on classification problems and it can be used to show that certain finitely presented groups are
infinite.

1. Introduction

The idea of labelling the edges of a graph by group elements in order to construct
a covering graph is quite well known. An account of the theory may be found in
Chapter 19 of the author's book [2] and a similar concept is often known by the
name of a 'voltage graph' [11]. If we insist that the covering graph should inherit the
symmetry properties of the base graph then it is necessary that the edge labelling be
compatible witlv the action of the automorphism group, and several ways of
constructing such a labelling have been described [2, 3, 5].

In this paper the group used for the edge labelling will be the first homology
group of the graph. The functorial properties of homology ensure that, in general
terms, the compatibility condition is satisfied. However, in graph theory it is usually
convenient to deal with a specific representation of the homology group (or cycle
space, as it is known) in terms of the basic cycles associated with a spanning tree. We
shall give an explicit proof of the compatibility condition in these terms.

As with all constructions of this kind, it is crucial to determine the number of
components of the covering graph. In our case, when the homology is taken with
integer coefficients, we have the remarkable result that the number of components is
equal to the number of spanning trees of the base graph.

The theory is readily applicable to the study of cubic graphs. This has already
been done in a very simple and special situation in a previous paper [5]. Here we
shall investigate some more general questions and obtain results relating to the
classification of cubic graphs with a given symmetry type. We shall also explain how
the techniques can be used to show that certain families of finitely presented groups
have infinite order.

2. The construction

Let X be a finite 2-connected graph with vertex-set V and edge-set E. Each edge e
in E is an unordered pair {a, /?} of adjacent vertices, and corresponds to two ordered
pairs (a, /?) and (/?, a), called sides of X. The set of all sides of X will be denoted by
SX. An orientation of X is a choice of one of the two sides corresponding to each
edge or, more formally, a pair of functions h and t from E to V such that
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We define a path in X to be a sequence of vertices y0, y t , . . . , yr such that yf is
adjacent to yi + l (0 ^ i ^ r—1) and y , ^ y/ + 2 (0 < i < r — 2). Note that we do not
require that y0, y , , . . . , yr be distinct vertices: in particular, when y0 = yr we have a
closed path.

Let R be a commutative ring with multiplicative identity 1, and let T be a
spanning tree for X (regarded as a subset of E). Denote the edges of X which are not
in T by fi, f2, •••, fc, where c = |£| —|K| + 1. We choose a fixed orientation for X
and let t(ft) = ah h(f{) = T,. There is a unique path xh a, /?,..., 0, a{ in T from T,- to at

and this, together with the side (ah T,), defines an oriented cycle C, whose sides are

(<7,,T,), (T,, a), ...,(0,(7,).

The cornerstone of our construction is a labelling of the sides of X with values in the
abelian group Rc. We define x : SX -> /?c as

x(<7, T) = (x,(a, T), ...,xc(a, T) ) ,
where

1, if {a, T) is in C,-,

X,-(<7, T) = < — 1, if (T, a) is in C,,

0, otherwise.

Clearly, we have X(T, <T) = -x(a, T).
We construct a covering graph X o( X, with respect to the given orientation and

spanning tree of X. The vertex-set of X is

V= RcxV,

and the edge-set E contains those pairs {(z, a), (z', a')} for which

{a,a'}e£ and z -z ' = x(a,a').

THEOREM 1. The graph X is independent (up to isomorphism) of the various
choices involved in its definition.

Proof. Suppose first that the spanning tree T is fixed. When the orientation is
also fixed the only remaining choice is the ordering of the edges f{,..., fc. If a new
ordering is obtained by applying the permutation n to the subscripts, the new labels
x* are related to the old ones by the rule

where P is the permutation matrix corresponding to n. The resulting graphs X and
X* are isomorphic under the mapping

(z, a) i > (Pz, a) .

It is clear from the construction that the labelling depends only upon the
orientation assigned to the edges not in T. Suppose then that one such edge, say / , ,
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has its orientation reversed. The new labels are related to the old ones by the rule

X*(<7,T) = Q\((T,X),

where Q = diag( — 1,1, 1,..., 1), and the graphs X and X* are isomorphic under the
mapping (z, a) >-• (Qz, a).

We now consider the effect of changing the spanning tree T. It is clear that any
two spanning trees are related by a sequence of operations of the following kind. Let
e be any edge in T and let Z(e) be the cutset of edges of X which it defines; Z{e)
contains e and some of the edges ft not in T. Without loss of generality we may
suppose that fx is in Z(e), so that e (with the appropriate orientation) is in Ct.
Define T* to be the spanning tree obtained from T by deleting e and adding fY.

Let X and X* be the covering graphs constructed using T and T*. The edges of
X not in T* are

The oriented cycle C? is the same as Cx. If / , is not in Z(e), then Cf = C}. On the
other hand, if /) (j £ 1) is in Z(e) then Cf is the 'difference' Cj — Cx. It follows that

(XJ(O,T)-XX{O,T), if7 ^ 1 and/j-eZle),

{ Xj{a, T) , otherwise .
Hence

X*(<T, T) = Ax(a, T) ,

where /4 is a triangular matrix with diagonal entries equal to 1. Hence A is invertible
and the mapping (z, a) H-> (AZ, a) defines an isomorphism from X to X*.

3. Tfie components of the covering graph

Although the graph X is, in general, not connected, there is a simple way to
describe its components algebraically.

When P = (y0, yx,..., yr) is a path in X we write

r - 1

x(P) = Y, x(Vr Vj+i) -
J = 0

Regarding Kc as a Z-module (abelian group), we denote by A the submodule
generated by the values of x(P) for closed paths P; that is

A = <x(P) | P is a closed path) ,

so that A consists of all Z-linear combinations of labels on closed paths. Choose any
vertex a0 of X and set

v(<70) = 0 ,

where 0 indicates the zero coset 0 + A in Rc/A- If a is any vertex and S is a path in X
from <r0 to a, set
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If S' is any other path from <x0 to a then x(S) — x(S') is in A, since S followed by the
reverse of S' is the union of some closed paths and some non-closed paths traversed
in opposite senses. Hence v(cr) is well defined as a member of Rc/A.

THEOREM 2. The number of components of X is equal to the index of A in Rc.

Proof. Define a function / : V -> Rc/A by the rule

/ (z , a) = — Z + V(CT).

Given any coset r + A in Rc/A we have

/ ( - r , a0) = r + v(<r0) = r + A,

and so / is a surjection. We show that (z, a) and (z', a') are in the same component of
X if and only if / (z , cr) = /(z', a')-

Suppose that (z, a) and (z', a') are in the same component. A path from (z, a) to
(z', a') in X contains vertices

(z, a), (z + x(<r, a), a),..., (z + x(S), a ' ) ,

where S = (<T, a,..., a') is a path in X, and x(S) = z ' - z . Let So, S'o be paths in X
from <T0 to a and ff' respectively, so that

We have

But the union of So, S, and the reverse of S'o is the union of closed paths and some
non-closed paths traversed in opposite senses. Hence

( -z + x(So))-(-z + x(S'o)) = x(S) + x(S0)-x(5'0)

is in A, and /(z, a) = /(z', a').
Conversely, if the equality holds then

z' —z = x(So) + x(S'o), (mod A)
and so

z ' - z = x(P),

where P is a path from a to a' in X. Hence the covering path in X goes from (z, cr) to
(z', <x'), and these vertices are in the same component of %.

Theorem 2 can be given a more concrete form, especially when R = Z.
Given a spanning tree T and an orientation of X we define the cycle matrix K

(over /?) as follows. The rows of K correspond to the basic cycles C,- (1 < i < c), and.
the columns correspond to edges of X, which may be arranged in such a way that the
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edges fi,f2, ••-, fc come first. The column k ^ of K corresponding to an edge
e = {a, T} is defined by

C x(a, T) , if h{e) = T ,

Ke =
{-\((T,T), \fh(e) = (T.

Now let us focus on the case when R = Z. For any path P and any edge e,
suppose that t(e) = a, h(e) = fi and define

ue{P) = (number of times (a, /?) occurs in P) — (number of times (/?, a) occurs in P).

We have a row vector u(P), whose columns can be labelled in the same order as
those of K. For the basic cycles C,, it follows from the definitions that

the i-th row of K. Since these rows form a basis for the cycle space over Z, for any
closed path C there are integers y, (1 ^ i ^ c) such that

u(C) = t
i = 1

Using the preceding expression for u(C,), we see that

where t denotes the transpose and y(C) = (yl,..., yc)'.
Furthermore, the label x(C) is, by definition, the sum of the labels on the sides of

C, thus

Combining these results we obtain

x(C) = KK'y(C).

THEOREM 3. When R = Z the number of components of X is equal to the number
of spanning trees of X.

Proof Given any y in Zc we can construct a closed path C such that y(C) = y,
and hence x(C) = KK'y. In other words, the submodule A of Zc has a generating
matrix L = KK'. It is a standard result [7, p. 14] that the index of A in Zc is equal to
|det L\, provided L is invertible.

On the other hand, it is known (see [6; 14, p. 18]) that det KK1 is the number of
spanning trees of X. Hence L is indeed invertible and the result follows.

Theorem 3 is useful because there are alternative ways of calculating the number
of spanning trees of X. When X is regular there is a formula involving the
eigenvalues and their multiplicities [2, p. 36], and when X is distance-regular these
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numbers are determined by the intersection array. Some typical results may be found
in [5].

When R £ Z it is possible that detL = 0 in R. In such cases we must use more
direct means to calculate the index of A in Rc. For example, when R = Z3 and X is
the complete bipartite graph K3 3, it turns out that L is the 4 x 4 matrix each of
whose entries is 1. Thus the order of A is 3 and its index in (Z3)4 is 27. Hence X has
27 components and each of them has 6 x 34/27 = 1 8 vertices. In fact, each
component is a copy of the well-known Pappus graph [8]. We shall discuss these
matters in greater detail in Section 5.

We now return to the case when R = 1 and establish a result which will be useful
in later sections of the paper. Let us say that a closed path C is reverting if u(C) = 0.
In other words, C traverses each edge the same number of times in both directions.

THEOREM 4. When R = Z and C is a closed path in X we have x(C) = 0 if and
only if C is a reverting closed path.

Proof. Clearly, if C is reverting then x(C) = 0 (this is true for any R).
Conversely, we have

x(C) = KK'y(C),

and when R = Z, KK' is invertible. Hence x(C) = 0 implies that y(C) = 0 and
since u'(C) = K'y(C) we have u(C) = 0 also. Thus C is reverting.

Theorem 4 does not hold when R j= Z. For example, when R = Zm the closed
path C obtained by going m times around any cycle has x(C) = 0, but it is not
reverting.

4. Action of graph automorphisms

Throughout this section we .continue to assume that an orientation and a
spanning tree for X have been chosen.

Let g be any automorphism of X. We define a c x c matrix g = {gi}) over R,
representing an action of g on Rc, as follows. Let f} (1 ^ i ^ c) be an edge of X not
in T, and suppose that t{f}) = or h{fj) = xy then we set

1 , if (gOj, gXj) is in C , ,

— 1 , if (gXj, gffj) is in C, ,

0 , otherwise.

THEOREM 5. The action ofg on SX defined by g{o, x) = {ga, gx) and the action of
g on Rc as a matrix operating on column vectors are compatible with the labelling
x : SX -+ Rc. That is

g(x{<r,x)) = x(ga,gx)
for all{(T,x)eSX.
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Proof. We have to show that for each i = 1,2,..., c and each {a, x) e SX,

where, according to the definition in Section 2, x^ga, gx) is 1 if {ga, gx) is in C,,
— 1 if (#T, 0<r) is in C,, and 0 otherwise.

Suppose first that the edge {a, x) is one of the edges not in T, say fk. We may
assume that the notation has been chosen so that t(fk) = a, h(fk) = x. It follows that
XJ(<T, x) = 0 for a l l ; ^ k, whereas xk(a, x) = 1. Thus

Xtfij-x/ff, T) = gik = xt{ga, gx)
j

by the definition of gik.
Suppose now that the edge {a, x} is in T. Let V = K, u F2 be the partition of the

vertex-set which is defined by deleting {a, x) from T, where we may take aeVl,
x eV2. The corresponding cutset H, consisting of edges with one vertex in Vy and one
vertex in V2, contains {a, T} and some of the edges f}. Furthermore, j i is in H if and
only if {a, x) or (T, a) is in C}.

Fix i (1 < i ^ c) and let C* be the set of edges e = {a, /?} such that (ga, gp) or
{gfl, go) is in Ct. Now, according to the definitions of gVi and Xj(a, x), if

0y = X/ff, T) = ± 1 ,

we must have f} in C* n H, with the orientation of f-} in C* going from Vx to K2.
Similarly, if

gtj = ~Xj{a,x) = ± 1 ,

we must have/7- in C* n if, with the orientation of fj in C* going from V2 to Ft.
But C* n H contains an even number of edges. If {a, x] is not in C* n H (that is,

if it is not in C*) then there is an even number of edges /,- in C* n /f: half of them are
oriented in C* from Kt to V2 and the other half from V2 to Kt. Hence

Z 0i,X,(<7, T) = 0

in this case, and also the value of x((ga, gx) is zero since neither {ga, gx) nor {gx, ga)
is C*. If {a, x} is in C* n H, there is an odd number of fj in C* n / / , and they make
a net contribution of ± 1 to the sum, according to the orientation of {a, x] in C*.
Hence the result.

Let G be a group of automorphisms of X, and define G to be the semi-direct
product RcxG whose members are the pairs (z, g) in Rc x G, with the group
operation in G given by

It can be checked that, as a consequence of the compatibility condition, the action of
(j on the vertices of 2 given by
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defines G as a group of automorphisms of X. In the next section we shall study the
relationship between G and G more closely in the case where X is a cubic graph.

5. Applications to cubic graphs

Let X be a connected cubic graph admitting a group of automorphisms acting
transitively on the vertices and edges. In this case the foregoing theory takes an
especially elegant and useful form. We shall describe the framework and its
application to classification problems for cubic graphs in this section, and in the
following section we shall explain how such ideas can be useful in combinatorial
group theory.

Henceforth we shall assume that X is a finite connected cubic graph and G is a
group of automorphisms which acts transitively on its vertices and edges. It is known
[13] that G acts regularly on the paths of length s for some s in the range 1 ^ s ^ 5.

We shall choose an s-path (ao ,a l 5 ...,as) in X and refer to it as the standard
s-path. Let as_l5 /?', /?" be the three vertices adjacent to <xs. Since G acts regularly on
the s-paths there are unique automorphisms a, b, t in G such that

a(ao ,a1 , . . . ,« s_1 ,a J ) = (a,, a2,..., as, fi'),

&(ao,a1,. . . ,aI_1,a5) = (a t , a2,..., as, 0"),

* ( < * ( ) > a l > • • • > a s - l > a s ) = ( a s > a s - l > • • • > a l > a o ) •

It can be shown that the shunt automorphisms a and b generate G (see [2, p. 115]).
The automorphism t is introduced in order to describe the underlying structure more
intuitively.

When s is given, the automorphisms a, b, t satisfy some canonical relations. First,
since t2 fixes the standard s-path and G acts regularly on s-paths, it follows that
t2 = 1. Similarly, examining the action of tat, we see that it must be either a"1 or
b~l. The first possibility can occur when s = 2, 3, 4, 5, but not when s = 1, and for
the purposes of this paper we shall restrict ourselves to these cases. (In fact,
tat = b~l can occur only when s = 1,2,4.) In each case an analysis of the action of
suitable combinations of a, b and t on the basic s-path provides a set R(s) of s + 3
relations which must hold in G. If we denote by Ro the relations

t1 = (at)2 = (bt)2 = (ab~1)2 = 1,

then the full sets of relations are as follows

R{2): Ro u {abta2 = b2},

R0<j{(a2b-2)2 = l,a2bta3 = bab),

): Ro u {(a2b~2)2 = 1, a3fc"3a3 = bab, a3bta* = ba2b},

R{5): R0u{{a2b-2)2 = I , a 3 6~ 3 a 3 = 6 3 ,a 4 6" 4 a 4 = ba2b,a4bta5 =

The relations in this form originate from unpublished work of J. H. Conway.
Equivalent sets of relations can be found in the paper of Djokovic and Miller [10].
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These relations will be satisfied in any group acting regularly on the s-paths of a
cubic graph. They are proved by a purely local analysis of the action of a, b and t
and so they hold even when the graph is the infinite cubic tree. It follows that the
groups

Us = <a,b,t\R(s)) (s = 2 , 3 , 4 , 5 )

are infinite groups, and a group G acting in the appropriate way on a finite cubic
graph is a proper quotient of the relevant Us [10, Theorem 1]. (In the application of
the relations to finite cases it must be remembered that a and b are not necessarily
interchangeable.)

Further relations in G arise from the existence of closed paths in the graph. There
is no loss of generality in assuming that the initial segment of a path P coincides with
the standard s-arc, and so we may suppose that P = (a0, al s . . . , ar). Then, for each i
in the range 0 ^ i ^ r — s - 1 there is a unique automorphism v{ such that

y i ( a i > a ; + i > • • • > a . + s ) = ( a i + i > a i + 2 > ••••> a i + s + l ) •

For O ^ i ^ r — s — 1 define

W ; = VQ lV^1 . . . V f _ \ V i V i . 1 ...V0.

Each w, is either a or b, since it shunts the standard s-path onto one of its successors.
Furthermore,

and so the automorphism wow{ ...w, (which is a word in positive powers of a and b)
shunts the standard s-path through i steps along P. In particular, when P is a closed
path we may write ar = a0, a r + 1 = al5..., ar+s = as and extend the definitions of v{

and w, to the range 0 < i < r —1. Since the automorphism vr_lvr_2 ••• vo fixes the
standard s-path, it is the identity. Hence

W = WoWj . . . W r _ !

is a word in positive powers of a and b which is equal to the identity automorphism,
and we have a relation which must hold in G.

For example, let K2 3 be the complete bipartite graph with vertex bipartition
{1,3,5} u {2, 4, 6}. The full group of automorphisms acts regularly on the 3-paths,
and if (1, 2, 3,4) is the standard 3-path the automorphisms a, b, t are

a = (1234)(56),

b = (123456),

r = (14)(23)(56).

In addition to the relations R(3), which can be checked, there are relations like

a4- = 1, b6 = 1, {abf = 1.
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It should be noted that the relations a4 = 1 and R(3) together define G
completely, whereas b6 — 1 and R(3) together define the group of a 3-fold covering
of K3 3, and {ab)e = 1 and R(3) together define an infinite group. The last assertion
will be justified later in this section. In general, it is not easy to determine a complete
set of defining relations for G.

These techniques can be easily applied to the covering graphs X constructed in
the earlier sections of this paper. If the label assigned to the first side of the standard
5-path is

x^aj) = x0,

then the compatibility condition (Theorem 4) asserts that

x(a,-,a1 + 1) = a'(x0) = £'(x0) (0 ^ i ^ 5 - 1 ) .

We can therefore choose the vertices of a standard s-path in X to be

(0,a0), (Xo.aj), (xo + a(xo), a2),..., (xo + a(xo) + ... + as"1(xo), a s) .

It can be checked that the automorphisms

a = (x o ,a ) , 8 = (xo,b)

act as shunts with respect to the standard 5-path in X. Also, we can define

t = ( y o , 0 , where y0 = (l+a + ... + as-l){\0),

and it can be verified that a, b, t satisfy the relations R(s). Thus the group G, like G,
is a quotient of the universal group Us.

The following theorem is the main tool for investigating the relationship between
closed paths in X and closed paths in X, and the consequent relationship between
presentations for the respective groups. Recall that if P = (<j0, alt..., ar) is a path in
X, then there is a unique covering path P starting from a given vertex (z0, <x0) in X:
its vertices are

(z0, <70), (zo + x(<7o, <j{), ax),..., (zo + x(P), ar).

THEOREM 6. Let X be a finite connected cubic graph admitting a group of
automorphisms G with generators a and b as above. Let C be a closed path in X
corresponding to the relation

w(a, b) = 1

in G, and let C be a path in X covering C. The following statements are equivalent:

(1) x(C) = 0,

(2) C is a closed path in X ,

(3) w(a, 5 ) = l i n G .

Proof. (1) => (2) This follows immediately from the definition of C.
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(2) => (3) Since a and B act as shunt automorphisms for the standard s-path in
X, this implication follows from the general theory outlined above.

(3) => (1) Let vt and wt (0 ^ i ^ r— 1) be the automorphisms associated with C
as above, so that each w, is either a or b and

w{a, b) = WQW-L . . . wr_! = 1 .

T h e l a b e l s o n t h e s i d e s o f C a r e x 0 , £ o ( x o ) > v 1 v 0 ( \ 0 ) , •••> ( ^ - - 2 ••• ^ o ) ( x o ) > a n d s o

x(C) = {l+vo + vlvo + ... + (vr_2...vo)}(\o)

1 + . . . + (WO... Wr_2)}(x0).

But wt = (x0, wf), since each w; is either a or /?; and we are given that w(a, B) = 1.
Thus

1 = (xo,wo)(xo,w1). . .(xo,wr_1)

= (xo + wo(xo) + ... + (wow1 . . .wr_2)(xo),wow1.. .wr_1),

and taking the first component we see that x(C) = 0.

We have shown (Theorem 4) that when R = Z we have x(C) = 0 if and only if C
is a reverting closed path. So in this case we have a useful characterization of the
closed paths and the relations which are preserved in the covering graph. For
example, it is remarked in [5] that in the cages Xs (s = 2, 3,4, 5) the closed path
corresponding to the relations (as~2b)6 = 1 is reverting, and hence the same relation
holds in the covering group. The cage X3 is just -K3i3, and so here (ab)6 = 1 holds in
the covering group also. Thus we have an explanation of the fact, mentioned earlier,
that this relation (together with the set R{3)) does not define the group of K3 3: in
fact, the group so defined is infinite. We shall return to this topic in the next section.

We shall conclude this section by describing how these methods are related to
results of Miller [12] and how they suggest natural extensions of that work. Miller
obtains a classification of cubic graphs which admit a group of type U2 and have
girth 6 or less. For each m ^ 3 there is such a graph G*{m) with 2w2 vertices, and
when m = 3m0 G*{m) is a 3-fold covering of another such graph G*(3, m0) with 6ml
vertices. These are the only graphs of the required kind.

Let Y2{m) be a component of the covering graph X2(m) obtained from the theta-
graph (or 2-cage) X2 using the ring Zm. Since X2 has 2 vertices and c = 2, we see
that |^2(m)l = 2w2. The number of components of £2(m) is given by Theorem 2; it is
the index of the submodule

A = < ( 2 , - 1 ) , ( - 1 , 2 ) >

in Zm x Zm. Now, it can be shown that

3, if 3 | m,

1(2 J 2 : A| =
1, otherwise.
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So the order of Y2{m) is 2m2 if m is not divisible by 3, and 6ml if m = 3m0;
furthermore, it turns out that

!

GJ(3,m0), if m = 3m0 ,

G*(m), otherwise.

In other words, the graphs Y2(m) are the minimal graphs with the properties needed
for Miller's classification.

Roughly speaking, Miller's methods involve taking quotients of a 'universal'
graph of girth 6 admitting a group of type U2. This graph is the plane hexagonal
tessellation, which we can denote by Y2(co) since it is the result of the construction
described above using R = Z. Thus it is clear that the minimal graphs Y2(m) are
obtained by taking quotients with respect to the coefficient ring. On the other hand,
it may be more natural to consider them as coverings of X2 rather than as quotients
of y2(oo).

The preceding remarks lead naturally to questions about the analogous coverings
of the cages Xs (s = 3, 4, 5). The properties of the infinite coverings Ys = Ys(oo) were
studied in [5], and the finite coverings Ys{m) can be investigated in the same way. It is
reasonable to conjecture that, for s = 3 ,4 ,5 , the graphs Ys(m) are the minimal
graphs admitting a group of type Us and having girth 6s — 6 or less.

6. Some infinite groups

As indicated in the foregoing discussion, the theory can be used to show that
certain finitely presented groups are infinite. The basic idea is formalised in the next
theorem.

THEOREM 7. Let w = w{a, b) be a word in positive powers of a and b, and let
Us(w) denote the quotient of Us obtained by adjoining the relation w = 1. If there is a

finite connected cubic graph X admitting a group of type Us, and such that the closed
path defined by w is reverting, then Us(w) is an infinite group.

Proof. Let X be the covering of X constructed using the ring Z, and let Xo be
the component of X containing the standard s-path.

Clearly, X is an infinite graph, and its components are all isomorphic to Xo, since
X admits the group G acting transitively on vertices. Furthermore, the number of
components is finite, by Theorem 3. Hence Xo is an infinite graph.

The automorphism group Go of Xo is generated by a and b, as defined in
Section 5, and they satisfy the relations in Us. Now it follows from the hypothesis
about w, together with Theorems 4 and 6, that w(a, E) = 1 also. Hence Go is a
quotient of Us(w), and since Go acts transitively on the vertices of the infinite graph
£ 0 , both groups must be infinite.

One of the simplest ways of obtaining a reverting closed path is as follows.
Choose three edge-disjoint simple paths Pl,P2,P3 joining two given vertices, and
denote by P{ the reverse of P(. Then the closed path described by Plt P2, P3, Plf P2, P3
is reverting. If Pt has length /, (i = 1,2, 3), the closed path has length 2{ly +l2 + /3).
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EXAMPLE 1. When Xs is the cage of even girth 2s —2 we may take [5]

and obtain the reverting closed path corresponding to the word (as~2b)6. It follows
from Theorem 7 that the groups

Us(a*-2b)6 (s = 2 ,3 ,4 ,5)

are infinite. Similarly, when O 3 we may take lt = /3 = s, l2 = s — 2, which gives
the infinite groups

Us(a
s-2b2as-2b°)2 (5 = 3 , 4 , 5 ) .

When s ^ 4 we can also get infinite groups by taking / 1 = / 3 = s + l , / 2 = s — 3, and
when s = 5 by taking /t = /3 = 7, /2 = 1. All these reverting closed paths are
obtained from the union of two overlapping (2s — 2)-cycles, and of course there are
many others obtained from different configurations.

EXAMPLE 2. There are just two cubic graphs which admit a group of type Us and
have girth 2s — 1. They are the complete graph K4 (with s = 2) and Petersen's graph
(with s = 3).

In the case of X4 if we take two 3-cycles with a common edge we obtain the
reverting closed path corresponding to the word (ab2ab)2. A component of the
covering graph is isomorphic to the graph described by Coxeter [9] as Laves's graph
of girth ten. Thus we conclude that the group of this graph is a quotient of the
infinite group

U2(ab2ab)2 .

In the case of Petersen's graph we can take two 5-cycles with one or two edges in
common. We obtain the infinite groups

Ui(a
2b2a2bab)2, U,(a2b3a2b)2.

Similar examples can be manufactured very rapidly; indeed, any cubic graph
admitting a group of type Us will yield many infinite groups Us{w). On the other
hand, computations involving 'short' words w tend to yield finite groups Us{w). It
seems possible that for a given s, there are infinitely many words w for which Us{w) is
finite (and of course there are certainly infinitely many for which it is infinite). In this
vein, we have our final theorem.

THEOREM 8. Let W be any finite set of words in positive powers of a and b. Then
there are finite quotients of Us (s = 2 ,3 ,4 ,5) for which the defining relations
(additional to R{s)) do not belong to W.

Proof. The analysis of Djokovic and Miller [10] makes it clear that each Us is a
free product, with amalgamation, of two finite groups. It follows from a general
result of Baumslag [1] that Us is residually finite. Consequently, for each w e W we
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can find a normal subgroup Nw of finite index in Us such that w £ Nw. Let N be the
intersection of the Nw taken over all w € W. Since W is finite, N has finite index in Us,
and C/s/iV is a finite quotient of tf. with the required property.
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