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Infinite coverings of cages 

N. L. BIGGS AND s. K. BURFORD 

A family of infinite cubic graphs Y;, s = 2, 3, 4, 5, is constructed. The vertices of Ys are lattice 
points in Euclidean space of dimension 2s- I, the girth of Ys is 6s- 6, and Ys has a group of 
automorphisms which acts regularly on the s-arcs. 

1. INTRODUCTION 

All graphs considered in this paper will be cubic, that is, regular with valency three. A 
famous theorem of Tutte [5] concerns groups of automorphisms which act transitively 
on the l-ares (ordered pairs of adjacent vertices) of a cubic graph. The theorem asserts 
that, provided the graph is not the infinite cubic tree, the group acts regularly on the 
s-arcs of the graph for some s in the range 1:;;: s:;;: 5. [An s-arc is an ordered (s + 1)-tuple 
of vertices (w0, Wt. ••• , w.), with wi adjacent to wi+1 (O:;s: i:;;: s -1) and wi ;6 wi+2 

(0:;;: i:;;: s- 2).] Furthermore, the girth g of the graph must satisfy g;;;. 2s- 2. 
In the extreme case when g = 2s- 2 the graph is uniquely determined for each of the 

relevant values s = 2, 3, 4, 5. These graphs are the cages X 2, X3, X4, X 5 ; their structure 
will be examined in detail in Section 2. 

The aim of this paper is the construction of graphs ¥., s = 2, 3, 4, 5, with the following 
properties: 
(1) Y. is an infinite graph, 
(2) the vertices of ¥. are lattice points in Euclidean space of dimension 2•-t, 
(3) Y. has a group of automorphisms acting regularly on the s-arcs, 
(4) the girth of Y. is 6s -6, 
(5) Y. is a covering graph of X•. 
The graph Y 2 is a thinly disguised version of the familiar hexagonal lattice in IR2

• The 
graphs Y 3 , Y4 , Y 5 are apparently the first examples of infinite cubic graphs with groups 
acting regularly on the s-arcs for s = 3, 4, 5, apart from the universal example of the 
initite cubic tree. 

The methods of the paper can be applied more generally, but the work is considerably 
simplified by the special structure of the cages. The generalisation has some interesting 
consequences in combinatorial group theory, and this will be the subject of a separate 
paper. 

2. STRUCTURE OF THE CAGES 

Let X be a cubic graph satisfying g = 2s- 2. Proofs of the assertions about X which 
follow can be extracted from Tutte's paper [5]. 

Denote by a, {3 any pair of adjacent vertices of X, and let d be the usual distance 
function in X. The edges of X which have at least one vertex g for which 

d (g, a):;;: s- 2 or d (g, {3):;;: s- 2 

form a spanning tree T for X (Figure 1). The number of vertices of Tis 2m, where 

m = 1+2+... +2s-2 = 2s-l - 1' 

and consequently X also has 2m vertices. The edges of X not in T link the end-vertices 
of T, and so they form a subgraph U whose components are cycles. 
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Vertices Edges 

T 2m 2m -1 

_/)} u m+l m+l 

X 2m 3m 

FIGURE I 

We shall require names for the vertices of X. Referring to Figure 1, we label the vertices 
in descending levels: the two vertices adjacent to, and immediately below, a vertex assigned 
the symbol u are given the symbols u 0 and u 1• Thus the four vertices at the second level 
are a 0, a~o {30, f3~o and so on. The vertices at the lowest level are those which belong to 
both T and U; there are m + 1=2•-I of them and they have symbols of the form a or 
f3 followed by s- 2 subscripts. 

In each of the cases s = 2, 3, 4, 5 there is essentially only one way to join the vertices 
of U so that X is a cage. When s = 2 the vertices a and {3 are themselves at the lowest 
level and must be joined by two new edges so that U is a 2-cycle and X2 is a theta-graph. 
It is convenient to include this case in the general discussion, but since X 2 is strictly a 
multigraph we cannot use the convention whereby. edges are specified by their vertices. 

In the cases s = 3, 4, and 5 the subgraph U is, respectively, a single 4-cycle, a single 
8-cycle, and two 8-cycles. Using the labelling defined above, the cycles are: 

s =3: 

s=4: 

s=5: 

The graph X3 is just the complete bipartite graph K 3,3 , and the graphs X4 and X 5 are 
often called the Heawood graph and Tutte' s 8-cage, respectively. 

The first s + 1 vertices in each of the lists given above will be chosen as the vertices of 
the standards-arc in X,. Every s-arc in X, determines a unique g-cycle (g = 2s- 2). The 
standard 3-arc in x3 determines the 4-cycle ll'o, f3o, ll'~o 131; the standard 4-arc in x4 
determines the 6-cycle a 00, {300, a 10, {3 10, a0 ~o a 0; and the standard 5-arc in X 5 determines 
the first 8-cycle given above. 

It is a consequence of the general theory that a group G acting regularly on the 
s-arcs of X is generated by the two shunt automorphisms a and b which take the standard 
s-arc onto its two successors. We shall choose a to be that automorphism which shunts 
the standard s-arc one step around its unique g-cycle, and b to be the other shunt. The 
automorphisms a and b are uniquely determined by this description; for example, when 
s=4 

a= (aoo, f3oo, a10, {310, ll'o~o ao)(f311, f3o, ll'~o f3~o f3o~o a)(a11, {3); 

b = (aoo, f3oo, ll'10, /310, ll'o~o f3o~o ll'1 1o f3II)(ao, f3o, ll'~o f3I)(a, {3). 
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3. CoNSTRUCTION oF THE GRAPHS 

The method which we shall use to construct covering graphs of the cages is well-known 
[1, p. 127]. The innovation here is the use of an infinite group, which has to be carefully 
chosen to fulfil the conditions of the construction. 

Each edge UT of X determines two l-ares (u, T) and (T, u), which we shall refer to as 
sides of X. An orientation of X is a choice of one of the two sides corresponding to each 
edge. For the sake of definiteness we shall use the orientation defined as follows. The 
edge a{3 is given the orientation (a, {3); an edge of Ton the 'a-side' (Figure I) ofT is 
oriented towards a; an edge of Ton the '{3-side' of T is oriented away from {3; and the 
edges of U are oriented according to the cyclic order of their listing in Section 2. 

It will be convenient to use the symbols y0, y 1, ... , 'Ym+I for the vertices of U in the 
order in which they are listed in Section 2. For example, in X4 y 6 denotes a 11 • The edges 
of U, oriented as above, are then: 

s = 3: (Yo, y,), · · ·, ( ')'3, Yo), 

s=4: ('Yo, y,), · · ·, (1'1, Yo), 

s=5: ('Yo, 1'1 ), · · · , ( 1'1, Yo), ( 'Ys, 1'9), · · · , ( 'Y1s. ')'g). 

The s + 1 vertices of the standard s-arc are y 0, y 1, ••• , 'Ys in each case. 
Since U is the complement of a spanning tree, the m + 1 sides representing the edges 

of U determine a basis for the cycle space of X over the integers 7L as follows. If ( y, y') 
is the orientation of an edge of U then we have a well-defined oriented cycle 

')', y', lJ" 82, · · · , lJk, ')', 

where y', 8" lJz, ... , lJk, y is the unique path in T from y' to y. The m + 1 oriented cycles 
C,, C2, ... , Cm+I so constructed form the required basis. 

Let S denote the set of sides of X We define a function z: S ~ 7Lm+I in terms of 
coordinate functions z;(l.;;; i.;;; m + 1) as follows: 

+1, if(u, -.J is inC;, 
Z;(u,T)= -1 if (T, u) is in C;,

{ 
0, otherwise. 

The columns of the cycle matrix of X with respect to the spanning tree T are the labels 
±z(u, T), regarded as column vectors. 

Now let G be a group of automorphisms of X. For each g in G we define an 
(m + 1) x (m + 1) matrix of integers, g= (gii) in the following way. Let ( y, y') be the jth 
side of the oriented subgraph U, and set 

if (gy, gy') is in C;, 

if (gy', gy) is in C;, 
0, otherwise. 

The matrix g acts on the left of column vectors in the usual way, and we obtain an action 
of G on 7Lm+I. 

The labelling z: S ~ 7Lm+I is a special case of a more general construction which assigns 
to each side (u, T) of a connected graph an element z( u, T) of ZC, where ZC is the first 
integral homology group of the graph. It has been shown [3, theorem 5] that the actions 
of the automorphism on the graph and on its homology are compatible with this labelling. 
That is, 

g(z(u, T)) = z(gu, gT) 

gij = {~~: 

for any automorphism g and any side (u, T). In our special case we could verify the result 
directly for the generating automorphisms a and b in the four graphs X2, X3, X4, X 5• 
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We now have the basic facts needed for the construction of a covering graph X of X 
and a group Gof automorphisms of X. We shall assume from now on that G is the full 
group acting regularly on the s-arcs of X. 

The vertices of X are the ordered pairs 

(x, w) X E zm+l' (!) E V(X), 

and (x, w) is adjacent to (x', w') whenever 

ww' E E(X) and z(w, w') = x'-x. 

[ V(X) and E(X) denote the vertex-set and edge-set of X.] The group G is the semidirect 
product zm+t )q G, whose elements are the pairs 

(x, g), 

with the group operation defined by 

(x, g)(x', g') = (x+g(x'), gg'). 

The action of G on the vertices of X is given by 

(x, g)(x', w') = (x+g(x'), gw'). 

It follows from the general theory of this construction [1, p. 129] that G acts transitively 
on the s-arcs of X. However, it must be stressed that X is not connected. For example, 
the covering of the theta-graph X2 has three components, each isomorphic to the hexagonal 
lattice in IR2

• Since X 2 has a 2-arc-transitive group, each component of X2 (which is a 
simple graph, unlike X2) also admits a 2-arc-transitive group. 

Let Y denote the component of X containing the vertex (0, y0 ). The definition of z 
implies that 

Z('Yi-t. 'Yi)=ui (l~i~s), 

where ui is the column vector with 1 in row i and 0 elsewhere. Consequently, if we let 
vi= u1+ · · · + uj, we have an s-arc 

(0, y0 ), (v~. y 1), ••• , (v., ')'5 ) 

in Y. If a and b are the generating shunt automorphisms in X, the generating shunt 
automorphisms for a group acting regularly on the s-arcs of Y are 

4. PROPERTIES OF THE COVERING GRAPHS 

The shunt automorphism a= (u~. a) has the property that Yo= (o, y0 ) is adjacent to 
a( Yo)= (u~. 'Yt)· It follows that an-I( Yo) is adjacent to a"( Yo) for all n ~ 1, and so a"( Yo) 
is in the component Y of X for all n ~ 1. 

The order of the automorphism a in X. is 2s - 2, so that 

a2s-2 = (V2s-2, 1 ), 
and consequently 

a'<2s-2) = ( rv2s-2, 1 ), r ~ 1. 

Thus the image of Yo under a'<2s-2 
> is (rv2s_2, y0), and we conclude that Y contains 

infinitely many vertices. 
In order to compute the girth of Y, we shall use the correspondence between cycles in 

Y and positive words in the shunt automorphisms which represent the identity [2, 
lemma 8]. 
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It can be verified that ( iis-2 b)6 is the identity in each of the cases s = 2, 3, 4, 5. More 
light is thrown on this remark if we consider the cycles determined by (a 5 

-
2 b)" in X 5 • 

Since 'Yo and 'Ys-J are separated by the maximum distance s -l in X., and Xs is a cage, 
it follows that there are three disjoint paths oflength s- 1 joining 'Yo and 'Ys-l [Figure 2(a)]. 

'Yo 

'Ys-l 

(a) (b) 

FIGURE 2 

Recall that the automorphism a represents the shunt in the direction of the unique 
(2s- 2)-cycle containing the standards-arc, and b represents the alternative shunt. Using 

2 b)6the details of the correspondence between words and cycles [2], we conclude that ( as-
corresponds to shunting the standard s-arc around the cyclic route depicted in Figure 
2(b). This route traverses the edges of the three paths in both directions and so the 
covering route in Ys leads from (0, y0 ) back to (0, y0 ). 

We conclude that Y. has cycles of length 6s- 6. The fact that there are no shorter 
cycles can be verified directly in each of the four cases s = 2, 3, 4, 5. Since Y. is vertex­
transitive it is only necessary to check the vertices within distance 3s- 2 of one vertex in 
order to verify that no cycles of length less than 6s -6 occur. Alternatively, we could 
check to see if there are any shorter positive words in ii and bwhich represent the identity. 
This work is eased by two remarks. First, only a small subset of the positive words can 
be 'girth words', since there are restrictive 'overlap' conditions. Secondly, if a word 
w( ii, b) represents the identity in G, then w( a, b) must represent the identity in G. The 
remaining checks can be carried out mechanically, and the fact that the girth of Y is 6s- 6 is 
verified again. 

Finally, the number of components of X (each of them necessarily isomorphic to Y) 
can be found by algebraic means. We give only a sketch here, and refer the reader to [3] 
for general proofs. 

Let K denote the cycle matrix of X, with respect to the spanning tree T and our fixed 
orientation. As we remarked in Section 3, the column of K corresponding to an edge ur 
is ±z(u, r), the sign depending upon the orientation of ur. The (m + 1) x (m + 1) matrix 
L =KKT may be given the following interpretation. When the oriented cycle cj is traversed, 
beginning and ending at a vertex u in X, the corresponding path in X beginning at (x, u) 

will end at (x+ lj, u), where ~ is the jth column of L. 
Let y = (yj) be any column vector in 7Lm+ 1• By following a route in which the oriented 

cycle cj is traversed yj times ( 1 ,;J,; m + 1), we obtain a path in x joining the vertices 

(x, u) and (x+Ly, u). 

A well-known result on integer lattices [ 4, p. 14] asserts that the number of classes of the 
sublattice {Lyly E 7Lm+l} in 7Lm+J is ldet Ll. It follows that the number of classes (under 
the relation of connection) of points (x, u) in 7Lm+l x V(X) is also ldet Ll. 
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Now, it can be shown [6, p. 18] that det L (that is, det KKT) is the number of spanning 
trees of X. It would be interesting to have a constructive (bijective) proof of the fact that 
the number of components of X is equal to the number of spanning trees of X, but at 
the moment we have only the algebraic proof outlined above. 

The number of spanning trees of a cubic graph X can be computed from the formula 
[1, p. 36] 

where A" ... , A, are the distinct eigenvalues (except 3) and m; is the multiplicity of A;. 
Since the cage Xs is a distance-regular graph with diameter s -1, the eigenvalues and 
their multiplicities are determined by the intersection array of X., according to the theory 
expounded in [1, Chap. 21]. The intersection array of Xs is the array of 2(s -1) integers 

{3,2, ... ,2; 1, ... , 1,3}, 

and the eigenvalues (except 3) and their multiplicities are: 

s=2: -3(1); 

s=3: 0(4), -3(1); 

s=4: 2112(6), -2112(6), -3(1); 

s=5: 2(9), 0(10), -2(9), -3(1). 

The consequent values of K are given in Table I. 

TABLE I 

s 2 3 4 5 

Xs Theta K3,3 Heawood Tutte 

Vertices of Xs (=2m) 2 6 14 30 

Girth of Xs (=2s-2) 2 4 6 8 

Dimension of cycle space ( = m + I) 2 4 8 16 

Girth of Y, (=6s-6) 6 12 18 24 

Components of X 3 34 3·75 
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