
CUBIC DISTANCE-REGULAR GRAPHS

N. L. BIGGS, A. G. BOSHIER AND J. SHAWE-TAYLOR

ABSTRACT

It is shown that there are just thirteen finite graphs which are cubic (regular with valency three) and
distance-regular.

1. Introduction

Let G be a connected graph and let 6 denote the usual metric on the vertex-set
of G. The graph G is said to be distance-transitive (DT) if whenever u, v, x, y are
vertices of G such that 3(«, v) — 9(x, y) there is an automorphism ^ of G for which
(f>(u) = x and <f>(v) = y. In 1970 [5] it was proved that there are just twelve finite DT
graphs which are regular with valency 3 (or, as we shall say, cubic). Soon afterwards
a similar result for the valency 4 case was proved by Smith [14,15,16]. More recently,
it has been shown that for each k ^ 3 there are finitely many DT graphs with valency
k. The first general proof [7] relied upon the classification of finite simple groups, but
the need for this has since been removed by various means (see Cameron [6], Ivanov
[12], and Weiss [18]). Specific values of k are dealt with in papers by Gardiner [9],
Gardiner and Praeger [10], and Ivanov, Ivanov and Faradzhev [13].

A DT graph has strong combinatorial properties, arising from the fact that the
parameters

sM(u, v) = number of vertices w such that

d(u, W) = h and d(v, w) = i

depend only on the distance between u and v, rather than the individual vertices.
Consequently, in any DT graph we can define a set of intersection numbers shij by
putting shtj = shi(u, v) for any pair of vertices with d(u, v) =j. These numbers satisfy
many identities, and in fact it is sufficient to specify only the numbers

cj = sj-\, i,j> aj = sj, i ,P "j = sj+i, I,P

for all relevant values of/ It is thus natural to study graphs for which we assume
only that the numbers cp at, bi are independent of the vertices u and v, given that
9(«, v) =j. Such a graph is said to be distance-regular (DR). A DT graph is DR, but
the converse is not necessarily true; indeed, a DR graph may have only the identity
automorphism. Information about the general theory of DR graphs is given in [2, 4].

The problem of classifying DR graphs in the same way as DT graphs is an
interesting one, and a discussion of its significance will be found in the book by Bannai
and Ito [2]. Briefly, we remark that a DR graph is a special kind of association scheme,
and that its characteristic property (the P-polynomial property) reflects its
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metrizability. Furthermore, the classification of association schemes is a problem with
repercussions in several areas of classical algebra and analysis. In this paper we shall
study the simplest case, DR graphs with valency 3.

2. Preliminaries

In the case of a cubic DR graph with diameter d the parameters (c}, ap bj) described
in the introduction take the values (1, 0, 2), (1, 1, 1) or (2, 0, 1) for values ofy in the
range 1 ^j^d—\. Furthermore, the monotonicity conditions [4, p. 135] for the
sequences (Cj) and (b^ ensure that the types occur (if at all) in the order given. Thus
the full intersection array for a cubic DR graph takes the form
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where there are d+1 columns altogether, cd = 1, 2 or 3, cd # 1 if the number of
columns (2, 0, 1) is not zero, and ad = 3—cd. We denote the numbers of columns of
types (1, 0, 2), (1, 1, 1), (2, 0, 1) by a, 0, y respectively, so that <x+£+y = d-1. The
array is completely specified by the numbers a, ft, y and cd\ for example
a = 1, /? = 2, y = 1, cd = 3 gives the array of the dodecahedron.
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FIG. 1

In the paper [5] on the classification of cubic DT graphs it was shown that
fi ^ a-f 1 and y ^ a. These results hold also in the DR case and similar proofs apply.
The DT case was completed by appealing to a famous theorem of Tutte [17], which
implies that a ^ 5, so that

d= a 3a+2 ^ 17

in that case. In the DR case the problem is to replace Tutte's theorem by some
combinatorial arguments which will lead to a similar conclusion. In fact, our strategy
is somewhat different: we shall study various ranges of values of (fi, y) and establish
severe restrictions on a in each range. Specifically, we shall divide the set of possible
values of {fi, y) into four regions, as indicated in Figure 1.

In Region I the problem has already been solved by algebraic eigenvalue
techniques; the results will be summarised in Lemma 1 below, and there are ten graphs.
In Region II it can be shown by elementary arguments that there are no graphs
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(Lemma 2). The main part of this paper is devoted to showing that in Region III there
is just one graph, the dodecahedron. Our methods fail in Region IV, but fortu-
nately eigenvalue techniques are applicable to the three individual cases
(/?, y) = (1, 0), (2, 0), (3, 0), and these cases will be dealt with in a forthcoming paper
by Bannai and Ito [3]. It turns out that there are just two graphs in Region IV. (In
all the cases mentioned above it can be shown that each feasible array corresponds
to a unique graph.)

On the basis of these results we have the complete list of thirteen finite cubic DR
graphs, as given in Table 1.

TABLE 1

Region

I

III
IV

P

0
0
0
0
0
0
0
0
0
0
2
1
3

V

0
0
0
0
0
0
1
1
2
4
1
0
0

a

0
1
1
2
3
5
1
2
2
4
1
2
3

1
1
3
3
3
3
3
3
3
3
3
2
3

Graph

Complete graph K4

Petersen's graph O3

Complete bipartite graph Ks 3

Heawood graph
Tutte's 8-cage T
12-cage, or generalised hexagon

Cubeg3
Pappus graph
Desargues graph
3-fold cover of T
Dodecahedron
Coxeter's graph
Sextet graph S( 17)

We conclude the preliminaries by establishing the results for Regions I and II referred
to above. We shall denote by 0(a, /?, y) the set of cubic DR graphs whose intersection
arrays have a, /?, y columns of types (1, 0, 2), (1, 1, 1), (2, 0, 1) respectively. Whenever
s and / are vertices of a graph G in ^(a, /?, y) then we say that (with respect to s) t is

(i) an <x-vertex if 1 < d(s, t) ^ a;
(ii) a 0-vertex if a + 1 ̂  d(s, t) ^ a+jff;

(iii) a y-vertex if <x+/?+1 < d(s, t) ^ a+/3+y.

LEMMA 1. Cubic DR graphs with /? = 0 may be classified as follows, according to
the value of cd.

(i) If cd= 1 then the graph is a Moore graph and the only possibilities are Kt

and O3.

(ii) If cd = 2 there are no graphs.

(iii) Ifcd = 3 then the graph is bipartite and there are eight possibilities as listed
in Table 1.

Proof, (i) Since cd = 1 we must have y = 0. The girth of such a graph is 2d+ 1;
in other words, it is a Moore graph. These graphs have been completely classified by
Bannai and Ito [7] and Damerell [8]. In the cubic case the only possibilities occur when
d = 1 and d = 2, and the graphs are K^ and O3 respectively.

(ii) When /? = 0 and cd = 2 any such graph has the property that its shortest odd
cycle has length 2d+1. Let v and w be any two adjacent vertices both at distance d
from a given vertex x. The fact that cd = 2 means that two neighbours of x are

13-2
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at distance d— 1 from v, and also that two of them are at distance d— 1 from w. Since
there are only three neighbours altogether, one of them is at distance d— 1 from both
v and w. Thus we have an odd cycle of length Id— 1 or less, contradicting the fact
that fi = 0.

(iii) The conditions fi = 0 and cd = 3 mean that the graph has no odd cycles and
so it is bipartite. The cubic bipartite DR graphs have been classified by Ito [11]; there
are just eight of them, as claimed.

LEMMA 2. There are no cubic DR graphs with fi = 1 and y ^ 1.

Proof. Let G be a graph in ^(a, fi, y) with fi ^ 1 and y ^ 1. Choose vertices x, w
such that d(x, w) = <x+fi+1 and let x, p,...,«, y, w be a path of length a+/?+1 from
x to w. Let v be the unique vertex adjacent to y with d(x, v) = a+/?.

Since 9(x, w>) = a+/?+1 there exists a unique vertex r adjacent to * with
9(r, w) = <%+/?+2. Hence 9(r, ^) = oc+/?+1, so that ^ is a y-vertex with respect to r
and we have

{d(u, r), d(v, r), 9(iv, r)} = {a+& a + &

But 9(«, r) = a+j? and d(w, r) = a + £ + 2 , so that 9(u, r) = a + #
Now consider a path r = r0, rl5 r2,..., ra+p = v. Since 9(x, r) = 1 and

9(x, v) = <x+P there must be two vertices ri5 ri+1 on the path such that
9(x, rt) = d(x, ri+1). Let us call the edge {rt, ri+l} a sidestep, noting that sidesteps can
only involve ^-vertices.

In this case the sidestep cannot be {v, y), for 9(y, r) = a+y9+1 and the path
v, y, ...,r has length oc+fi+2. So there must be a sidestep at distance less than a+/?
from x, and hence /? > 1. Thus y ^ 1 implies that fi > 1, so that there are no cubic
DR graphs with 0 = 1 and y ^ 1.

This result also follows from [13, Lemma 18].

3. Projections and transitions

Let G be any member of ^(a, fi, y) and fix a vertex x of G. Give the neighbours
of x the labels ^l9 ^2, y3 in some arbitrary, but fixed, order. For each vertex v •£ x in
G we define (following Ivanov [12]) the projection of v on x to be the vector

P(v) = (Piiv), p2(v), p3(v)),
whose components are

/>4(t>) = 9(y, ̂ ) - 9(y, x) (i = 1, 2, 3).

Clearly the possible values of/>t(t>) are —1,0, + 1 . If 9(y, x) lies in the range 1,2,..., a
then there is one component equal to — 1 and two equal to + 1 ; in the range a + 1 ,
a + 2 , . . . ,a+/? there is one —1, one 0 and one + 1 ; and in the range <x+/?+l,
<x+fi+2, ..., a+fi+y there are two — 1 components and one + 1 .

We now examine the relationship between p(y) and p(w) when v and w are adjacent
vertices of G. It will be convenient to define an edge-transition (with respect to given
values of a, fi, y) to be an ordered pair of positive integers (r, s) such that for any
vertex x of a graph in ^(a, fi, y) there is an edge {v, w} such that

9(JC, v) = r and 9(JC, W) = s.
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Clearly, if G has an edge-transition (r, s) and x, v are any vertices such that d(x, v) = r,
then there is a vertex w adjacent to v such that d(x, w) = s. For example, if a > 1 and
fi ^ 1 then (a -I-1, a+1) is an edge-transition but (a, a) is not. In all cases we must
have r—s = — 1,0, or +1 .

Table 2 shows how the values of the components of the projection vector change
for various edge-transitions in G. Several of the results (A2, Bl, B3, B5, Cl, C3, C5)
are similar to Ivanov's lemma [12, Lemma 1]; the proofs of others are indicated in
Theorem 1. It is assumed that a ^ 1, /? ^ 2 and y ^ 1 throughout; other restrictions
for specific types are noted.

TABLE 2

Type

Al
A2 0? > 3)
A3

Bl (a > 2)
B2
B3
B4

Cl (a 5= 2)
C2
C3
C4

Edge-transition

(a+l.a+1)
(a+i, a+0 (2 < i < 0—
(a+fi, a+0)

OW+1) (1 < » < « -
(a,«+1)
( a + / , a + i + 1 ) ( l < i < / ? —

0+1,0 ( K i ^ a -
(a+1, a)

0
— changes to +

0 - +
1) - 0 +

- + 0

- Oor +
1) - 0 +

1) - 0 +
- orO +

THEOREM 1. Let G be a graph in <&(ix, ft, y), where a ^ 1, fi ^ 2 and y ^ 1, and
let x, yl} y2, y3 be vertices as specified above. Then we have the following rules.

(Case Al) Ifv and w are adjacent vertices ofG such that 3(x, v) = 9(x, w) = <x+1
then

p(y) = ( -1 ,0 , -4-l)=>p(w) = (0, - 1 , +1).

(Case A3) Ifv and w are adjacent vertices ofG such that 9(JC, V) = d(x, w) = a+fi
then

p00 = ( - 1 , 0, +l)=>p(w) = ( - 1 , +1 , 0).

(Case B2) If v is a vertex of G such that d(x, v) = a, and u, w are vertices of G
both adjacent to v such that d(x, u) = d(x, w) = a+1 then

p(v) = ( - 1 , +1 , +l)=>{p(«), p(w)} = {( -1 , 0, +1), ( - 1 , +1 , 0)}.

Proof. (Case Al) Since p(u) = (—1,0, -I-1), d(v, y2) = a+1 so there is a path
from v to yz with one sidestep, which must be {v, w}. Hence 9(w, y2) = a, so
pz(w) = — 1. Further, d(v, yx) = a and hence 9(w, yj = <x+1. Thus px(w) = 0, and so
p3(w) = +1, as required.

(Case A3) Since p(u) = ( - l , 0 , +1), it follows that 9(y,^) = a+fi-l. Let
u, t be vertices adjacent to v with d(u, yj = a+/?—2, 9(«, x) = a+fi— 1
and 9(f,^) = a+^,9(f,x) = a-f^+l. Now d(t,yt) ^d(v,yt)+l (i = 1, 2, 3) so
Piip) ^ P<(0 0 = 1» 2, 3). But t is a y-vertex with respect to x, so p(/) has one -I-1
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coordinate and two —1 coordinates, so that p(f) = ( - 1 , - 1 , +1). Similarly

P(«) = P0>)-
Now 9(u, yj = (X+0— 1 so that

{6(ii, yj, 9(H>, yj, d(t, yj) = { a + £ - 2 , a + £ - 1 , a + $ .

But 9(w, J / J = a + / ? - 2 , 9(f, j;x) = a+/? and so 9(w, j / J = a+/?— 1. Similar consider-
ations based on y2, y3 complete the proof.

(Case B2) Let u, w be distinct vertices adjacent to v and both at distance
a + 1 from x. Clearly d(u, yx) = 9(w, j^) = a, that is, /^(u) = /^(w) = — 1. Now
if p(w) = p(w) = (— 1, 0, +1) (say) then we would have 9(u, j>3) = a + l and
3(M> ^3) = 9(w, ̂ 3) = a + 2 , contradicting the fact that v is a /?-vertex with respect to
>V Hence p(w) * p(vv), so that {p(M), p(w)} = { ( - 1 , 0, +1), ( - 1 , + 1 , 0)}.

There are two cases (B2 and C4) where the change in the projection vector is not
uniquely determined by the corresponding edge-transition. However, it is possible to
make some further useful remarks about these cases, as in the following theorems.

THEOREM 2. Let G be a graph in ^(a, /?, y) where a ^ 1 and fi^\. Let v be a
vertex ofG such that 9(x, v) = a, and u, w distinct vertices ofG both adjacent to v such
that 9(x, u) = d(x, vv) = a + 1 .

//P(«) = ( - 1 , 0, +1) then p(y) = ( - 1 , + 1 , + 1) and p(vv) = ( - 1 , + 1 , 0).

Proof. This is essentially covered in the proof of Theorem 1 (Case B2), as given
above.

THEOREM 3. Suppose that 0^2, y^\ and let v be a vertex of G such that
d(x,v) = tx+P+l, and u,w be distinct vertices adjacent to v such that
9(JC, u) = <x+y? = 9(x, vv).

Iff>(u) = ( - 1 , 0, +1) then p(y) = ( - 1 , - 1 , +1) and p(w) = (0, - 1 , +1).

Proof. As in the proof of Theorem 1 (Case A3) we have p(y) = (— 1, — 1, +1).
Let / be the vertex adjacent to v such that 9(f, x) = <x+/?+2. Then
9(', J>i) = 9(/, y2) = a+ /?+1 . Now v is a /?-vertex with respect to both yx and y2, so
that

{9(/ , yt), 9(w, yt), 9 (w , yt)} = {<x+0+1, <x+0, <x+p- 1} 0 = 1 , 2 ) .

This gives 9(w, yj = a+fi and 9(w, y2) = a+fi—\. Thus 9(w, yz) = a+ / ?+1 , and we
havep(w) = (0, - 1 , +1).

4. Cycles and their periods

Let G be any member of ^(a, fi, y), p^-2, and let

be an oriented cycle of length 2a+/l in G. The girth of G is 2a+3 (since we are
assuming that ft # 0) and hence X ^ 3. The distances in G from xQ to the other vertices
of C take the general form

1,2, . . . ,a ,oc+l , . . . , a + l , a , . . . , 1.
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The distinctive features of C are indicated by the X — 1 values in the middle of the
sequence, which comprise a (A— 1)-vector 7t(0)(C) with components

In general, we shall say that a (X- l)-vector n with positive integer components is a
pro/i/e for 0(o, & y) if

(i) 7r1 = ^ _ 1 = a + l ,
(ii) for each value of / in the range 1 ̂ i ^ X — 2, {nt, ni+1) is an edge-transition

with respect to the given a, /?, and y.
We now study how the profile vector associated with a given oriented cycle

changes as we move from the base vertex x0 to the adjacent vertex xv Consider the
projections p(xa+i) of the vertices xa+i (1 ^i^X—\) and let />!(*„+i) be the
component of the projection vector corresponding to the neighbour jq of x0 in each
case. When / = 1 we have

The remaining projection valuesPx{xa+^, Pi(xa+3), ..., Pi(xa+x-i) are obtained from
the initial value — 1 by a sequence of edge-transitions, according to the rules
formulated in Section 3. For example, the profile vector

corresponds to a cycle of length 2a+6 for which the projection values are

- 1 , 0, + 1 , + 1 , + 1 .

Note that in order to determine the fourth value uniquely it is necessary to use
Theorem 3.

When the edge-transition (a, a+1) follows (a— 1, a) there will be an ambiguity
in the projection value which cannot be resolved by the rules given in Section 3.
However, in some cases it is possible to remove such ambiguities by remarking that
the final valuePi(xa+X_1) cannot be — 1. This is because d(x0, xx+x-i) = a + 1 s o t n a t

components of the projection of xa+^_1 on x0 take the values + 1 , 0 , — 1 in some
order. Since C is a (2<x+A)-cycle, the unique neighbour of x0 giving the value — 1 must
be x2a+;i-i rather than xv Thus p1(xa+^_1) is either 0 or + 1 . For example, consider
the (2a+8)-cycle with profile vector

(a+1, a + 1 , a, a - 1 , a, a + 1 , a+1).

Starting from — 1, the first five projection values must be —1,0, +1, + 1 , + 1 , but
(according to the rules given in Section 3) the sixth value could be either 0 or + 1 .
However, the value 0 gives a final value of — 1, in contradiction to the remarks in
the preceding paragraph. Hence the values must be —1,0, + 1 , + 1 , + 1 , + 1 , + 1 .

We shall say that a profile vector 71 is good if it determines a unique sequence of
projection values zi = p1(x(X+i) (1 ^ / < X— 1), subject to the conditions z1 = — 1,

THEOREM 4. Let G be a graph in <&((x, fi, y) and let x0, xlt ...,*2a+>i-i oe tne

vertices of an oriented (2a+X)-cycle C in G. Suppose that n{0)(C) is a good profile and
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let zf (1 < i < A— 1) be the unique sequence of projection values it determines, subject
to the conditions z, = — 1, z^x 7* — 1. Then the profile TI(1)(C) of C with respect to xx

is given by

^ 1 ) ( Q = ( +1 Zi+1

l a + l (/ = A-1).
Proof By definition,

i,*o)

(UiU-2).

Also, z ; . ! ^ - 1 so that, by C2, 9(xa+A, x j = a + 1 ; that is, n^l^Q = a+1 .

In certain cases, the profile n(1)(Q will itself be a good profile, so that n(2)(Q will be
determined uniquely, and so on. In such cases, when the profile vector of C with
respect to each of its vertices is good, the vectors themselves form a periodic sequence.
We shall refer to the period co of this sequence as the period of C, and remark that
co must be a divisor of 2a+L For example, when 0 ^ 3 the calculation of the sequence
of good profiles determined by the initial good profile (a+1, a+1, a, a+1 , a+1) may
be set out as in Figure 2.

a+1 a+1 a a+1 a+1
- 1 0

a+1
-1

+ 1
a+1
0

a+1
-1

+ 1
a+2
0
a+2
-1
a+1

+ 1
a+2
0
a+2
-1
a+1

a+1
0
a+1
-1
a

a+1
0
a+1 a+1

FIG. 2

In this case we have a sequence with period co = 3, and we conclude that 2a+6 must
be divisible by 3, that is, a = 0 (mod 3).

5. The main results

In this Section we shall apply the theory of profiles to obtain the result stated in
Section 2: there is only one cubic DR graph in Region III. We shall have to deal
separately with the three cases (i) 0 = 2, y ^ 1; (ii) 0 = 3, y ^ 1; (iii) 0 ^ 4, y ^ 0,
and in each case we shall obtain two kinds of cycle whose periods lead to
contradictory congruence relations for a.

The case in which 0 = 2, y ^ 1. For these values of /?.and y any graph G in #(a, 0, y)
must contain an oriented (2a+6)-cycle with profile (a+1, a+1 , a, a+1 , a+1),
since choosing any pair of vertices at distance a to be x0 and xa+3 determines the
remaining vertices uniquely. When 0 = 2 this profile determines a sequence with
period 4 (note the difference from the 0 ^ 3 case considered as an example in the
previous section):

(a+1, a+1 , a, a+1 , a+1)
(a+1, a+2, a+2, a+1 , a+1)
(a+1, a+2, a+3, a+2, a+1)
(a+1, a+1 , a+2, a+2, a+1).

Thus 2a+6 must be a multiple of 4, and a must be odd.
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Similarly, provided a ^ 2 we can choose any pair of vertices at distance a— 1, label
them x0 and xa+4, and take x0, xx, ..., xa+3, xa+4 to be a path of length a+4. Then
there is a unique vertex xa+5 adjacent to xa+i such that xa + 5 ^ *a+3 and
d(xa, xx+6) = a. There are two choices for a vertex xa+6 adjacent to xa+6 for which
d(x0, xa+6) = a+1 and exactly one of them yields a (2a+/?)-cycle with profile (a+1,
a+1, a, a - 1 , a, a+1 , a+1). It turns out that this also determines a sequence of good
profiles with period 4:

( a + l , a + l , a, a—1, a, a+1 , a+1)

( a + l , a + l , a, a+1 , a+2, a+2, a+1)

(a+1, a+1 , a+2, a+3, a+2, a+1 , a+1)

(a+1, a+2, a+2, a+1 , a, a+1 , a+1).

It follows that 2a+8 is divisible by 4, so a is even and we have the required
contradiction, provided a ^ 2.

The only remaining possibility is that a = 1. Since y ^ a w e must have y = 1 also,
and thus d = 5 and c5 = 2 or 3. It is easy to check that c5 = 2 is impossible and c5 = 3
yields a unique graph, the dodecahedron.

The case in which fi = 3, y ^ 1. Here again we can show the existence of (2a+6)-cycles
and (2a+8)-cycles with initial profiles as in the previous case, but because the
projection values change in a different way the periods of the cycles are also different.

In the previous section we noted that when /? ^ 3 and y ^ 0 a (2a+5)-cycle with
initial profile (a+1, a+1 , a, a+1 , a+1) has period 3, so that a = 0 (mod 3).

Furthermore, when /? = 3 and y > l a (2a+8)-cycle with profile (a+1, a+1 ,
a, a—1, a, a+1 , a+1) has period 6, the sequence of profiles being as follows:

(a+1, a+1 , a, a - 1 , a, a+1 , a+1)
(a+1, a+1 , a, a+1 , a+2, a+2, a+1)
(a+1, a+1 , a+2, a+3, a+3, a+2, a+1)
(a+1, a+2, a+3, a+4, a+3, a+2, a+1)
(a+1, a+2, a+3, a+3, a+2, a+1 , a+1)
(a+1, a+2, a+2, a+1 , a, a+1 , a+1).

Hence 6 is a divisor of 2a+8 , that is a = 2 (mod 3), giving the required contradiction.

The case in which /? ^ 4, y ^ 0. In this case, the (2a+6)-cycle with period 3 exists as
in the previous case, and so we must have a = 0 (mod 3). Unfortunately, the
(2a+8)-cycle now has period 5, which leads only to the conclusion a = 1 (mod 5).

An increasingly despairing search for a type of cycle with a period yielding a
contradictory congruence culminated, rather surprisingly, in the discovery of a
(2a+ 13)-cycle with period 15. The initial profile is

(a+1, a+2, a+3, a+3, a+2, a+1 , a+1 , a+2, a+3, a+3, a+3, a+2, a+1),

and it can be verified by routine calculation that this is the first of a cyclic sequence
of 15 good profiles. The fact that 2a +13 is divisible by 15 yields the congruence a = 1
(mod 3), which is the required contradiction.
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