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1. Introduction 

In this paper we shall study the connection between the residual finiteness o f  
a group G and the existence of  a sequence o f  finite graphs, whose groups are quotients 
of  G, for which the girth tends to infinity. Special cases o f  this relationship have 
been observed in papers by Evans [6], Hoare [7], Znoiko [9], and the present author  
[2]. Here we shall establish a general framework for the theory and obtain some spe- 
cific consequences. In particular, we shall prove that there are finite graphs o f  arbi- 
trarily large girth having any given symmetry type. 

2. Universal coverings and G-quotients 

Let F be a finite, connected, k-valent graph, which is simple (that is, there are 
no loops or multiple edges). A reduced walk in F is a sequence of  vertices v0, vl . . . .  , vr 
(frequently written without the commas) in which consecutive vertices are adjacent 
in F, but vi-1 ~ vi+ 1 (1 <- i_  ~ r -  1). Let  v be a chosen vertex o fF .  The universal cover- 
ing UF of  F (with respect to v) is the graph whose vertices are the reduced walks in F 
starting from v, two being adjacent in UF whenever one o f  them is a one-step exten- 
sion o f  the other. Clearly, UF is an infinite k-valent tree, and so i f T  k is any realisation 
of  such a tree, there is an isomorphism O: Tk~ UF. I f  we are given a group G of  
automorphisms o f  T k there is an isomorphic group G* o f  automorphisms of  UF, 
where an element g of  G corresponds to g * = O g O - L  

The canoniealprojection p:  U F ~ F  is the function which takes a vertex of  UF, 
regarded as a reduced walk in F, to its final vertex in F. The group of  covering auto- 
morphisms of  F, written Coy (F) is the group o f  automorphisms g of  U/" which com- 
mute wi thp :  that is, for any reduced walk 0) in F and any covering automorphism g, 
0) and g(0)) have the same final vertex. 

Lemma 1. Let 1" and Cov (F) be as above. Then the non-identity elements o f C o v  (F) 
act on UF with no f ixed vertices or edges. ( W e  say that an automorphism f ixes the 
edge {0)1, 0)3} i f  it f ixes the pair {0)~, 0)2} setwise but not necessarily pointwise.) 

Proof. Suppose first that g is a covering automorphism fixing the edge {0),, 0)~} 
where, without loss o f  generality we may take 

~ ---- vvlv2""Vr, 0)3 --" VVlV2""VrVr+I" 

AMS subject classification (1980): 05 C 25. 
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I f  g(o91)=o z we have, since p g = p ,  

v, = p(cox) = pg(col) = p(co2) = vr+l, 

contradicting the fact that F has no loops. Hence we need only consider the case 
g ( c o 0 = c 0 ~ .  

Now i f g  is an automorphism of  UF fixing ca 1, it follows that g permutes the 
neighbours of  col in UF. These vertices of  UF correspond to reduced walks in F whose 
final vertices are the neighbours of  vr=p(ol )  in F. Since p g = p ,  we see that g must 
fix each neighbour of  v,. Continuing the argument, and using the fact that  F is 
connected, we conclude that g is the identity automorphism. II 

It is a consequence of  the famous result of  Serre [81 (see also [3]) that  Coy (F) 
is a free group. In many applications it is useful to identify Coy (F) with the funda- 
mental group of F, which is free for the geometrically obvious reason that F has no 
2-dimensional cells. However, we shall not employ that intuition here. 

Let G be any group of  automorphisms of  T k. We shall say that a finite graph F 
is a G-quotient (of Tk) if there is an isomorphism 69: T k ~  UF such that the induced 
group G* of  automorphisms of UF permutes the fibres of  the covering projection 
p:  UF-~ F. That is, 

p(co) = p(co') =~ pg*(oJ) = pg*(co') 

for all g in G, where g*= OgO -x. 
For example, let G be the free product of  k copies of  Z~: G = ( a l ,  az . . . .  

.... ak[a~=a~= . . .=a~,= 1), and realise T k as the Cayley graph of  G with respect to 
the generating set {al, a2 . . . .  , ak}. Then G is a group of automorphisms of  T k, acting 
by left-multiplication on the vertices. Let • be a finite group generated by k involu- 
tions Cl . . . . .  ck, and let F be the Cayley graph of  G with respect to this generating set. 
We can verify that F is a G-quotient of  Tk as follows. 

Define O: T k ~  UF to be the isomorphism which takes the vertex a~...aa 
of  Tk to the reduced walk (1, c~, .... c~... ca), regarded as a vertex of  UF (with respect 
to the base vertex 1). Suppose that 

o = (1 ,  c~ . . . .  ,c~...ca), co'  = (1 ,  cp . . . . .  cp...cA 
are two vertices of  UF, such that p(a~)=p(o ') :  in other words c~ . . . cx=cp . . .% 
in Cr. For  any g in G we have 

g*(co) = O g O - l ( t o )  = O(ga~,...a;~) 

since G acts by left-multiplication. Let the expressions for ga~,...ax and ga a...a~, 
as reduced words in G be 

ga~...a;~ = a~. . .%,  gaa. . .a  ~ = %...a,:. 

Then g*(co) is the reduced walk (1, c . . . . . .  c . . . .  %) in F and similarly g*(a/) is the 
reduced walk (1, c# . . . . .  c# ... c~). But i f g  is the image o f g  under the homomorphism 
G ~ G  which takes a~ to c~ (l~_i_~k), we have 

c,~...c~ = gc,~...c~, c,,...c~ = ~c~. . .c , .  

Since c~... c~= c a ... c~ we conclude that pg*(co)=pg*(~ ' ) ,  as required. 
Of  course, the machinery is quite unnecessary if  we simply wish to prove results 

about this particular example. Its advantage is that it covers other significant examples 
as well. 
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3. Residual finiteness 

A group G is said to be residually finite if, for each g in G',,,{1} there is a nor- 
mal subgroup N of  finite index in G such that g~[N. (Actually, it is not necessary to 
insist that N is normal, but there is no loss in doing so.) 

Before stating our  main theorem we need a Lemma. 

Lemma 2. Let G be a group acting on T k such that the stabilizer Go o f  a vertex v is 
finite. Then for each r~_O the set 

S(r) = {gEGla(v,g(v)) <-_ r} 
is finite. 

Proof. S(r) is the set o f g  for which g(v)=w and 6(o,w)<-r. For  each w with 
3(v, w)<=r and such that  w is in the same G-orbit as v, letgw be a fixed element o f  G 
satisfying gw(v)=w. Then the set o f  all g taking v to w is just the coset gwGv, and 
by the hypothesis this set is finite. The set S(r) is the union o f  these cosets taken over 
a subset o f  the finite set o fw  within distance r o f  v, and hence S(r) is finite. II 

Theorem. Let G be a group o f  automorphisms o f  T k such that 
(1) the stabilizer of  each vertex is finite, 
(2) the number o f  vertex-orbits is finite. 

Then there is a sequence (Fr) of  G-quotients o f  T k such that girth (F,)-* oo. 

Proof. It follows from the general theory of  Bass and Serre [8, p. 122] that a group G 
satisfying conditions (1) and (2) is residually finite. 

Let S(r) be as in Lemma 2, and for each g in S(r) choose N o to be a normal  
subgroup o f  finite index in G such that g~N o. Define 

N,= N N0. 
OES(r) 

Since S(r) is finite, N, is a normal subgroup o f  finite index in G. Hence it follows from 
condition (2) that the number o f  orbits of  N, on the vertex-set of  T k is finite. 

Let F r be the graph whose vertex-set is the set of  vertex-orbits of  N,, two being 
adjacent i n / "  when they contain adjacent vertices of  T k. Choose a vertex v in T k and 
let [v] denote its orbit under Nr. For  each vertex w in Tk there is a unique reduced walk 
vvl...w in T~ and correspondingly a reduced walk Iv], [va] . . . . .  [w] in F, .  Let UF, 
be the universal covering of  / ' ,  (with respect to the base vertex [v]), and define 
O: T k--~ U F  r to be the isomorphism taking w to the vertex of/~r represented by the 
reduced walk Iv], [vii, ..., [w]. In other words, pO(w)=[w], where p is the canonical 
projection from UF, onto Ft .  

In order to show t h a t / ' ,  is a G-quotient of  Tk, suppose co and 09' are two verti- 
ces of  UF, such that p (o9) = p  (o9'), and let 09 = O (w), co'= O (w'). Then it follows that 
[M=[wq, and for each g in G we have pg*(w)=[g(w)], pg*(og")=[g(w')]. But 
since iV, is normal in G, 

[ w ]  = [ w ' ]  w = n(w9 

=~ g(w) = gn(w') = n'g(w') (n'CN,), 

and so pg*(og)=pg*(og") as required. 
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Furthermore, the girth of F, is greater than r, since a cycle of length s in F, 
lifts to a reduced walk of length s in UFr and the corresponding initial and final verti- 
ces in Tk belong to the same Nr-orbit. By definition of  N, two such vertices are sepa- 
rated by a distance exceeding r, and so s>r. | 

4. S o m e  applications of  the Theorem 

As a first application we shall give a direct proof of the fact that, for given 
k_~2, it is possible to construct a finite group generated by k involutions whose Cayley 
graph has girth as large as we please. This result can be interpreted as saying that the 
free product o fk  copies of Z2 is a residually finite group. Indeed, the following proof is 
a graph-theoretical version of  the residual finiteness proof given by Baumslag and 
Tretkoff [1]. 

Let T k be realised as the Cayley graph of G = Z2* Z2 *.. .  * Z2, as described 
in Section 1. Let 1), denote the disc of radius r in Tk, with centre the identity element 
of  G. For each generator a~ of G define a permutation ~, of  the vertices of D, by the 
rule 

~,(x)={axi(X) ifif not.ai(x)CDr' 

(The fact that ~ is a permutation depends on the property a~= 1.) Clearly ~, is an 
involution and the k involutions ~, (1 ~_i<-k) generate a finite group, a subgroup of 
the symmetric group on the finite set D,. The Cayley graph F is thus a finite G- 
quotient of  Tk. 

Now a cycle of length s in F, corresponds to a reduced word ws= w,(~l . . . .  
�9 .., ffk) which represents the identity permutation. Consider the effect of  an arbitrary 
word of length s, regarded as a permutation of  Dr, on the identity vertex of  Dr. 
Each of the first r letters moves this vertex one step nearer the boundary of  D,, and 
then at least r further letters are required to return to the identity vertex. Hence if 
ws= 1 (and in particular, ifws fixes the identity vertex) we must have s~2r. Hence 
girth (F,)--,-~o. 

For our second application we shall turn to the notion of symmetry type intro- 
duced by Djokovic [4] (see also [5]). 

A pair (A, B) of finite groups is called afinite simple amalgam of degree (k, 2) if 

(1) IA: ANBI=k, 
(2) IB: ANBI=2 ,  
(3) the only subgroup of A NB which is normal in both A and B is the identity 

subgroup. 

Let G be the amalgamated free product of  A and B, with the subgroup A NB amal- 
gamated. We construct a graph whose vertices are the left cosets of A in G, and whose 
edges are the pairs {gA, gyA}, where g is any clement of G and y is a fixed element of 
B'x,(A NB). Then this graph is a k-valent tree T k, and G is a group ofautomorphisms 
of  it, acting by left multiplication. 

Let F be any finite connected graph which admits a group ofautomorphisms/-/ 
acting symmetrically: that is, transitively on the set of ordered pairs of  adjacent verti- 
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ees. Let v0 and v~ be adjacent vertices, H0 the stabilizer of v0 and H~0 ~ the stabilizer of  
{vo, vl}. The pair (H0, H(0,1}) is a finite simple amalgam of degree '(k, 2), where k is 
the valency o f / ' ,  and it is known as the symmetry type of F. The determination of 
the possible symmetry types is complete for k~_ 3; for other values of k only par- 
tial results are known [4]. 

The techniques developed in this paper have been developed with the following 
results in mind. 

Proposition 1. Let (.4, B) be a finite simple amalgam of degree (k, 2) and let G and Tk 
be as described above. Then a finite G-quotient o f t  k is a finite graph whose symmetry 
type is (A,B). 

Proof. Suppose we are given a finite G-quotient F of  Tk, with respect to some iso- 
morphism O: Tk~ UF, the universal covering relative to some base vertex 0 of  F~ 
The definition of  a G-quotient is that pg*(co)=pg*(co') whenever co and co' are reduced 
walks such that p (co) =p  (co'). Thus for each g* in G* we may define an automorphism 

of F as follows: given a vertex w in F let co be any reduced walk from 0 to w in F, 
and put 

Let G be the resulting group of automorphisms of  F. Consider two adjacent 
vertices, say 0 and 1 o f F ,  and the vertices 0 and 01 of UF which cover them: the 
restriction of the homomorphism g * ~  yields a homomorphism Gc0,01)~Gox, 
with kernel K* say. For each k* in K*, ~ is the identity, so pk*(O...x)=x for any 
reduced walk 0...x. In particular, k*(Oy) is a reduced walk ending at y, where y is any 
neighbour of  0 in F. But k* is an automorphism of UF fixing 0, and 0y is adjacent to 
0 in UF. Hence k*(Oy)=Oy. Similarly we may show that k*(Olz)=Olz for each 
z ~ 0  adjacent to 1 in F. 

Now we can prove that K* is normal in Gg'x, and also in G{0,x}. For, given any 
k* in K* and g* in Gg', let g*(01)=0y, so that 

g* - ' k*g* (O1)  = g * - ' k * ( O y )  = g* - '  (Oy) = 01, 

and consequently g*-lk*g*EK*. Similarly the condition k*(Olz)=Olz shows that 
K*<1G~o,1}. 

Since G~ and G~o 1} may be identified with A and B respectively, the definition 
of a finite simple amalgam ensures that K* is the identity. It follows that Gc0,x ) is 
isomorphieto G~'0.x), which is AfqB, and that Go-A,  Got~.B. In other words, F 
is a finite graph whose symmetry type, with respect to G, is (A, B). l 

Proposition 2. Given any finite simple amalgam of degree (k, 2) there is a sequence 
(I',) of finite graphs such that the symmetry type o fF,  is (A, B) and girth (r,)-~=,. 

Proof. As we have seen, the amalgamated free product G of A and B with the sub- 
group A fqB amalgamated, is a group ofautomorphisms of T k. The group acts tran- 
sitively, so the number of  orbits is one, and the vertex-stabilizer is the finite group A. 
Hence it follows from the Theorem that there is a sequence of finite G-quotients of 
T k with girth (F,)--- co, and by Proposition 1, the symmetry type of F, is (,4, B). 1 
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It should be possible to establish Proposition 2 by a direct construction o f  the 
quotients, analogous to the Cayley graph case. But, as in that case, the construction 
would almost certainly yield quotients with an astronomical number of  vertices. 
More efficient constructions, such as some of  those discussed in [2], would be of 
great interest. 
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