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Abstract

The aim of this paper is to give a coherent account of the problem of constructing cubic

graphs with large girth. There is a well-defined integer µ0(g), the smallest number of

vertices for which a cubic graph with girth at least g exists, and furthermore, the minimum

value µ0(g) is attained by a graph whose girth is exactly g. The values of µ0(g) when

3 ≤ g ≤ 8 have been known for over thirty years. For these values of g each minimal

graph is unique and, apart from the case g = 7, a simple lower bound is attained.

This paper is mainly concerned with what happens when g ≥ 9, where the situation is

quite different. Here it is known that the simple lower bound is attained if and only if

g = 12. A number of techniques are described, with emphasis on the construction of

families of graphs {Gi} for which the number of vertices ni and the girth gi are such that

ni ≤ 2cgi for some finite constant c. The optimum value of c is known to lie between 0.5
and 0.75. At the end of the paper there is a selection of open questions, several of them

containing suggestions which might lead to improvements in the known results. There are

also some historical notes on the current-best graphs for girth up to 36.

MR Subject Numbers: 05C25, 05C35, 05C38.

1. Introduction

The aim of this paper is to give a coherent account of a topic which has been
studied in a rather haphazard fashion for many years. There is much that remains
to be done, but recent advances, particularly in geometric and computational group
theory, promise to throw some light on the darker corners of the subject.

We shall concentrate on cubic graphs, that is, graphs in which each vertex has
degree three. There are several justifications for this, the first one being that cubic
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graphs have wide applicability. For example, it follows from a recent result of Malle,
Saxl and Weigel [33] that almost every finite simple group has a cubic Cayley graph.
Furthermore, the generalisation to graphs of degree k > 3 does not appear to be
substantially more difficult than the case k = 3. Finally, the cubic case is the only
one where we have specific examples that improve significantly on the best general
results currently available.

The girth of a graph is the length of a shortest cycle in the graph. It can be shown
that cubic graphs with arbitrarily large girth exist (see Theorem 3.2) and so there
is a well-defined integer µ0(g), the smallest number of vertices for which a cubic
graph with girth at least g exists. It is a standard (but not quite obvious) result [31,
p.385] that the minimum value µ0(g) is attained by a graph whose girth is exactly
g, a result which also follows from our Theorem 4.2. We shall assume this result in
the following discussion.

The values of µ0(g) when 3 ≤ g ≤ 8 have been known for over thirty years (see, for
example, [47]). For these values of g each minimal graph is unique and, apart from
the case g = 7, a simple lower bound θ0(g) (defined in Section 2) is attained.

The situation for g ≥ 9 is quite different. Here it is known that θ0(g) is attained
if and only if g = 12. Results for other values of g have been been achieved by a
combination of luck, judgement, and years (literally) of computer time. Naturally
the first case to attract attention was g = 9, where we have θ0(9) = 46. For many
years the smallest number achieved was 60, but in 1979 a graph with 58 vertices
was found [10]. In 1984 Brendan McKay showed that there no smaller graphs, so
that µ0(9) = 58, and in 1995 the complete list of 18 minimal graphs was determined
[14].

Generally, the problem of finding µ0(g) is equivalent to determining the least value
of c for which there is a cubic graph with girth g and 2cg vertices. The value of c
is known to lie between 0.5 and 0.75, but in practice this leaves considerable room
for doubt, since the number of vertices implied by the upper bound is considerably
greater than that implied by the lower bound.

In the 1970s a great deal of work was done ‘by hand’ on the cases g = 9, 10, 11, by
C. W. Evans, R. M. Foster [15], W. Harries, A. T. Balaban [1,2], and others. Much
of this work has remained unpublished, partly because it has been superseded by
extensive computations, such as those of McKay referred to above. However, that
work contained the germs of several ideas which are useful for dealing with larger
values of g. An account of some of these ideas was given in the 1982 thesis of M. A.
Hoare, and in a paper [25] by the same author published in 1983. Examples with
girth up to 30 were also published at that time [11]. The present author gave a talk
on the subject at a conference in 1985, the proceedings of which were published in
1989 [7]. It appears that this paper is not well-known, although it contains results
for g = 13, 14, 15, 16 which are still the best known in 1998.

Recently there has been some more progress on this problem, and it seems that
a fresh account is needed. Indeed, at least one important advance [13] has been
made since the preprint of this paper was circulated. A dynamic survey of the
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current state of knowledge can be found on Gordon Royle’s website [37]. This also
contains other relevant information, in particular concerning the Foster Census [15]
of symmetric cubic graphs.

At the end of the paper there is a selection of open questions, several of which
contain suggestions for further work.

2. The naive bound

Let v be any vertex of a cubic graph G with odd girth g. Then v has three neigh-
bours, each of which has two neighbours, and if g ≥ 5 all six of them are distinct.
Generally, the argument can repeated up to the point where there are 3× 2(g−3)/2

distinct vertices in the last step, and so the total number of vertices is at least

1 + 3(1 + 2 + 22 + · · · + 2(g−3)/2) = 3× 2(g−1)/2 − 2.

Using a similar argument starting with two adjacent vertices, it can be shown that
when g is even the total number of vertices is at least

2 + 22 + · · · + 2g/2 = 2g/2+1 − 2.

These two results comprise what we might call the ‘very naive bound’, denoted by
θ0(g) in the introduction.

If there is a graph G which attains the very naive bound, G is distance-regular,
and its intersection array takes a particularly simple form. The theory of distance-
regular graphs can be used [4, Chapter 23] to show that this can happen only if
g = 3, 4, 5, 6, 8, 12. In each case there is a unique graph, and each one is a well-
known, highly symmetrical graph.

Since the very naive bound is rarely attained we may say that, almost always, the
number of vertices in a cubic graph with girth g strictly exceeds this bound. The
number of vertices must be even, so it follows that we can ignore the −2 in the
formulae displayed above. For this reason we shall define the naive bound ν0(g) as
follows:

ν0(g) =

{
3× 2(g−1)/2 if g is odd;
2g/2+1 if g is even.

The conclusion is that, for g = 7, 9, 10, 11 and for all g ≥ 13, the number of vertices
in a cubic graph with girth g is at least ν0(g). The reason for calling this bound
‘naive’ can be inferred from the table given below, in which we compare ν0(g) with
the best results available at the time of writing (1998).

The current results are tabulated as the values of two (time-dependent) functions.
The value µ(g) is the least value for which it has been proved that no smaller cubic
graph with girth g can exist. Trivially µ(g) ≥ ν0(g), and in cases where there is
equality the value of µ(g) has been omitted. The value λ(g) is the smallest number
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of vertices for which a cubic graph with girth g is known to exist; we shall call such
a graph current-best. In order to determine µ0(g), the minimal possible number of
vertices of a cubic graph with girth g, we have to await the time when λ(g) = µ(g);
currently this state is achieved only when g ≤ 12.

g : 7 9 11 13 14 15 16 17 18 19 20

ν0(g) : 24 48 96 192 256 384 512 768 1024 1536 2048

µ(g) : 58 112 202 258
λ(g) : 24 58 112 272 406 620 990 2978 3024 4324 8096

Further details of the current-best graphs and the methods used to construct them
will be given in Examples throughout the paper. For convenience, this information
is collected in the Historical Notes at the end.

3. Families of graphs with large girth

The naive bound can be written in the following way. For almost all values of g,

ν0(g) = 2
1
2 gK0 where K0 =

{
3/
√

2 = 2.121... if g is odd;
2 if g is even.

The value of the constant 1/2 is crucial. It tells us that, roughly speaking, the

number of vertices of a cubic graph with girth g is of the order of 2
1
2 g, at least.

However, the results quoted above show that known constructions are far from
meeting this optimal value. In order to measure how effective these constructions
are, it is helpful to define a parameter c(G) which, for a cubic graph G with n
vertices and girth g, is given by

c(G) =
log2 n

g
.

In other words, G has 2c(G) g vertices. For example, the current-best graph with
girth 13 referred to in the table above has n = 272 = 2(0.6221...)g vertices.

Suppose we have constructed a family of cubic graphs G = (Gi) such that the girth
gi of Gi tends to infinity with i. Then it is quite possible that c(Gi) also tends to
infinity with i (see Example 8.2). If the objective is to approach the naive bound,
we need a further constraint on the number ni of vertices of Gi. Define

c(G) = lim inf
i→∞

c(Gi),

so that c(G) is the least value of c such that an infinite subsequence (Gj) of G
satisfies
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nj < 2cgj K for some constant K.

If c(G) is finite, we say that G is a family with large girth. In this terminology, the
aim is to find families for which c(G) is as small as possible and, ideally, close to
the optimal value 0.5.

Several authors have succeeded in constructing families G with large girth – that is,
families for which an explicit upper bound for c(G) can be established. However,
the optimal value 0.5 has not been approached, and the precise value of c(G) is not
known for any of these families. The first result of this kind was obtained by Imrich
[27], who constructed a family I for which he could show that c(I) ≤ 1.04. In 1984
Weiss [44] showed that the family of bipartite sextet graphs S defined by Biggs and
Hoare [11] satisfies c(S) ≤ 0.75, and this remains the best result obtained so far.

Although the present paper is specifically concerned with graphs of degree 3, it is
worth noting what has been achieved for regular graphs of degree k > 3. Here it is
appropriate to define c(G) to be the lim inf of (logk−1 ni)/gi. Lubotsky, Phillips and
Sarnak [32] constructed families Lp+1 of degree p+ 1, where p is a prime congruent
to 1 modulo 4, and showed that c(Lp+1) ≤ 3/4. The fact that the value of c(Lp+1) is
exactly 3/4 was established independently by Margulis [34] and Biggs and Boshier
[9]. The basic idea of [32] is to use quaternion algebras, and this was extended to
cubic graphs by Chiu [16]. Recently, Lazebnik, Ustimenko and Woldar [29, 30] have
constructed families Gk such c(Gk) = (3/4) logk−1 k for every k ≥ 3 Unfortunately,
their results are weakest for k = 3, since the value of c is then (3/4) log2 3 = 1.19... .

We began with the naive lower bound ν0(g) ≤ µ0(g). The families mentioned above
provide upper bounds for some values of µ0(g), but not necessarily all values. For
example, there are no sextet graphs with girth 9,10, or 11. The following result [31]
leads a uniform upper bound.

Lemma 3.1 Let G be a cubic graph with girth g ≥ 3 having µ0(g) vertices. Then
the diameter of G does not exceed g.

Proof Suppose that v and w are vertices of G such that the distance d(v, w) > g.
Construct a new cubic graph G0 by deleting v, w and the edges which are incident
with either of them, and adding new edges which join the three neighbours of v to
the three neighbours of w. Then we claim that G0 also has girth at least g, and
since it is smaller than G, we have a contradiction. (Recall our assumption, to be
proved in Section 4, that µ0(g) is attained by a graph with girth exactly equal to g.)

Clearly it is enough to show that any cycle C0 in G0 which contains a new edge
has length at least g. If C0 contains exactly one new edge, then the rest of C0 is a
path in G which (since d(v, w) ≥ g + 1) has length at least g− 1. Hence the length
of C0 is at least g. If C0 contains two or three new edges it must also contain at
least two paths joining the ends of these edges. Such a path has length at least
g − 2 (if it joins two neighbours of v, or two neighbours of w), and length at least
g − 1 otherwise. Hence the length of C0 is at least 2 + 2(g − 2), which is greater
than g.
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Applying the simple counting argument used at the beginning of Section 2, we see
that any cubic graph with diameter not greater than g has at most

1 + 3(1 + 2 + 22 + · · ·+ 2g−1) = 3× 2g − 2

vertices, and so we have the upper bound 3× 2g − 2 ≥ µ0(g).

The preceding result is not constructive, because to apply the technique used in
the proof of Lemma 3.1 we must start from a cubic graph with girth g. A truly
constructive technique, which leads to the slightly better bound µ0(g) ≤ 2g, is due
to Erdős and Sachs [21] and Sauer [39]. The proof, as given by Bollobás [12], can
be converted rather easily into an algorithmic construction, as follows. Start with
any regular graph of degree 2, that is, any union of disjoint cycles, which contains
no cycle of length less than g; then add new edges, subject to the conditions that
(i) only one new edge is incident with each vertex, and (ii) no cycles of length less
than g are created. Formally, we have

Theorem 3.2 Let H be a disjoint union of cycles such that: (i) no cycle has
length less than g, and (ii) the total number of vertices is 2g. Then we can add
edges to H to form a cubic graph G whose girth is at least g.

Proof [12,21,39] Let H = (V,E) be the given graph, and let D denote the set
of all edges (pairs of vertices of H) which are not in E. Let A ⊆ D satisfy the
conditions
•1 no vertex is incident with more than one edge in A;
•2 the girth of HA = (V,E ∪A) is not less than g.

Then we shall show that if |A| < 2g−1 there exists A+ ⊆ D such that |A+| = |A|+1
and A+ satisfies •1 and •2.

Let dA be the distance function in HA (extended, if necessary, by defining the
distance between vertices in different components to be infinite). Let V2(A) ⊆ V
denote the set of vertices with degree 2 in HA, that is, those which are not incident
with any edge in A. Given that |A| < 2g−1, it follows that V2(A) has at least
two members. If any pair p, q ∈ V2(A) is such that dA(p, q) ≥ g − 1, then the set
A+ = A∪ pq satisfies the required conditions. Thus it remains to consider the case
when all vertices in V2(A) are within distance g − 2 of each other.

Let Dr(z) = {v ∈ V | dA(z, v) ≤ r}. For any x ∈ V2(A), the set Dg−2(x) has size
at most

1 + 2 + 22 + . . .+ 2g−2 = 2g−1 − 1.

Consequently, if x, y are any two vertices in V2(A), and U = Dg−2(x) ∪ Dg−2(y),
I = Dg−2(x) ∩Dg−2(y), we have

|U | = |Dg−2(x)|+ |Dg−2(y)| − |I| ≤ 2(2g−1 − 1)− |I| = 2g − 2− |I|.

Let W = V \ U . Since |V | = 2g, it follows from the preceding inequality that
|W | ≥ |I|+ 2. Furthermore, we are considering the case when all vertices in V2(A)
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are within distance g− 2 of each other, so W contains no members of V2(A). Thus
for every w ∈W there is a vertex w′ defined by ww′ ∈ A.

Let W ′ = {w′ | ww′ ∈ A and w ∈ W}. Since vertices in W are at distance g − 1
(at least) from both x and y, vertices in W ′ are at distance g − 2 (at least) from
x and y. It cannot be true that all members of W ′ are at distance exactly g − 2
from both x and y, since |W ′| = |W | > |I|. Hence there is a w′ for which (say)
dA(x, w′) ≥ g − 1. Defining

A+ = A \ ww′ ∪ xw′ ∪ yw,

we have the required result.

Theorem 3.2 shows that there is a cubic graph with 2g vertices and girth not less
than g which has any prescribed 2-factor. In particular, there is a Hamiltonian
graph with these properties.

The proof can be thought of as an algorithm for constructing a sequence of sets

∅ = A0 ⊂ A1 ⊂ A2 . . . ⊂ AN , N = 2g−1,

using only two basic operations. If possible Ai+1 is formed by adding one edge to
Ai, but if that is impossible, we delete one edge from Ai and add two new ones.
(However, Noga Alon has pointed out that it is not clear in what sense the graphs
so constructed are ‘explicit’.)

Of course, we might be lucky enough to find that the construction works when
the initial graph H has less than 2g vertices, for example, when H is a cycle of
length 2cg, c < 1. Since we have families for which c = 3/4, the case c = 2/3
would be particularly interesting. For simplicity, let g = 3h; then we are looking for
Hamiltonian cubic graphs of girth 3h obtained by adding edges to a cycle of length
22h. In the cases h = 1 and h = 2 such graphs are well-known: they are the graphs
4 and 16 in Foster’s census [15]. It is probably fairly easy to construct such graphs
when h = 3 and h = 4, but no general construction is known.

4. Excision

In this section we shall show that µ0(g), the smallest number of vertices for which
there is a cubic graph with girth g, is a strictly increasing function of g. The
technique is to construct a graph with girth g − 1 from one with girth g.

Throughout this section G denotes a cubic connected graph. Let S be a connected
subgraph of G, in which the degree of every vertex is either 1 or 3, and the vertices
of degree 1 are not adjacent in G. We shall refer to the vertices of degree 1 as the
ends of S. If we delete from G all the edges of S and its vertices of degree 3, each
end y remains adjacent to two vertices that are not in S, say x and z. Replacing
the edges xy and yz by a single edge ey = xz, we obtain a cubic graph. We shall
denote this graph by G	 S.



the electronic journal of combinatorics 5 (1998), #A1 8

Lemma 4.1 Suppose that s is the diameter of S. If s < (g− 1)/2 then the girth
of G	 S is at least g − 1.

Proof Any cycle C in G 	 S defines a cycle C∗ in G: for each end y such that
C contains ey, C∗ contains xy and yz. Hence the length of C is the length of C∗

minus the number of ends on C∗. In particular, if C∗ contains exactly one end, the
length of C is at least g − 1.

Suppose that C∗ contains k ≥ 2 ends y1, y2, . . . , yk in cyclic order, and label the
neighbours of each yi as xi, zi, so that their cyclic order on C∗ is xi, yi, zi. Then C
consists of paths πi of length li from zi to xi+1 in G	 S (by convention k + 1 = 1
here), together with the edges ey, y = y1, y2, . . . , yk. Let dS be the distance function
in the subgraph S, so that there is a path in S of length dS(yi, yi+1) ≤ s joining yi+1

and yi. This path, together with the edge yizi, the path πi, and the edge xi+1yi+1,
forms a cycle in G, and so

g ≤ dS(yi, yi+1) + li + 2 ≤ s+ li + 2.

It follows that li ≥ g − s− 2. The length of C is l1 + l2 + · · ·+ lk + k, which is at
least k(g − s− 2) + k = k(g − s − 1). By assumption k ≥ 2 and s ≤ (g − 1)/2, so
the length is at least g − 1, as claimed.

From our point of view, the optimum result is obtained by making S as large as
possible, consistent with the condition s ≤ (g − 1)/2. This motivates the choices
made in the proof of the following theorem.

Theorem 4.2 If there is a cubic graph G with n vertices and girth g then there
is a cubic graph G− with n− ε(g) vertices and girth g − 1, where

ε(g) =

{
2r+1 − 2 if g = 4r or 4r + 1,
3× 2r − 2 if g = 4r + 2 or 4r + 3.

Proof Suppose first that g = 4r or 4r+1. Given any pair v, w of adjacent vertices
in G, let S be the subgraph spanned by the vertices whose distance from either v
or w does exceed r − 1. Then S is a tree with diameter 2r − 1, which is less than
(g− 1)/2 in these cases. So, by Lemma 4.1, G	 S has girth g− 1, and the number
of its vertices is n minus the number in S, which is 2 + 22 + · · ·+ 2r = 2r+1 − 2.

Similarly, if g = 4r + 2 or 4r + 3, we can take S to be the subgraph spanned
by all vertices whose distance from a given vertex v does not exceed r. Then S
is a tree with diameter 2r, which is less than (g − 1)/2 in both cases. So here
again G 	 S has girth g − 1, and in this case the number of deleted vertices is
1 + 3(1 + 2 + · · ·+ 2r−1) = 3× 2r − 2.

Example 4.3 When g = 6 the minimal cubic graph is Heawood’s graph with 14
vertices. (It is the incidence graph of points and lines in the seven point projective
plane.) Excising a tree consisting of a vertex and its three neighbours, we obtain
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a graph with 10 vertices and girth 5 – Petersen’s graph, which is also minimal. In
this case both graphs attain the very naive bound.

Example 4.4 When g = 8 the minimal cubic graph is Tutte’s graph with 30
vertices. Excising a tree consisting of two adjacent vertices and their neighbours,
we obtain a graph with 24 vertices and girth 7. This is McGee’s graph, which is
minimal and attains the naive bound, but not the very naive bound.

Example 4.5 When g = 12 the minimal cubic graph has 126 vertices, so it
attains the very naive bound. Excising a tree on 14 vertices, consisting of two
adjacent vertices and all vertices at distance two or less from them, we obtain
Balaban’s graph with 112 vertices and girth 11. This graph is now known to be
minimal [14].

Example 4.6 Bray, Parker and Rowley [13] have recently constructed a graph
with 3024 vertices and girth 18. In this case the appropriate tree has 46 vertices, so
excision yields a graph with 2978 vertices and girth 17. These graphs are current-
best, but both are far from attaining the naive bound.

It is tempting to think that the excision technique could be strengthened, by re-
moving more than one set of vertices. However, this requires that the excised parts
be remote from each other, and as yet no one has discovered how to avoid the
complications which rapidly outweigh the potential advantages.

The reverse of the excision technique is insertion. Here we add a number of new
vertices, each of them the ‘mid-point’ of an existing edge, and join them in pairs to
get a cubic graph. The insertion technique produces some pretty constructions: for
example, McGee’s graph (Example 4.4) can be obtained from the symmetric graph
16 mentioned in the previous section [47, p.79].

5. Permutation groups

Let X be a finite set, and S a set of permutations of X which is closed under in-
version and does not contain the identity. These permutations generate a subgroup
〈S〉 of the symmetric group Sym(X). (For the avoidance of doubt, we take the
group operation to be functional composition on the left: (st)(x) = s(t(x)).) We
define the Cayley graph Cay(S) to be the graph whose vertices v are the elements of
〈S〉, with v and w forming an edge if wv−1 ∈ S. Thus, if S = {α1, α2, . . . , αk}, the
vertex v is adjacent to the vertices α1v, α2v, . . . , αkv. Note that the edge joining v
and w is undirected, because S is closed under inversion, and hence wv−1 is in S
if and only if vw−1 is in S. (More details about Cayley graphs in general can be
found in [4, 15].)

A cycle of length r in Cay(S) has vertices of the form

v, ω1v, ω2ω1v, . . . , ωr . . . ω2ω1v = v,
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where each ωi is a member of the generating set S, and ωr . . . ω2ω1 is the identity
permutation. Clearly we must have ωi 6= ωi+1

−1 (1 ≤ i ≤ r − 1), and ωr 6= ω1
−1.

When this holds we say that ωr . . . ω2ω1 is an identity word. Finding the girth
of Cay(S) is equivalent to finding a shortest identity word in the elements of S,
provided we remember to consider identity words which are reduced, in the sense
that ωi 6= ωi+1

−1 (1 ≤ i ≤ r − 1), and ωr 6= ω1
−1.

Note that the letters in a word are numbered backwards to conform with our con-
vention for the composition of permutations.

There are two kinds of generating set S which determine a cubic graph Cay(S).
Recall that an involution is a permutation π such that π2 is the identity, or equiv-
alently π−1 = π.
• Type 1: S = {α, β, γ}, where all three generators are involutions.
• Type 2: S = {α, δ, δ−1}, where α is an involution and δ is not.

Example 5.1 Suppose that X = {1, 2, 3, 4} and

α = (12), β = (13), γ = (14).

In this case Cay(S) is a cubic graph of Type 1, and 〈S〉 is the symmetric group
Sym(X) = S4. Since αβ = (132), (αβ)3 is an identity word, and it is easy to check
that there no shorter ones. Hence the girth of Cay(S) is 6. The graph is 24 in
Foster’s Census [15].

Example 5.2 Let X be Z/pZ, the integers modulo p, where p is prime. Choose
b, c ∈ X such that c 6= 0. Then the permutations defined by

α(x) = b− x, δ(x) = cx

generate a subgroup of the affine group of transformations of Z/pZ. For example,
if p = 17, b = 1, and c = 3 the permutations are

α = (0 1)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)

δ = (1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6).

Here we have generators for a Type 2 Cayley graph. The set S = {α, δ, δ−1}
generates the entire group of affine transformations, which has order 17×16 = 272,
so Cay(S) has 272 vertices. A computer search for identity words reveals that the
shortest ones have length 13.

For another example, suppose we take p = 29, b = −1, c = 4. Here we get a graph
with 29× 14 = 406 vertices. A shortest identity word is

(αδ−2(αδ)2)2,

so the Cayley graph has girth 14.
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At this stage it might appear that we have a promising technique for constructing
graphs with large girth. However, the promise is short-lived, because it turns out
that αδ−2(αδ)2 is always an involution, for any permutations α and δ which are
defined by the equations given above. Thus the word of length 14 displayed above
is a ‘universal’ identity word for all groups constructed in this way, and all such
Cayley graphs have girth g ≤ 14.

Despite the limited scope of the general construction, it is worth pointing out that
the graphs on 272 and 406 vertices described above are the current-best examples
for girth 13 and girth 14 (see the Historical Notes.)

6. Coloured pictures

We shall describe a useful technique for dealing with Cayley graphs of Type 1.
In this case each generator is its own inverse, and so a reduced identity word is
such that no two consecutive letters are the same, and the first and last ones are
different. In the following discussion we shall generally assume that all words under
consideration have these properties.

The technique is based on the use of a ‘coloured picture’ or, more precisely, an
edge-coloured graph. We take the vertex-set of this graph to be the set X of
objects permuted, and join two vertices x and y by an edge whenever (xy) is a
transposition belonging to one of the generators α, β, γ. If we think of α, β, γ as
colours, we obtain an edge-coloured graph (no colour appears twice at any vertex),
in which each vertex has degree at most 3. Following [5], we shall call it a picture.

Example 6.1 Let X = {0, 1, 2, . . . , 9, T, E} and S = {α, β, γ}, where

α = (01)(23)(56), β = (45)(67)(9T ), γ = (89)(TE)(12).

The graph Cay(S) was first studied by Frucht [22]. The corresponding picture has
three components, each of them a path with four vertices.

It is clear that 〈S〉must be a subgroup of the direct product of the groups defined by
each component of the picture, and in this case these are dihedral groups of order 8.
In fact 〈S〉 has order 64. The shortest identity words are of the form (αβ)4, so the
girth is 8. The graph is 64 in Foster’s Census.

For future reference we note that the generators for Frucht’s graph satisfy certain
identities involving the commutator [σ, τ ] = σ−1τ−1στ which, when σ and τ are
involutions, is just (στ)2. In fact, the commutator [α, β] = (αβ)2 = (47)(56), from
which it follows that [α, β] commutes with all three generators α, β, γ. By symmetry,
we conclude that every commutator in 〈S〉 commutes with every element of 〈S〉.
The significance of this fact will be explained in Example 8.2.

Example 6.1 can be regarded as the case n = 4 of a general construction, in which
we construct permutations which generate a subgroup of the direct product of three
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dihedral groups of order 2n. Specifically, we let X be the disjoint union X1∪X2∪X3,
where |Xi| = n, and set α = α1α2, β = β2β3, γ = γ3γ1, where α1 and γ1 are
involutions generating a dihedral group on X1:

〈α1, γ1 | α
2
1 = γ2

1 = (α1γ1)n = id〉 ≈ D2n,

and similarly for β2, α2 and γ3, β3. Unfortunately, the girth of the graphs con-
structed in this way is bounded. Since (αβ)2 fixes the set X1 ∪X3, which is the set
permuted by γ, the two elements commute:

[(αβ)2, γ] = (βα)2γ(αβ)2γ = id.

Thus we have an identity word of length 10, which is universal for this construction.
It follows that the girth of any graph constructed in this way cannot exceed 10.

At this point, a positive result seems appropriate. The next theorem is a simple,
but important, application of coloured pictures.

Theorem 6.2 There are finite Cayley graphs of Type 1 with arbitrarily large
girth.

Proof Let Pr denote the ‘cubic tree’ of finite radius r ≥ 1. In other words,
all vertices at distance less than r from a central vertex x have degree 3, and all
vertices at distance r from x have degree 1. Assign three colours to the edges of
Pr in any way consistent with the edge-colouring condition, and let α, β, γ be the
corresponding involutions.

Suppose we are given any word ωlωl−1 . . . ω1 in the generators α, β, γ, which is
reduced in the sense explained above. The image of x under ω1 is a vertex at
distance 1 from x. The image of this vertex under ω2 is a vertex at distance 2 from
from x, since ω2 6= ω1. Repeating the argument, we conclude that if l ≤ r, the
image of x is at distance l from x, and in particular x is not fixed by the given
word. Hence no word of length r or less is an identity word, and Cay(S) has girth
at least r + 1.

In fact, an obvious continuation of the argument in the proof shows that no word
of length l ≤ 2r + 1 fixes x, so the girth is at least 2r + 2. We could go further
by characterising those words of length 2r + 1 which do fix x, showing that none
of them fix certain other vertices, and so on. Alternatively, for small values of r
the girth can be calculated by computer. For example, the girth of the graph when
r = 2 has been computed to be 20. Note that in this case the permutations generate
the entire symmetric group S10, so although we have a graph with g = 20, it has
10! = 3 628 800 vertices, which is rather more than the current-best (8096 vertices).

In general, if we choose a set of permutations at random then it is likely that
they will generate the entire symmetric or alternating group, and so the Cayley
graph will be uncomfortably large. We can avoid this problem by working within
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a known group, as in Example 6.1. Many interesting groups can be generated by
three involutions; for example, it follows from the results of Malle, Saxl and Weigel
[33] that almost all finite simple groups can be so generated. Thus cubic Cayley
graphs of Type 1 provide a rich source of examples. However, attempts to construct
families with large girth often fail because there is a universal identity word, like
the word of length 10 which prevented our attempt to generalise Example 6.1.

7. Applications of coloured pictures

Let P (α, β) be the subgraph of a picture P spanned by the edges coloured α or β.
Then P (α, β) consists of a number of components, each of which is either (i) a cycle
of even length l, or (ii) a path of length k in which the two end-vertices are fixed by
exactly one of α and β. In the first case, the permutation αβ acts on the vertices of
the component as two cycles of length l/2, so (αβ)l/2 is the identity permutation on
the vertices of this component; in particular, if this is the only component, (αβ)l/2

is an identity word of length l. In the second case αβ acts on the vertices as a cycle
of length k, and (αβ)k is the identity permutation on the vertices of this component.

Let 〈α, β〉 denote the group generated by the permutations α and β. For any
component C of P (α, β), denote by 〈α, β | C〉 the group of permutations of the
vertices of C induced by 〈α, β〉. The next Lemma follows from the observations in
the previous paragraph.

Lemma 7.1 Let C be a component of the picture P (α, β). Then if C is a cycle
of length l, 〈α, β | C〉 is a dihedral group of order l, and if C is path of length k it
is a dihedral group of order 2k.

The group 〈α, β〉 is the direct product of the groups 〈α, β | C〉, each of which is a
dihedral group. Thus it is easy to analyse the action of this group. For example,
the intersection of 〈α, β〉 with its conjugate 〈α, β〉γ, can be easily determined.

Lemma 7.2 Suppose that a shortest identity word contains an occurrence of γ.
If

〈α, β〉γ ∩ 〈α, β〉 = id

then this word must contain at least three occurrences of γ.

Proof Note first that the given condition implies that γ does not belong to 〈α, β〉.
Suppose that there is an identity word in which γ occurs just once, say λγµ = id,
where λ and µ are words in α and β only. Then it follows that µλ = γ, contradicting
the fact that γ /∈ 〈α, β〉.

Suppose that there is an identity word in which γ occurs just twice, say ργσγτ = id,
where ρ, σ and τ are words in α and β, and σ is not the empty word. Then
τρ = γσ∗γ, where σ∗ is the inverse (= reverse) of σ. Since τρ and σ∗ are in 〈α, β〉,
this implies that γσ∗γ is in both 〈α, β〉 and its conjugate 〈α, β〉γ . It follows from
the given condition that σ∗ is an identity word. Hence the given word cannot be a
shortest identity word.
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Example 7.3 Consider the Cayley graph obtained by taking X = {1, 2, 3, 4, 5}
and S = {α, β, γ}, where

α = (12)(35), β = (14)(25), γ = (13)(45).

Since the generators are even permutations, 〈S〉 is a subgroup of the alternating
group A5, and it is easy to check that it is 3-transitive, so it is A5. Hence Cay(S)
has 60 vertices.

The picture P (α, β) has one component C1, a path whose vertices occur in the order
3, 5, 2, 1, 4. So 〈α, β〉 = 〈α, β | C1〉 is a dihedral group of order 10, and it is easy to
check that 〈α, β〉γ ∩ 〈α, β〉 = id.

The shortest reduced identity word which does not contain γ is (αβ)5, so 10 is an
upper bound for the girth of Cay(S). But the graph has 60 vertices, and we know
that a cubic graph with girth 10 must have at least 64 vertices, so the girth cannot
exceed 9. On the other hand, Lemma 7.2 tells us that an identity word which does
contain γ must contain at least three occurrences of γ. By symmetry, an identity
word must contain at least three occurrences of α and β also, so it must have length
at least 9. Hence the girth is exactly 9, and there must be an identity word of length
9, in which each generator occurs three times. Indeed one such word is

αβγβγαγαβ.

This graph was the first cubic graph with 60 vertices and girth 9 to be discovered
(by R. M. Foster, see [22]). For many years it remained current-best, although a
number of other graphs with these properties were found, and it began to look as if
µ0(9) = 60. However, eventually it turned out [10,14] that the correct value is 58,
not 60.

Example 7.4 Using the MAGMA package, Conder [18] found that the following
involutions generate the group PSL(2, 16), considered as a permutation group on
the 17 points of the projective line over the field GF (24).

α = (1, 9)(2, 8)(3, 7)(4, 6)(10, 17)(11, 16)(12, 15)(13, 14)

β = (1, 11)(2, 5)(3, 8)(4, 14)(6, 15)(7, 12)(9, 17)(10, 13)

γ = (1, 2)(3, 13)((5, 12)(6, 7)(8, 11)(9, 15)(10, 16)(14, 17).

The group has order 17×16×15 = 4080, so we have a cubic Cayley graph with that
number of vertices, and Conder showed that the girth of this graph is 18.

Examples 7.3 and 7.4 can be unified, as follows. The multiplicative group of the
field GF (22m) is cyclic of order 22m−1, which is equal to 3r, say. If t is a primitive
element of the field, ω = tr is a cube root of unity.
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Consider PSL(2, 22m) as a permutation group, where the permutations are defined
by linear fractional transformations on the points of the projective line PG(1, 22m),
identified with GF (22m) ∪ {∞}. For any k, the transformation

x 7→
x+ 1

kx+ 1

is an involution, as are its conjugates under the permutations x 7→ ωx and x 7→ ω2x.

When m = 1, the field is GF (4) = {0, 1, ω, ω2}, where ω itself is a primitive element.
Taking k = ω gives the involutions

(ω)(0 1)(∞ ω2), (ω2)(0 ω)(∞ 1), (1)(0 ω2)(∞ ω).

These three involutions generate the group PSL(2, 4), which is isomorphic to the
alternating group A5. The identification with the permutations discussed in Exam-
ple 7.3 is given by 0 7→ 1, 1 7→ 2, ω 7→ 4, ω2 7→ 3,∞ 7→ 5. The fact the graph is
symmetric is an obvious consequence of the fact that the generating involutions are
conjugates under an element of period 3.

When m = 2 the field GF (16) contains a primitive element t satisfying t4+t+1 = 0,
and t5 = ω is cube root of unity. Taking k = t3 we get three involutions which can
be identified with the ones discovered by Conder. The coloured picture can be
drawn so that the threefold symmetry is plain.

It would be gratifying if k could be chosen so that the Cayley graph generated by
the three involutions had large girth for all m. Specifically, the two examples might
suggest that the girth is 9m. Since the graphs have about 26m vertices, that would
imply a family with c = 2/3. Unfortunately, in the case m = 3 the best that can
be done is a graph with girth 26, rather than 27. I am (not) grateful to Marston
Conder for this computation.

8. Abstract groups generated by three involutions

In this section we consider a group presentation of the form

〈a, b, c | a2 = b2 = c2 = 1, r1, r2, . . . , rm〉,

where r1, r2, . . . , rm are relations involving the generators a, b, c. Since the genera-
tors are self-inverse, each relation can be written as an identity word w1w2 . . . wl = 1,
where wi is one of a, b, c, and wi 6= wi+1 (1 ≤ i ≤ l − 1). Furthermore, there is no
loss of generality in assuming that the word is cyclically reduced, which in this case
simply means that, w1 6= wl. In general, there is no easy way to ensure that the
relations r1, r2, . . . , rm determine a finite group, although some special cases can be
treated theoretically. If the group is indeed finite, the coset enumeration process
will verify this fact by terminating (eventually), but we cannot say when.

The Cayley graph of the presentation is the graph in which the vertices are the
elements of the group, and an edge joins vertices x and y whenever xy−1 is one of
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the generators a, b, c. Since the generators are involutions, this defines an undirected
graph, in which each vertex x is joined to the vertices ax, bx, cx. A cycle of length
s in the Cayley graph has vertices of the form

x, u1x, u2u1x, . . . , us . . . u2u1x = x,

where each ui is one of the generators, and u2 6= u1, u3 6= u2, and so on. So
u = us . . . u2u1 is an identity word, that is u = 1 in the group. This equation is a
consequence of the defining relations, but it is not necessarily one of them.

In the special case when there are no relations, the group is the free product of
three cyclic groups of order 2,

I = 〈a, b, c | a2 = b2 = c2 = 1〉.

In this case there are no identity words, and the Cayley graph is the infinite cubic
tree T . Any set of relations r1, r2, . . . , rm defines a quotient group of I, and its
Cayley graph is a quotient graph of T . However these quotients may well be infinite.

One way to guarantee finiteness has been discussed in Sections 5,6, and 7. We
choose a set S of three involutory permutations α, β, γ of a finite set X, in which
case the corresponding subgroup 〈S〉 of the symmetric group Sym(X) is finite. The
homomorphism η : I → 〈S〉 defined by a 7→ α, b 7→ β, c 7→ γ is onto, and its kernel
N is such that I/N is isomorphic to 〈S〉. Choosing the permutations as in Theorem
6.2 we obtain the following basic result.

Lemma 8.1 Given g, there are finite quotients of I whose Cayley graphs have
arbitrarily large girth.

In the language of group theory, this result states that I is residually finite [8].

In the rest of this section we shall consider alternative methods of choosing a set of
relations r1, r2, . . . , rm in such a way that the group they define is finite.

Example 8.2 Suppose we add the relations which say that the generators com-
mute: ab = ba, bc = cb, ca = ac. Then the group is abelian, and the elementary
theory of abelian groups tells us that it is the direct product of three cyclic groups
of order two:

〈a, b, c | a2 = b2 = c2 = 1, ab = ba, bc = cb, ca = ac〉 = Z/2Z⊕ Z/2Z⊕ Z/2Z.

This is a group of order 8. The relations determine cyclically reduced identity words,
such as abab, which have length 4. There are no shorter identity words, so we get a
cubic graph with 8 vertices and girth 4, which is the graph formed by the vertices
and edges of a cube.
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Example 8.3 One way to generalise the previous example is to use the lower cen-
tral series of I. Generally, for any group G, a sequence of characteristic subgroups
of G is defined by the recursive construction

γ1G = G, γi = [G, γi−1G],

where [A,B] is the group generated by all commutators [a, b] = a−1b−1ab, a ∈ A, b ∈
B. In particular, γ2G = [G,G] is the commutator subgroup of G, and G/γ2G is the
‘abelianisation’ of G. When G = I the quotient I/γ2I can be presented as

〈a, b, c | a2 = b2 = c2 = [a, b] = [b, c] = [c, a] = 1〉,

which is the elementary abelian group of order 8 discussed in Example 8.1. More
generally, it is known that, for all i ≥ 1, γi−1I/γiI is a finite group (see [41] for
further details). Consequently, each term γiI of the lower central series is a normal
subgroup of finite index in I, and the Cayley graph of the quotient group I/γiI is
a finite cubic graph, LCi. Example 8.2 shows that LC2 is the cube.

The next graph in the series, LC3, is the Cayley graph of the group

〈a, b, c | a2 = b2 = c2 = 1, [[∗, ∗], ∗] = 1〉.

Here the last equation indicates that every expression [[x, y], z], with x, y, z words
in a, b, c, is an identity word. It turns out that the group has order 26. In fact, the
graph LC3 is the one already discussed in Example 6.1 using generating permuta-
tions. The shortest identity words are of the form

[[a, b], b] = (abab)b(baba)b = abababab,

so the girth is 8.

In order to determine the girth gi of LCi in general, we have to remember that that
a cyclically reduced identity word of minimal length is not necessarily one of the
defining relations. It might be thought that the shortest identity words in LCi are
those which correspond to the relations

[. . . [[a, b], b] . . . , b] = (ab)2i−1

,

which have length 2i. However, the existence of shorter words can be inferred from
the general fact that [γiG, γjG] ≤ γi+jG. For example, when G = I, the case
i = j = 2 tells us that

[[a, b], [b, c]] = (abab)(bcbc)(baba)(cbcb) = (aba)(cbc)(baba)(cbcb)

is in I4. So we have a cycle of length 14 in LC4, which is shorter than the cycle of
length 16 defined by the relation [[[a, b], b], b] = 1.
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More generally, we can argue as follows. Suppose that u and v are cyclically reduced
words of minimal length in γiI and γjI, so that u and v have length gi and gj
respectively. There is no loss of generality in assuming that the final letter of u is
the same as the first letter of v. Then w = [u, v] = u−1v−1uv is in γi+jI and (after
cancellation) its length is 2(gi + gj − 1). Since w is a cyclically reduced, and it is in
γi+jI we have

gi+j ≤ 2(gi + gj − 1).

A simple induction argument leads to the result that gi is O(i2).

It remains to determine ni, the number of vertices of LCi. The results of Waldinger
[41] and others show that γiI/γi−1I is an elementary abelian 2-group of order 2λi ,
where λi can be effectively computed. In fact,

λ2 = 3, λ3 = 3, λ4 = 5, and generally λn = O(2n).

.

It follows that ni = 2λ2+λ3+···+λi is O(22i). Hence (log2 ni)/gi is unbounded as
i→∞. Thus, although gi →∞ for the family LC = {LCi}, the number of vertices
grows so fast that c(LC) =∞.

Example 8.4 If we choose a set of cyclically reduced words w(a, b, c) and impose
the relations w = 1 on I it is unlikely that the resulting group will be finite. For
example, prescribing the orders of ab, bc, and ca by means of the relations

(ab)l = (bc)m = (ca)n = 1

defines a Coxeter group, which (except in a few very special cases) is infinite. How-
ever, occasionally a happy choice of additional relations will work. For example,
the relations

abcbcacab = (ab)5 = (bc)5 = (ca)5 = 1

are sufficient to define the alternating group A5 of order 60. The graph is Foster’s
graph of girth 9 discussed in Example 7.3.

9. Geometrical constructions

There are several constructions that produce families of cubic graphs with large
girth, based on configurations of points on a projective line. The points on the line
PG(1, q) (q a prime power) can be identified with the set GF (q) ∪ {∞}, by using
‘homogeneous coordinates’. For simplicity, we shall discuss only the case when
q = p, a prime.

Any set of four points x1, x2, x3, x4 on PG(1, p) has a cross-ratio

(x1 − x3)(x2 − x4)

(x1 − x4)(x2 − x3)
.
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Clearly, the cross-ratio is a property of the two unordered pairs x1, x2 and x3, x4,
and when it takes the value −1 we say that the two pairs are harmonic conjugates.
A triplet is simply an unordered triple of points {x, y, z} on PG(1, p). Define an
adjacency relation on the set of triplets by the rule that {x, y, z} is adjacent to the
three triplets

{x′, y, z}, {x, y′, z}, {x, y, z′},

where x′, y′, z′ are chosen so that x, x′ and y, z are harmonic conjugates, y, y′ and
x, z are harmonic conjugates and z, z′ and x, y are harmonic conjugates. We get a
cubic graph with

(
p+1

3

)
= p(p2− 1)/6 vertices. In the case p ≡ 1 (mod 4) the graph

has two components, and when p ≡ 3 (mod 4) it has one component. In either case,
we denote a component by T (p); for example, T (5) is Petersen’s graph.

One way of studying the triplet graphs [6] depends on a labelling of the infinite
cubic tree T which has remarkably far-reaching implications, essentially because
it coordinatises the action of the modular group on the upper half-plane. The
corresponding geometrical object, sometimes known as the Farey graph, was first
studied by H. J. S. Smith in 1877 [40]. More recently it has been investigated by
Jones, Singerman and Wicks [28], and by Conway [19].

We begin by assigning triples of rational numbers in the closed interval [0, 1] to the
vertices of a rooted binary tree B, as follows:

•1 the root is labelled (0/1, 1/2, 1/1);
•2 the descendants of the vertex labelled (a/b, c/d, e/f) are labelled

(a/b, (a+ c)/(b+ d), c/d) and (c/d, (c+ e)/(d+ f), e/f).

It be can shown that the label (a/b, c/d, e/f) of a vertex is uniquely determined by
the middle term c/d. Furthermore, the labelling of B can be extended to the cubic
tree T as follows. Let P denote a two-way infinite path whose vertices are labelled
with the integers . . . ,−2,−1, 0, 1, 2, . . . , in the obvious way. For each integer n let
Bn be a copy of B and assign the label n + c

d
to the vertex corresponding to the

one labelled c
d

in B0. Join the root of Bn, labelled n+ 1
2 , to the vertex labelled n

in P .

This construction produces a labelling of T that has many remarkable properties,
discussed in the references given above. For our purposes the important thing is
that when we collapse the labelled tree T modulo a prime p, we obtain the triplet
graph T (p). By analysing the labels carefully, we obtain the following result [6].

Theorem 9.1 If p ≡ 3 (mod 4) the triplet graph T (p) is a cubic graph whose
girth gp satisfies

F (gp + 1) ≥ p2,

where F (i) denotes the ith Fibonacci number.

In terms of the parameter c, this implies that the family of triplet graphs T is such
that c(T ) ≤ 1.04 . . . . The possibility of a subfamily of T with ‘better’ girth remains
open.
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Historically, the first graphs of this kind to be studied were the sextet graphs [11].
A sextet is a set of three unordered pairs of points on PG(1, p), such that every
two pairs are harmonic conjugates. For certain congruence classes of p (mod 8) it
is possible to define an adjacency relation on the sextets, such that a cubic graph
S(p) is obtained. Weiss [44] proved that the family S of sextet graphs satisfies
c(S) ≤ 0.75, and here too an improvement may be possible. Many individual sextet
graphs satisfy c(S(p)) < 0.75, and the family provides some of the current-best
examples. For example, the sextet graph S(31) with 620 vertices is the current-best
with girth 15. Further examples will be found in the Historical Notes.

Other families constructed in a similar way, such as the hexagon graphs, have been
studied by Hoare [26]. The hexagon graph H(47) is the current-best with girth 19.

10. Open questions

The notation is that used in the rest of the paper. Note that not all the questions
are independent; for example, a positive answer to Question 2 would provide a
solution to Question 1.

1. Find an infinite family G of cubic graphs for which it can be proved that c(G) is
strictly less than 3/4.

2. Is it true that, for all h ≥ 1, we can add edges to a cycle of length 22h to get a
cubic graph of girth 3h? In other words, is there a Hamiltonian cubic graph with
22h vertices and girth 3h?

3. Suppose s ≥ 4, and let K consist of 2s disjoint cycles of length 2s. Can we add
edges to K to form a cubic graph of girth 3s?

4. Let S be a subgraph of a cubic graph G, with the conditions as in Section 4,
except that S may be disconnected. If G has girth g, find suitable conditions under
which G	 S has girth g − 1.

5. Find new current-best graphs with girth 13 and 14. (The long tenure of the title
of current-best by the graphs with 272 and 406 vertices respectively is becoming an
embarrassment.)

6. Under what conditions is there an identity word for a family of cubic Cayley
graphs that is ‘universal’, in the sense described in Examples 5.2 and 6.1? (In fact,
we really need conditions which guarantee that no such word exists.)

7. Let Tr be a family of trees with vertices of degree not exceeding 3, each tree
with a given edge-3-colouring. Let P = (Pr) be the family of cubic Cayley graphs
defined by the corresponding involutory permutations. Can we construct examples
in which the girth of Pr tends to infinity and c(P) is finite?

8. Let G = PSL(2, q) where q is a prime power of the form 3r + 1, and let ω be
a cube root of unity in GF (q). Let α be an involution x 7→ (x− b)/(cx− 1) in G,
and let β, γ be its conjugates with respect to the maps x 7→ ωx, x 7→ ω2x. What
conditions on b and c guarantee that α, β, γ generate G? If they do generate G,
what is the girth of the resulting Cayley graph?
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9. Any finite simple group G (except U3(3)) can be generated by three involutions
[33]. Define the girth of G to be the maximum girth of a Cayley graph of G with
respect to a set of three generating involutions. Compute the girth of the classical
groups and the sporadic ones.

10. Is it true that the involutions referred to in Problem 9 can be chosen to be con-
jugate? Can they be chosen to be conjugate under an element of order 3, assuming
that G has such an element? (If the answer is yes, we get a symmetric Cayley
graph,)

Historical Notes

These brief notes have been compiled with the assistance of many of the people
involved, and they are believed to be correct.

Girth 10 The first example with 70 vertices was found by Balaban [1] in 1972.
O’Keefe and Wong [36] showed that 70 is the smallest possible number of vertices.
There are just three minimal graphs.

Girth 11 A graph with 112 vertices was published by Balaban [2] in 1973. It
was obtained by excising a tree with 14 vertices from the minimal graph with 126
vertices and girth 12 (see below). In 1995 it was announced [14] that no smaller
graphs exist, but Balaban’s graph is not known to be unique.

Girth 12 In this case the very naive bound (126 vertices) is attained by a unique
graph. The graph is associated with configurations studied by classical geometers
such as Edge [20], and it is also implicit in the ‘geometry of triality’ studied by Tits
[46]. The underlying structure is the Lie algebra of type G2, which gives rise to
the related concept of a generalised hexagon. The first explicitly graph-theoretical
treatment is due to Benson [3].

Girth 13 A Cayley graph with 272 vertices was discovered by Hoare in 1981. It
is described in [25], also in [7]. At first it seemed likely that this graph would soon
be superseded, but in 1997 it remains the current-best. Calculations of Royle have
confirmed that there are no smaller symmetric graphs or Cayley graphs with this
girth. McKay, Myrvold and Nadon [35] have shown that at least 202 vertices are
needed.

Girth 14 A Cayley graph with 406 vertices was discovered by Hoare in 1981. It
is described in [25], also in [7]. McKay, Myrvold and Nadon [35] have shown that
at least 258 vertices are needed.

Girth 15 The sextet graph S(31) with 620 vertices is a member of the family
described by Biggs and Hoare [11] in 1983. The fact that its girth is 15 is stated
explicitly in that paper.

Girth 16 An explicit construction of a graph with 990 vertices was described by
Biggs at the New York conference in 1985, and is published in the proceedings [7].
The fact that such a graph exists is implicit in the work of Goldschmidt [24], and a
related configuration was discussed by Chuvaeva [17].
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Girth 17 A graph with 2978 vertices is obtained by excising a tree with 46
vertices from a graph with girth 18 (see below).

Girth 18 Bray, Parker, and Rowley [13] have constructed a graph with 3024
vertices. It is a Cayley graph of the direct product of PSL(2, 8) with a cyclic group
of order 6. (The method looks hopeful, but has not as yet produced any other
contenders.) Earlier, Conder [18] had constructed a graph with 4080 vertices as the
Cayley graph of three permutations which generate the group PSL(2, 16), and this
in turn superseded the hexagon graph H(37) with 4218 vertices [26].

Girth 19 The current-best is the hexagon graph H(47) on 4324 vertices [26].

Girth 20 Bray, Parker, and Rowley [13] discovered that constructing Cayley
graphs that have triangles, and then collapsing the triangles, can lead to graphs
with large girth. Using this ‘collapsing method’ they obtain a graph with 8096
vertices and girth 20. It supersedes as current-best the bipartite double covering of
H(47), which has 8648 vertices.

Girth 21 The current-best is a graph on 16112 vertices obtained by excising a
tree with 94 vertices from the sextet graph S(73) (see below). This just beats the
hexagon graph H(73) which has 16206 vertices and girth 21.

Girth 22 The sextet graph S(73) has 16206 vertices and its girth is 22, as stated
by Biggs and Hoare [11] in 1983. (The graph is also listed in [7], but there it is
erroneously stated to be S(89).)

Girth 23 The current-best is a graph with 49482 vertices obtained by excis-
ing a tree with 126 vertices from a graph with 49608 vertices and girth 24 (see
below). Earlier, Conder [18] had constructed a Cayley graph of Type 1 for the
group PSL(2, 53) which has order 74412 and girth 23, and subsequently [personal
communication, November 1997] he found a graph with 59640 vertices and girth 23.

Girth 24 The collapsing method [13] produces a graph with 49608 vertices.

Girths 25 and 26 The collapsing method [13] produces a graph with 109 200
vertices and girth 26, from which a graph with girth 25 is obtained by excising a
tree with 190 vertices. These graphs supersede the sextet graph S(151) which has
143 450 vertices and girth 26 [11], and the graph obtained from it by excising a tree
with 190 vertices.

Girth 27 The collapsing method [13] produces a graph with 285 852 vertices and
girth 27.

Girth 28 The collapsing method [13] produces a graph with 415 104 vertices and
girth 28.

Girth 29 The collapsing method [13] produces a graph with 1 143 408 vertices
and girth 29.

Girth 30 The sextet graph S(313) has 1 227 666 vertices and girth 30 [11].

Girths 31 and 32 The collapsing method [13] produces a graph with 3 650 304
vertices and girth 32. Excising a tree with yields a graph with 3 649 794 vertices
and girth 31. Earlier, Hoare [unpublished, c.1989] had found that the girth of the
hexagon graph H(373) is 32. It has 4 324 562 vertices.
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Girths 33 and 34 Hoare [unpublished, c.1989] found that the girth of the sextet
graph S(761) is 34. It has 18 362 930 = 2(0.7097...)g vertices. Excising a tree with
766 vertices produces a graph with girth 33.

Girths 35 and 36 Hoare [unpublished, c.1989] found that the girth of the sextet
graph S(857) is 36. It has 26 225 914 = 2(0.6846...)g vertices. Excising a tree with
1022 vertices produces a graph with girth 35.
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21. P. Erdős and H. Sachs, Reguläre Graphen gegebene Taillenweite mit minimaler
Knotenzahl Wiss. Z. Univ. Hall Martin Luther Univ. Halle–Wittenberg Math.–
Natur.Reine 12 (1963), 251–257.

22. R. Frucht, A one-regular graph of degree three. Canad. J. Math. 4 (1952)
240–247.

23. R. Frucht, Remarks on finite groups defined by generating relations. Canad. J.
Math. 7 (1955) 8–17. Correction: ibid. 413.

24. D. Goldschmidt, Automorphisms of trivalent graphs. Ann. Math. 111 (1980)
377–406.

25. M. J. Hoare, On the girth of trivalent Cayley graphs. Graphs and Other Combi-
natorial Topics (Proceedings of the Third Czechoslovak Symposium on Graph
Theory, Prague 1982), Teubner, Leipzig 1983, pp.109–114.

26. M. J. Hoare, Triplets and hexagons. Graphs and Combinatorics 9 (1993)
225–233.

27. W. Imrich, Explicit construction of regular graphs without short cycles. Com-
binatorica 4 (1984) 53–59.

28. G. A. Jones, D. Singerman and K. Wicks, The modular group and generalised
Farey graphs. In: Groups St Andrews 1989 Volume 2 (eds. C.M. Cambell and
E.F. Robertson), Cambridge University Press, 1990, pp 316–338.

29. F. Lazebnik, V. A. Ustimenko, A. J. Woldar, A new series of dense graphs of
high girth, Bulletin of the AMS 32 (1995), 73–79

30. F. Lazebnik, V. A. Ustimenko, A. J. Woldar, New upper bounds on the order
of cages Electronic Journal of Combinatorics 4 (1997) R13.

31. L. Lovász, Combinatorial Problems and Exercises. North-Holland Amsterdam,
1979.

32. A. Lubotzky, R. Phillips, R. Sarnak, Ramanujan graphs, Combinatorica 8
(1988) 261–277.

33. G. Malle, J. Saxl, and T. Weigel, Generators of classical groups. Geom. Dedicata
49 (1994) 85–116.

34. G. A. Margulis, Explicit group-theoretical construction of combinatorial
schemes and their application to the design of expanders and concentrators.
Journal of Problems of Information Transmission (1988) 39–46.

35. B. McKay, W. Myrvold, and J. Nadon, Fast backtracking principles applied to
find new cages. Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms 1998, pp.188–191.



the electronic journal of combinatorics 5 (1998), #A1 25

36. M. O’Keefe and P-K. Wong, A smallest graph of girth 10 and valency 3.
J. Combinatorial Theory Series B 29 (1980) 91–105.

37. G. Royle, Cubic cages, http://www.cs.uwa.edu.au/˜gordon/cages/index.html.

38. H. Sachs, Regular graphs with given girth and restricted circuits, J. London
Math. Society 38 (1963), 423–429

39. N. Sauer, Extremaleigenschaften regulärer Graphen gegebener Taillenweite,
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