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Abstract

An explicit formula for the chromatic polynomials of certain families of graphs, called ‘bracelets’,
is obtained. The terms correspond to irreducible representations of symmetric groups. The theory is
developed using the standard bases for the Specht modules of representation theory, and leads to an
effective means of calculation.
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1. Introduction

Thechromatic polynomialP(G; k) is the function which gives the number of ways of
colouring a graphGwhenkcolours are available. The fact that it is a polynomial function of
k is elementary (Section2), related to the fact that, whenk is large enough, not all the colours
can be used. Another quite trivial property of the construction is that the names of thek
colours are immaterial; in other words, if we are given a colouring, then any permutation
of the colours produces another colouring. In Section2, these facts will be cast into an
algebraic form that provides the foundation of our theory.
A ‘bracelet’Gn = Gn(B,L) is formed by takingn copies of a graphB and joining

each copy to the next by a set of linksL (with n + 1 = 1 by convention). Using the
framework described in Section2, it can be shown that the chromatic polynomial ofGn
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can be expressed in the form

P(Gn; k) =
∑
�

mB,�(k) tr(N
�
L)

n.

The sum is taken over all partitions� such that 0� |�|�b, whereb is the number of vertices
of B. The termsmB,�(k) are polynomials ink, and they are independent ofL. WhenB is
the complete graphKb the relevant polynomialsm�(k) are given by a remarkably simple
formula (see Sections3 and5).
The size of the matrixN�

L is independent ofk; its entries are polynomials ink, and
they do depend onL. The original approach to these matrices[3] involved a sequence of
elementary, but complicated, calculations, culminating in a rather mysterious application of
representation theory. Here we shall present the theory in a more elegant form. In Sections
3 and4, we construct bases for certain irreducible modules (corresponding to the Specht
modules of representation theory), and we shall use these bases for our calculations.
The results obtained here also facilitate further study of the general properties of the

matricesN�
L. In particular, we are strongly motivated by the fact that the formula displayed

above is well adapted to the application of the Beraha–Kahane–Weiss theorem[1], leading
to the construction of ‘equimodular curves’[4] that describe the behaviour of the roots of
P(Gn; k) for large values ofn.

2. Colourings and modules

Let B be a graph with vertex-setV and edge-setE. A colour-partitionof B is a partition
of V into independent sets:

P = {P1, P2, . . . , Pr}.
A k-colouring ofB is a functionc : V → K, whereK = {1,2, . . . , k}, such thatc(v) 	=
c(w)whenevervw ∈ E. Clearly, anyk-colouring induces a colour-partition, each part being
a set of vertices that are assigned a particular colour. A colour-partition with|P| parts is
induced by

(k)|P| = k(k − 1) . . . (k − |P| + 1),

k-colourings, so the total number ofk-colourings is

P(B; k) =
∑
P

(k)|P| =
|V |∑
r=1

qr(B) (k)r ,

whereqr(B) the number of colour-partitions ofBwith r parts. This simple argument shows
thatP(B; k) is a polynomial function ofk. For our purposes we require its algebraic coun-
terpart, as follows.
Denote byVk(B) the complex vector space with basis the set of allk-colourings ofB.

Clearly, it is the direct sum of subspaces

Vk(B) =
⊕

Vk,P,
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whereVk,P is the subspace whose basis is the set ofk-colourings that induceP. The
symmetric group Symk of all permutations of the set{1,2, . . . , k} acts onVk(B) by the
rule�(c) = �c, which makesVk(B) aCSymk-module (For the avoidance of doubt, we
state that, in this paper, the composite of two permutations�1,�2 is given by(�1�2)(x) =
�1(�2(x)).) This action preserves the subspacesVk,P, and so they areCSymk-submodules.
Of course,Vk,P is just the module generated by the injections of anr-set into ak-set,

and its decomposition is an exercise in the representation theory of the symmetric group
[8,11]. The analysis will be done here in terms that allow us to appeal directly to the results
as they are stated in[11], although we shall introduce some minor modifications to the
terminology.
A partition� of a nonnegative integerk is a sequence(�1, �2, . . . , �k) such that

�1 + �2 + · · · + �k = k, (�1��2� · · · �k�0).

The notation is often abbreviated by collecting equal parts and omitting the parts that are
zero: for example(42,3) is a partition of 11 with three non-zero parts 4,4, and 3.Associated
with � is adiagramcomposed ofcells(i, j) arranged in rows and columns: there are�i cells
(i,1), (i, 2), . . . , (i, �i ) in row i (see below for examples).We denote the set of cells by[�].
Conventionally, there are no cells corresponding to parts of� that are zero; in particular
whenk = 0 we have the partitiono for which [o] = ∅.
Given a partition� we define a�-tableauto be a functiont : [�] → N ∪ {0}. Note that

this corresponds to Sagan’s[11, 2.9.1]‘generalized Young tableau’ except that we allow
the value 0 as well as positive integers. A tableau is represented by putting the values in the
appropriate cells: for example, if� = (42,3), the following is a�-tableau:

0 2 5 3
7 3 2 0
1 3 6

.

The link with graph colourings depends on the simple observation that ak-colouringcof
a graphB, which induces a colour partitionP with r = |P|, can be represented (provided
k > r) by a tableau corresponding to the partition�k,r = (k − r,1r ):

∗ ∗ ∗ · · · ∗
∗
.

.

.

∗

.

Here each∗ stands for one of the colours, that is, the numbers 1,2, . . . , k. Thek− r colours
in the top row are those thatc does not assign to any vertex. There is one colour in each
of the remaining rows, these colours being the ones thatc assigns to the independent sets
comprisingP. Note that this is abijective tableau on{1,2, . . . , k}; in other words, each
value occurs exactly once in a cell.
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In order to take this idea further, we need some more terminology. We shall denote the
rows of[�] by ri (i = 0,1,2, . . .), and the columns bycj (j = 1,2, . . .). Thus

[�] = r0 ∪ r1 ∪ r2 ∪ . . . = c1 ∪ c2 ∪ . . . .

The reason for calling the top rowr0 will appear later. Therow stabilizerand column
stabilizercorresponding to� are defined to be, respectively, the subgroupsR� andC� of
the symmetric group Sym[�] of permutations of[�], given by

R� = Sym(r0)× Sym(r1)× . . . and C� = Sym(c1)× Sym(c2)× . . . .

Given a�-tableaut and� ∈ R�, t� is a�-tableau in which the values occurring in each
row are the same as those int, but in a different order. In the case whent is a bijective
�-tableau on{1,2, . . . , k}, the equivalence class

{t} = {t� | � ∈ R�}
is known as atabloid [11, 2.1.4].
LetZ� denote the complex vector space with basis the set of all bijective�-tableaux on

{1,2, . . . , k}. Associated with each tabloid we have an element ofZ�:

{t} ←→ ft =
∑
s∈{t}

s =
∑
�∈R�

t�.

The space spanned by these elements will be denoted byM� (In the usual development
of the subject[11, 2.1.5]M� is defined directly as the complex vector space with basis
the set of tabloids.) Note thatM� is aCSymk-module by virtue of the action of Symk on
{1,2, . . . , k}.
In the correspondence between colourings and tableaux described above, it is clear that

order of the numbers within each row is irrelevant. So eachk-colouringc corresponds to
a �k,r -tabloid, wherer = |P| is the number of colours actually used inc. We have the
isomorphism

Vk,P ≈ M�k,r .

It is a standard result[11, 2.4.7]that, for any partition� of k, the irreducible constituents
of theCSymk-moduleM� areSpecht modulesS�, where� is a partition thatdominates�.
This means that

�1 + �2 + · · · + �i � �1 + �2 + · · · + �i (i = 1,2, . . . k).

When� = �k,r , the condition withi = 1 implies that�1�k − r. Writing �1 = k − !,
(0�!�r), it follows that the remaining conditions are satisfied when� = (�2,�3, . . .)
is any partition of!. Thus, providedk is large enough, the partitions� of k that dominate
�k,r are in bijective correspondence with the partitions� such that 0� |�|�r. The inverse
bijection is such that, given� such that|�| = !, the corresponding partition ofk is

�k = (k − !,�1,�2, . . . ,�!) (k�2!).

With this notation, the foregoing results can be summarized as follows.
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Lemma 1. For all k�2|P|,Vk,P contains irreducible submodules isomorphic to the Specht
moduleS� if and only if� = �k, where� is such that0� |�|� |P|, and these are the only
irreducible submodules ofVk,P.

3. Dimensions and multiplicities of the Specht submodules

Given a bijective�-tableaut on {1,2, . . . , k} and� ∈ Sym[�], we have another bijective
�-tableaut�, and the associatedft� ∈ M�. Defineet ∈ M� as follows:

et =
∑
�∈C�

sign(�)ft� =
∑
�∈C�

∑
�∈R�

sign(�)t��.

For example, let� = (2,1) andt = 1 2
3

. ThenR� = {id, �}, where� switches the cells in
the top row, andC� = {id,	}, where	 switches the cells in the first column. So

et = ft − ft	 = 1 2
3

+ 2 1
3

− 3 2
1

− 2 3
1

.

It is easy to check that our definition ofet is equivalent to the more usual one[11, 2.3.2],
where it is called apolytabloid:

et = 
t {t}, where 
t =
∑
�∈Ct

sign(�)� ∈ CSymk

andCt is the subgroup of Symk given by{t�t−1 | � ∈ C�}.
A �-tableaut is said to bestandardif the values assigned byt increase along each row

and down each column of[�]. In particular, a standard tableau is bijective. The fundamental
result on the structure of the Specht modulesS� is as follows[11, 2.5.2].

Lemma 2. The set ofet such that t is a standard�-tableau on{1,2, . . . , k} is a basis of a
submodule ofM� isomorphic toS�.

It follows from Lemma2 that the dimensiond(�k) of a Specht moduleS�k is equal to
the number of standard bijections[�k] → {1,2, . . . , k}. A simple formula for this number
can be derived from the well-knownhook formula[11, 3.10.2]. Given a partition� and a
cell (i, j) ∈ [�], there corresponds a ‘hook’ consisting of the cells(i, y) with y�j and the
cells(x, j) with x� i. The number of such cells is thehook-length

hij (�) = (�i − j)+ (�′
j − i)+ 1,

where�′
j is the number of cells in thejth column of� (that is, thejth part of the conjugate

partition�′). The hook formula for the dimension ofS� is

d(�) = |�|!
h(�)

, where h(�) =
∏
i,j

hij (�).
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Lemma 3. If |�| = !, and�k is as in Section2, then

d(�k) = d(�)
!!

∏
1� i�!

(k − !− �i + i).

Proof. By the hook formula, it is enough to prove that

h(�k) = h(�)
(
k!
G

)
, whereG =

∏
1� i�!

(k − !− �i + i).

Since the diagram for�k is that for� with an extra row,h(�k) = h(�)H , whereH is the
product of the hook-lengths corresponding to cells in the top row of�k. We have to prove
thatGH = k!.
The hook-length corresponding to cell(0, j) is

(k − !− j + 1)+ �′
j (1�j�k − !),

and soH is the product of these numbers. An elementary result[9, p. 3]asserts that, for any
partition� and anym��1, n��′

1, the numbers

�j + n+ 1− j (1�j�n) and n+ i − �′
i (1� i�m)

are a rearrangement of 1,2, . . . , m + n. Applying this result with� = �′, m = !, and
n = k − ! it follows that the numbers

(k − !− j + 1)+ �′
j (1�j�k − !) and k − !+ i − �i (1� i�!)

are a rearrangement of 1,2, . . . , k. The product of the first set isH and the product of the
second set isG, soGH = k! as claimed. �
In terms of the strictly decreasing partition� of 12!(!+ 1) associated with� by the rule

�i = �i + !− i (1� i�!), the preceding result can be written in the form

d(�k) = (d(�)/!!) (k − �1)(k − �2) . . . (k − �!).

This is clearly a polynomial ink of degree!, and the fact that it takes integer values for all
integersk is worth noting.

Lemma 4. The number of submodules ofVk(b) isomorphic toS�k is independent of k and
is given by the formula

e(�) =
(

b

|�|
)
d(�).

Proof. It follows from Theorem 3 that the required number is equal to the number of
semistandard�k-tableaux onV ∪ {0}, of type(k − b,1b). In other words, it is the number
of ways of assigning the numbers 0,1,2, . . . , b to [�k] in such a way that (i) 0 occursk− b
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times and eachi 	= 0 occurs once, and (ii) the numbers increase weakly in each row and
strongly in each column.
In order to satisfy condition (ii), thek−b 0’smust be assigned to the firstk−b cells of the

top rowr0. Let! = |�|, and suppose we have chosen a subsetL of size! from {1,2, . . . , b}.
Then we can put the elements ofL into rowsr1, r2, . . . , of [�k], forming a standard�-
tableau onL, and the rest (in numerical order) in the lastb−! cells ofr0. Hence the required
number is( b

!
) times the number of standard�-tableau onL, and the second term is clearly

the same as the number of standard�-tableau on{1,2, . . . , !}, that is,d(�). �

We shall refer toe(�) as themultiplicity of S�k .

4. The link with graph colourings

We now focus on the situation when the base graphB is a complete graphKb with
vertex-setV = {1,2, . . . , b}. It follows from the general theory outlined at the beginning
of Section2 that, in principle, the general case can be reduced to this one (for more details,
see[10]).
We shall writeVk(b) forVk(Kb). Since there is only one colour-partition ofKb, the trivial

one in which each part is a single vertex,Vk(b) is isomorphic to a singleM�

Vk(b) ≈ M�k,b , where �k,b = (k − b,1b).

Our first task is to construct the submodules ofVk(b) that correspond to the Spechtmodules.

From Lemma1, we know that these are of the formS�k , where� is any partition such that
0� |�|�b.
Given an injectionF : V → [�k], defineF ∗ : [�k] → V ∪ {0} such thatF ∗ is the

inverse ofF on ImF andF ∗ is 0 on all cells not in ImF. In the usual terminology[11,
2.9.1], F ∗ is a�k-tableau oftype(k − b,1b). For example, letk = 10 and suppose� is the
partition(2,2,1) of 5. If b = 6, we could choose injectionsF : {1,2,3,4,5,6} → [�k]
to give the following�k-tableauxF ∗, of type(4,16):

0 0 0 0 4
1 2
3 6
5

0 1 0 0 0
2 3
4 6
5

.

Such a tableau is said to besemistandard[11, 2.9.5]if the entries increase strictly down
each column and weakly along each row of[�k]. The first example displayed above is
semistandard, but the second is not. Observe that in a semistandard tableau all thek − b

zeros occur in the firstk − b cells in the top row, and that the restriction ofF ∗ to [�] is a
standard�-tableau on a subset ofV.
The link withk-colourings ofKb can now be made. Given an injectionF : V → [�k],

a permutation� ∈ Sym[�k], and a bijective�k-tableaut on {1,2, . . . , k}, the composite
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functiont�F is such a colouring. So, if we defineftF andetF in the obvious way:

ftF =
∑

�∈R�k

t�F, etF =
∑

�∈C�k

sign(�)ft�F ,

these are linear combinations of colouringswith coefficients±1 and thus elements ofVk(b).
Comparison with[11, 2.10.1]gives the fundamental result on the Specht submodules of
Vk(b).

Theorem 5. For each injectionF : V → [�k], such thatF ∗ is semistandard of type
(k − b,1b), the set

{etF | t is a standard�k−tableau on{1,2, . . . , k}}
is a basis for a submoduleUF of Vk(b), isomorphic to the Specht moduleS�k . The set of
all suchUF is the complete set of non-identical, irreducible submodules ofVk(b) that are

isomorphic toS�k . �

For a given�, we denote the direct sum of these submodulesUF of Vk(b) byW�. That is

W� =
⊕

{UF | F ∗ is a semistandard�k−tableau of type(k − b,1b)}.
Then we have

Vk(b) =
⊕

{W� | 0� |�|�b}.

5. The chromatic polynomials of bracelets

In this section we shall explain how the decomposition ofVk(b) into its irreducible
submodules leads to explicit formulae for the chromatic polynomials of certain families of
graphs. The generalization toVk(B) is possible[10] but it will not be discussed here.
We continue to denote the vertex-set ofKb byV = {1,2, . . . , b}. Given a setL ⊆ V ×V

and an integern�3, we construct thebraceletBn(b, L) as follows. Taken disjoint copies
of Kb and link them so that, for each pair(v,w) ∈ L, the vertexv in one copy ofKb is
joined to the vertexw in the next copy, with the convention thatn + 1 = 1. We obtain a
ring of n copies ofKb linked by edges in the manner prescribed.
A pair (�,	) of k-colourings ofKb is compatible with Lif:

(v,w) ∈ L �⇒ �(v) 	= 	(w).

Thismeans that if one copy ofKb is coloured according to�, a second copy ofKb according
to	, and they are linked according toL, the resulting graph is properlyk-coloured by� and
	. Thecompatibility matrixTL is the matrix whose rows and columns correspond to the
k-colourings ofKb, with entries

(TL)�	 =
{
1 if (�,	)is compatible withL;
0 otherwise.
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Note thatTL depends onk, specifically because the number of its rows (and columns) is
equal to the number ofk-colourings ofKb, the dimension ofVk(b). Indeed, we can regard
TL as an operator onVk(b) in the standard way: if thek-colouring	 is identified with an
element ofVk(b), then

TL(	) =
∑
�

(TL)�	 � =
∑

�∈L(	)
�,

whereL(	) is the set of� such that(�,	) is compatible withL.
The connection between the chromatic polynomialP(Bn(b, L); k) andTL is given by

the following well-known simple result[2].

Lemma 6. The number of k-colourings ofBn(b, L) is equal to the trace of(TL)n.

The symmetric group Symk acts on thek-colourings ofKb by permuting the colours.
Given� ∈ Symk, let

(A(�))�	 =
{
1 if �	 = �,
0 otherwise.

In other words,A is thematrix representation afforded by theCSymk-moduleVk(b). Recall
that the submoduleW� of Vk(b) is the sum of Specht submodules

W� = UF1 ⊕ UF2 ⊕ · · · ⊕ UFn� ,

wheren� = e(�) = (
b
|�| )d(�). Let t1, t2, . . . , tm� be the standard�

k-tableau on the set

{1,2, . . . , k}, wherem� = m�(k) = d(�k). According to Theorem 3, a basis forUFj is the
set

{eti Fj | i = 1,2, . . . , m�}.
Thus, by changing to the basis{eti Fj } for eachW�,A(�) can be reduced to block-diagonal
form, with the blocks on the diagonal being matrices of sizem� ×m�.
Now, it can easily be checked that the action of Symk preserves compatibility. In matrix

terms, we have

TL A(�) = A(�) TL for all � ∈ Symk,

which means thatTL belongs to thecommutant algebraof the representationA. For i =
1,2, . . . , m�, denote the subspace ofW� with basis

{eti Fj | j = 1,2, . . . , n�}
byYti (Note that this is not aCSymk-submodule.) However,

W� = Yt1 ⊕ Yt2 ⊕ · · · ⊕ Ytm�

and applying Schur’s Lemma[11, Sections 1.6 and 1.7]we conclude that, sinceTL com-
mutes withA(�) for all � ∈ Symk, it can be reduced to the form

TL ≈
⊕

0� |�|�b

Im� ⊗N�
L.
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HereIm� is the identity matrix of sizem� andN�
L is a matrix of sizen�, representing the

action ofTL on any one of the subspacesYti . Note that sincen� = e(�) = (
b
|�| ) d(�), the

size ofN�
L does not depend onk, although its entries do.

The explicit formula ford(�k) obtained in Section 4 shows that it can be written as a
polynomial ink

m�(k) = d(�k) = d(�)
|�|!

|�|∏
i=1

(k − �i (�)),

where�i (�) = �i+|�|− i. Finally, applying the trace formula for the number of colourings
(Lemma6), we have the key result.

Theorem 7. Suppose integers b and k are given, with k�2b. For each partition� with
0� |�|�b let d(�) be the dimension of the Specht moduleS�, and letm�(k) be the poly-
nomial displayed above. Then for any linking set L the number of k-colourings ofBn(b, L)

is equal to
∑
�

m�(k) tr
(
N�
L

)n
,

whereN�
L is a matrix of size( b

|�| ) d(�). �

For example, the number of properk-colourings ofBn(3, L) for any linking setL can be
written as

tr(No
L)

n + (k − 1) tr(N(1)
L )n

+ 1

2
k(k − 3) tr(N(2)

L )n + 1

2
(k − 1)(k − 2) tr(N(12)

L )n

+ 1

6
k(k − 1)(k − 5) tr(N(3)

L )n

+ 2

6
k(k − 2)(k − 4) tr(N(2,1)

L )n

+ 1

6
(k − 1)(k − 2)(k − 3) tr(N(13)

L )n.

The sizes of the matricesN�
L are as follows.

� o (1) (2) (12) (3) (2,1) (13)

size ofN�
L 1× 1 3× 3 3× 3 3× 3 1× 1 2× 2 1× 1

Of course, the entries of the matricesN�
L depend onL, and they are functions ofk. It turns

out these functions are polynomials, and our next task is to explain how to compute them.
The point of the theory developed above is that we can do this by choosing a fixedt and
considering the action on the basis elements

etF1, etF2, . . . , etFn� ,
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wheren� is independent ofk.

6. More about the basis elements

Consider a typical basis elementetF . By definition, it is a linear combination of terms
of the formfuF , whereu = t�, � ∈ C�k , andfuF is a formal sum of colourings∑

�∈R�k

u�F.

Lemma 8. Consider[�] as a subset of[�k] in the obvious way, and letVF = F−1[�].
Then the colourings that occur in the sumfuF are just those that agree onVF with u�F ,
for some� ∈ R�, and each such colouring occurs(k − b)! times.

Proof.The row stabilizerR�k is Sym(r0)×R�, so each� ∈ R�k can be written as�� with
� ∈ R� and� ∈ Sym(r0). Thus we can write

fuF =
∑

�∈R�

∑
�∈Sym(r0)

u��F.

For a fixed�, each colouringu��F agrees withu�F on VF . Conversely, recall that
precisely the lastb − |�| cells ofr0 belong to ImF. Hence if� fixes these cells pointwise,
�F = F . The remaining cells ofr0 are(k − |�|) − (b − |�|) = k − b in number, hence
there are(k − b)! colouringsu��F that agree withu�F onVF . �
LetXbe a subset of the vertex-setVandcan injection fromX to {1,2, . . . , k}. We define

{X | c} to be the set of thosek-colourings ofKb that agree withc onX. The element of
Vk(b) that is the formal sum of these colourings will be denoted by

[X | c] =
∑

c′∈{X|c}
c′.

In actual calculations (see below) it is often convenient to employ a more explicit form
of this notation. If the members ofX are listed in order,x1, x2, . . ., andc1, c2, . . . , are
colours, we write[x1, x2, . . . | c1, c2 . . .] for the formal sum of the colouringsc′ that satisfy
c′(x1) = c1, c

′(x2) = c2, . . . .
With this notation, the result of Lemma8 can be written as

ft�F = (k − b)!
∑

�∈R�

[VF | t��F ]

and consequently

etF = (k − b)!
∑

�∈C�k

sign(�)
∑

�∈R�

[VF | t��F ].

ThusetF is expressed as a linear combination of elements of the form[VF | uF ]. The
factor(k − b)! is unimportant, because it is the same for all�.
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As an example we calculate explicit basis elements for some typical subspacesYt of
Vk(b), generalizing results formerly obtained by ad hoc methods. The complete calculation
for b = 3 may be found in[10].
When! = 0 there is only one partition, the empty partitiono, andok = (k). There is

only one standardok-tableau

t = 1 2 · · · k .
The column stabilizer is trivial, soet = ft . There is only one relevantF : V → [ok], which
corresponds to the semistandard[ok]-tableau of type(k − b,1b)

F ∗ = 0 0 · · · 0 1 · · · b .
It follows thatWo = Yt andYt has a basis consisting of one elementetF = ftF . Here
VF = ∅, so by Lemma8, ftF = (k − b)! [∅ | tF ]. Since[∅ | tF ] is the formal sum of all
colourings,Wo is the one-dimensional submodule ofVk(b) spanned by this element.
When! = 1 there is only one partition,(1), and(1)k = (k − 1,1). There arek − 1

standard(k−1,1)-tableaux, since the number in the bottom row can be any numberr such
that 1< r�k:

t = 1 ∗ ∗ · · · ∗
r

,

where the∗’s denote the elements of{2, . . . , k} \ {r} in increasing order. The column
stabilizer is{id,	}, where	 switches the cells in the first column. Hence

et = ft − ft	.

There areb injectionsFj : {1,2, . . . , b} → [(k−1,1)], corresponding to the semistandard
(k − 1,1)-tableaux of type(k − b,1b):

F ∗
j = 0 0 · · · 0 ∗ ∗ · · · ∗

j
,

where the∗’s denote the elements ofV \ {j} in increasing order. We have
VFj = {j}, tFj (j) = r, t	Fj (j) = 1.

Hence, by Lemma8,

ftFj = (k − b)! [VFj | tFj ] = (k − b)! [j | r],
ft	Fj = (k − b)! [VFj | t	Fj ] = (k − b)! [j | 1]

and

etFj = ftFj − ft	Fj = (k − b)! ([j | r] − [j | 1]).
Thus the subspaceYt has the basis

{[j | r] − [j | 1] | j = 1,2, . . . , b}.
W(1) is the sum of(k − 1) suchb-dimensional subspaces, one for eachr ∈ {2,3, . . . , k}.
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When! = 2 there are two partitions,(2) and(12). The calculations are similar to those
given above, but obviously more complicated. For the partition(2), it turns out that there
are12 k(k−3) standard(k−2,2)-tableaux, one for each pair(r, s) satisfying 1< r < s�k

except(2,3). ThusW(2) is the sumof12k(k−3) subspacesYt . Each has a basis of12 b(b−1)
elements, and whenr > 2 the basis elements are

[i, j | r, s] − [i, j | 1, s] − [i, j | r,1] + [i, j | 1,2]
+ [i, j | s, r] − [i, j | s,1] − [i, j | 1, r] + [i, j | 2,1]

for each unordered pair of vertices{i, j} (Whenr = 2 the tableau has a slightly different
form, and consequently the basis elements too are different.)

7. The matricesSM

The key result concerning the matrixTL is its decomposition in terms of matricesN�
L

(Section5). In this section, we introduce a set of matricesSM that will simplify the calcu-
lation ofN�

L, for all linking setsL.
We say thatM ⊆ V × V is amatchingif, given v,w ∈ V , there is at most one pair

(v, v′) in M, and at most one pair(w′, w) in M. The matrixSM is the matrix whose rows
and columns correspond to thek-colourings ofKb, with entries

(SM)�	 =
{
1 if (v,w) ∈ M ⇒ �(v) = 	(w);
0 otherwise.

SM can be regarded as an operator onVk(b) in the same way asTL. In fact, we can describe
its action very simply. Given a matchingM ⊆ V ×V letM1,M2 denote the projections on
the factors, and� : M1 → M2 the bijection such thatM is the subset ofV × V consisting
of the pairs(v,�(v)) for all v ∈ M1. With this notation,

SM(	) =
∑
�

(SM)�	 � =
∑

�∈{M1|	�}
� = [M1 | 	�].

A sieve argument gives the relation betweenTL andSM [5, Theorem 3].

Lemma 9. For anyL ⊆ V × V ,

TL =
∑
M⊆L

(−1)|M| SM.

It is easily verified thatSM commutes with the action of Symk on the colourings. Hence,
repeating the argument used forTL in Section 5, it follows that there exist matricesP �

M of
sizee(�) such that

SM ≈
⊕

0� |�|�b

Id(�k) ⊗ P �
M.
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Furthermore, it follows from Lemma9 that

N�
L =

∑
M⊆L

(−1)|M| P �
M.

The entries ofP �
M are given by the action ofSM on the moduleW�, and according to the

theory developed in Section 5, it is enough to calculate the action on one subspaceYt . In
other words, the entries ofP �

M are the termsp(F ′, F ) such that

SM(etF ) =
∑
F ′

p(F ′, F ) etF ′.

8. Explicit calculation of the terms

Throughout this sectionwe suppose thatweare givenk,V = {1,2, . . . , b}, and apartition
� such that|�|�b. The matchingM and the standard tableaut : [�k] → {1,2, . . . , k} will
also be fixed.
In order to calculate the termsp(F ′, F ) it is convenient to use the bijective representation

of semistandard tableaux, introduced in Lemma 5. Let|�| = !, let X be an!-subset ofV,
and letg be a standard�-tableau on{1,2, . . . , !}. If we order the elements ofX according
to the natural order ofV, x1 < x2 < · · · < x!, then we have a standard�-tableaugX onX
defined by

gX(r, s) = xg(r,s) (r, s) ∈ [�].
The elements ofV \X are also ordered in the same way, sayw1 < w2 < · · · < wb−!, and
we can defineF(X, g) = F : V → [�k] as follows:

F(v) =
{
g−1(i) if v = xi ∈ X;
(0, k − b + j) if v = wj /∈ X.

Clearly the associatedF ∗ : [�k] → V ∪{0} is a semistandard�k-tableau of type(k−b,1b).
For example, supposeb = 9 and� = (3,1). If we takeX = {2,4,7,8} and

g = 1 2 4
3

then, providedk is large enough, the semistandard tableau associated withF = F(X, g) is

F ∗ =
0 0 0 · · · 0 1 3 5 6 9
2 4 8
7

.

Since(X, g) �→ F is a bijection for fixedg, we can take as basis elements ofYt the
elements

bX,g = 1

(k − b)! etF (X, g).
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WhenF = F(X, g) we haveVF = X and the restriction ofF to VF is g
−1
X , so the results

in Section6 imply that

bX,g =
∑
�

sign(�)
∑
�

[X | t��g−1
X ],

where the sums are taken over� ∈ C�k and� ∈ R�.
SincebX,g is a linear combination of terms of the form[X | t��g−1

X ], we require the
effect ofSM on a typical element[X | c], which can be computed as follows:

SM [X | c] = SM


 ∑

	∈{X|c}
	


 =

∑
	∈{X|c}

SM(	) =
∑

	∈{X|c}

∑
�∈{M1|	�}

�.

By rearranging the double sum and applying another sieve argument, we can obtain[5,
Theorem 5]a linear combination of elements of the form[Y | d]. The explicit form of this
result is as follows.

Lemma 10. A term[Y | d] occurs inSM [X | c] if and only if
(i) �−1(X ∩M2) ⊆ Y ⊆ M1, and
(ii) d(Y ) ⊆ c(X), and whenever(y, x) ∈ M with y ∈ Y andxinX, thend(y) = c(x).
If the conditions(i) and(ii) are satisfied the coefficient of[Y | d] is

(−1)|Y |−|X∩M2| q(|X ∪M2|),
whereq(s) is the‘ falling factorial’ 〈k − s〉b−s = (k − s)(k − s − 1) . . . (k − b + 1).

Note that condition (ii) is equivalent to saying that there is an injection� : Y → X such
that d = c�, and�(y) = �(y) whenever�(y) ∈ X. It follows thatSM [X | t��g−1

X ] is
a linear combination of terms[Y | t��g−1

X �], where|Y |� |X|. SinceSM leaves invariant
each subspaceYt , when we extend by linearity toSM(bX,g), all terms with|Y | < |X|
disappear (a fact which can also be proved directly[10, Theorem 3.10]). This fact is the
justification for using the Specht basis elementsbX,g, rather than the elements[X | c], as
was done previously[3].
When! = |�| there is a natural action of Sym! on the elementseg, whereg is any bijective

�-tableau on{1,2, . . . , !}, defined by�∗eg = e�g.Young’s natural representationof Sym!

associated with� is obtained by expressinge�g in terms of the standard basis[11, p. 74]:

� ∗ eg = e�g =
∑
h

R�
h,g(�) eh (g, h standard).

In the proof of following lemma it will be convenient to definebY,f by the same explicit
formula as that given above forbY,g, whenever the pair(Y, f ) is such thatf is any bijective
(but not necessarily standard)�-tableau onY.

Lemma 11. Given|�|-subsetsY,X of V satisfying condition(i) of Lemma10, let denote
the set of bijectionsY → X such that�(y) = �(y) whenever�(y) ∈ X. For any standard
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�-tableau g on{1,2, . . . , !}, the sum
∑
�∈

∑
�

sign(�)
∑
�

[Y | t��g−1
X �]

is equal to
∑
�

∑
h

R�
h,g(�

−1)bY,h,

where the sums are taken over the set of permutations� ∈ Sym! such that�(i) = j

whenever(yi, xj ) ∈ M and the set of standard�-tableaux h.

Proof.We may suppose thatYandX are ordered according to the natural order ofV. Then
we can associate with a bijection� : Y → X a permutation� ∈ Sym!, such that

�(i) = j ⇐⇒ �(yi) = xj .

Under this correspondence�−1gX and(�−1g)Y define the same�-tableau onY.Also, taking
the sum over bijections� ∈  is equivalent to taking the sum over the set� of permutations
� ∈ Sym! such that�(i) = j whenever(yi, xj ) ∈ M. Thus

∑
�∈

∑
�

sign(�)
∑
�

[Y | t��g−1
X �] =

∑
�∈�

∑
�

sign(�)
∑
�

[Y | t��(g−1�)Y ].

By definition, the second sum is equal to
∑

� bY,�−1g. Note that�
−1g is not generally

a standard tableau, and consequentlybY,�−1g is not a basis element. However, it can be
expressed as a linear combination of basis elements as follows. Referring to the definitions,
the action of Sym! on the elementsbY,g, defined by

� ∗ bY,g = bY,�g,

is the same as the action on the elementseg. Thus

bY,�−1g = �−1 ∗ bY,g =
∑
h

R�
h,g(�

−1)bY,h,

as claimed. �

Theorem 12. Suppose the action ofSM on an elementbX,g of the basis ofYt ⊆ W� is
given by

SM(bX,g) =
∑
Y,h

p(Y, h;X, g)bY,h.

Then

p(Y, h;X, g) = (−1)|�|C(Y,X)
∑
�

R�
h,g(�

−1),
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where
C(Y,X) = 0 unless�−1(X ∩M2) ⊆ Y ⊆ M1, in which case

C(Y,X) = (−1)|X∩M2|q(|X ∪M2|);
the sum is taken over all� ∈ Sym! such that�(i) = j whenever(yi, xj ) ∈ M;
R� is Young’s natural representation ofSym! associated with�.

Proof.We have

SM(bX,g)=
∑
�

sign(�)
∑
�

SM [X | t��g−1
X ]

=
∑
�

sign(�)
∑
�

∑
Y,�

(−1)|Y |−|X∩M2|q(|X ∪M2|) [Y | t��g−1
X �],

where the last sum is taken overYand� such that the conditions of Lemma10are satisfied.
Changing the order of summation, andwritingC(Y,X)as in the statement of the theorem,

we obtain the expression

(−1)|�| ∑
Y

C(Y,X)
∑
�∈

∑
�

sign(�)
∑
�

[Y | t��g−1
X �].

Now it follows from Lemma11 that∑
�∈

∑
�

sign(�)
∑
�

[Y | t��g−1
X �]

=
∑
�

∑
h

R�
h,g(�

−1) bY,h

=
∑
h

∑
�

R�
h,g(�

−1) bY,h. �

The theorem means that we can considerP �
M as a block matrix with submatricesUYX,

whereY,X are|�|-subsets ofV. This submatrix is zero unlessY,X, andM satisfy condition
(i) of Lemma10, in which caseUYX has the form

± q(|X ∪M2|)
∑

R�(�−1).

This is the ‘collapsed’matrix[3], obtained previously by very roundabout arguments.

9. Conclusion

Using themethods described above, the terms involved in the formula forP(Bn(b, L), k),
(Theorem7), can be calculated explicitly and completely for small values ofb, and for all
L. The polynomials occurring as entries of the matrixP �

M can be computed once and for
all; essentially there is only one calculation for each value of|M| satisfying|�|� |M|�b.
Given the catalogue of matricesP �

M , the matricesN
�
L can be obtained by the sieve formula
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(Lemma9), for any linking setL. The trace of(N�
L)

n is the solution of a linear recursion
with coefficients that are polynomials ink (essentially this is Newton’s formula applied to
the characteristic polynomial).
This approach is followed in[5], where all the matricesP �

M for b = 3 are computed.
The Specht bases are not used in that paper, but extensive computations, using the Specht
bases, can be found in Reinfeld’s thesis[10]; these results are also applicable to the case
when the base graphB is not complete. In[5] the matricesN�

L for the particular linking sets
L = {11,22,33} andL = {12,13,21,23,31,32} are given, and explicit formulae for the
chromatic polynomials of the respective graphsBn(3, L) obtained. These are ‘easy’ cases
of the formula given in Section 6, in that the eigenvalues of the matricesN�

L are themselves
polynomials ink, and the trace of(N�

L)
n is simply the sum of theirnth powers. For example,

in the caseL = {12,13,21,23,31,32} the chromatic polynomial is

(k3 − 9k2 + 29k − 32)n

+ (k − 1)
(
(−2k2 + 16k − 128)n + 2(k2 − 5k + 7)n

)

+ 1

2
k(k − 3)

(
(3k − 14)n + 2

)

+ 1

2
(k − 1)(k − 2)

(
(k − 2)n + 2(−2k + 7)n

)

+ 1

6
k(k − 1)(k − 5) (−2)n

+ 2

6
k(k − 2)(k − 4) (2)

+ 1

6
(k − 1)(k − 2)(k − 3) (−2)n.

It may be worth remarking that although the caseb = 2 was done by ad hoc methods in
1972, the analogous results forb = 3 were not obtained until over 25 years later, and then
(initially) by ad hoc methods as well. The situation now is that not only do we have a viable
method, but also a theory that explains it, and the prospect of further advances.
What can be said generally about larger values ofb, and what happens asb → ∞?

In the case whenL = {11,22, . . . , bb}, the result forb = 4 was given in[3], and some
results for larger values ofb have been obtained by Chang[6,7]. For certain partitions�,
more general results can be obtained. In[3] the terms corresponding to the one-dimensional
representations,� = (!) and � = (1!), were obtained explicitly, and for allb. More
generally, the arrangement of the terms according to increasing! = |�| has the property
that the terms corresponding to the smallest values of! are in fact the leading terms in the
chromatic polynomial. However largeb is, the partitions with 0�!�r determine all the
terms ofP(Bn(b, L), k) with degree frombndown to(b− r)n+ 1. Such observations can
be used to obtain bounds on the absolute values of the roots of the chromatic polynomials.
Last, but not least, the theorem of Beraha et al.[1] can be deployed to analyze the limiting
behaviour of the roots asn → ∞ [4].
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