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Abstract

An explicit formula for the chromatic polynomials of certain families of graphs, called ‘bracelets’,
is obtained. The terms correspond to irreducible representations of symmetric groups. The theory is
developed using the standard bases for the Specht modules of representation theory, and leads to an
effective means of calculation.
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1. Introduction

The chromatic polynomialP (G; k) is the function which gives the number of ways of
colouring a grapl@ whenk colours are available. The fact that it is a polynomial function of
kis elementary (Sectid?), related to the fact that, whéais large enough, not all the colours
can be used. Another quite trivial property of the construction is that the names lof the
colours are immaterial; in other words, if we are given a colouring, then any permutation
of the colours produces another colouring. In SecBpthese facts will be cast into an
algebraic form that provides the foundation of our theory.

A ‘bracelet' G,, = G,(B, L) is formed by takingn copies of a graptB and joining
each copy to the next by a set of links(with n + 1 = 1 by convention). Using the
framework described in Sectid) it can be shown that the chromatic polynomial@jf
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can be expressed in the form

P(Gpik) =Y mp (k) tr(ND)".

The sum is taken over all partitiomssuch that & |z| < b, wherebis the number of vertices
of B. The termsn z (k) are polynomials irk, and they are independent lof WhenB is
the complete graplk, the relevant polynomials: (k) are given by a remarkably simple
formula (see Sectiordand5).

The size of the matrixV} is independent ok; its entries are polynomials ik, and
they do depend oh. The original approach to these matri¢8f involved a sequence of
elementary, but complicated, calculations, culminating in a rather mysterious application of
representation theory. Here we shall present the theory in a more elegant form. In Sections
3 and4, we construct bases for certain irreducible modules (corresponding to the Specht
modules of representation theory), and we shall use these bases for our calculations.

The results obtained here also facilitate further study of the general properties of the
matricesN . In particular, we are strongly motivated by the fact that the formula displayed
above is well adapted to the application of the Beraha—Kahane—Weiss thddrézading
to the construction of ‘equimodular curvg4] that describe the behaviour of the roots of
P(G,; k) for large values oh.

2. Colourings and modules

Let B be a graph with vertex-s®&tand edge-set. A colour-partition of B is a partition
of Vinto independent sets:

P={Py, P>, ..., P}.

A k-colouring ofB is a functionc : V — K, whereK = {1, 2, ..., k}, such that(v) #
c(w)whenevenw € E. Clearly, anyk-colouring induces a colour-partition, each part being
a set of vertices that are assigned a particular colour. A colour-partition|Rijtparts is
induced by

K)pp=ktk—=1)...(k =[P+ 1),
k-colourings, so the total number kfcolourings is

V]
P(B;k) =Y (K)p =Y q(B) k),

P r=1
whereg, (B) the number of colour-partitions &with r parts. This simple argument shows
that P(B; k) is a polynomial function ok. For our purposes we require its algebraic coun-
terpart, as follows.

Denote byV,(B) the complex vector space with basis the set okalblourings ofB.

Clearly, it is the direct sum of subspaces

Vi(B) = @ Vi, P
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where V), p is the subspace whose basis is the sek-oblourings that inducéP. The
symmetric group Symof all permutations of the sdt, 2, ..., k} acts onVx(B) by the
rule w(c) = wc, which makes/,(B) a CSym,-module (For the avoidance of doubt, we
state that, in this paper, the composite of two permutationso; is given by(w1w2) (x) =
w1(w2(x)).) This action preserves the subspakes, and so they ar&€Sym,-submodules.

Of course,V p is just the module generated by the injections ofreset into ak-set,
and its decomposition is an exercise in the representation theory of the symmetric group
[8,11]. The analysis will be done here in terms that allow us to appeal directly to the results
as they are stated if11], although we shall introduce some minor modifications to the
terminology.

A partition 4 of a nonnegative integdris a sequencéis, 4o, ..., Ax) such that

Mtlo+-+ =k, (A1=2lo>-- A4 =0).

The notation is often abbreviated by collecting equal parts and omitting the parts that are
zero: for example4?, 3) is a partition of 11 with three non-zero parts 4,4, and 3. Associated
with /1 is adiagramcomposed otells(i, j) arranged in rows and columns: there areells
@,1),1,2),...,34d, ) inrowi (see below for examples). We denote the set of cells.hy
Conventionally, there are no cells corresponding to parts thfat are zero; in particular
whenk = 0 we have the partition for which [o] = @.

Given a partitiond we define al-tableauto be a functiorr : [1] — N U {0}. Note that
this corresponds to Sagankl, 2.9.1]'generalized Young tableau’ except that we allow
the value 0 as well as positive integers. A tableau is represented by putting the values in the
appropriate cells: for example, iff= (42, 3), the following is a-tableau:

3
0.

Rk ~NO
W wN
o NG

The link with graph colourings depends on the simple observation thabkuringc of
a graphB, which induces a colour partitioR with » = |P|, can be represented (provided
k > r) by a tableau corresponding to the partitiqn. = (k — r, 17):

*

%

Here each stands for one of the colours, that is, the numbegs 1 ., k. Thek —r colours

in the top row are those thatdoes not assign to any vertex. There is one colour in each
of the remaining rows, these colours being the onesdlaasigns to the independent sets
comprisingP. Note that this is dijectivetableau on{1, 2, ..., k}; in other words, each
value occurs exactly once in a cell.
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In order to take this idea further, we need some more terminology. We shall denote the
rows of[A]byr; (i =0,1,2,...),and the columns by; (j =1,2,...). Thus
[A] = roUriUrpU...=c1UcaU...

The reason for calling the top rowy will appear later. Theow stabilizerand column
stabilizercorresponding ta are defined to be, respectively, the subgroRpsand C; of
the symmetric group Syp] of permutations of 1], given by

R, = Sym(rg) x Sym(r1) x ... and C;, = Sym(c1) x Sym(c) X ... .

Given a/-tableaut andp € R, tp is al-tableau in which the values occurring in each
row are the same as thosetirbut in a different order. In the case wheris a bijective
J-tableau or{l, 2, . .., k}, the equivalence class

{t}=A{tp|p e Ry}

is known as d@abloid[11, 2.1.4]
Let Z* denote the complex vector space with basis the set of all bijetttableaux on

{1,2,...,k}. Associated with each tabloid we have an elemergof
{t} <«— f,:Zs:th.
seft} PER)

The space spanned by these elements will be denotebﬂb;(ln the usual development
of the subjec{11, 2.1.5]M" is defined directly as the complex vector space with basis
the set of tabloids.) Note that1”* is aC Sym,-module by virtue of the action of Synon
{1,2,...,k}.

In the correspondence between colourings and tableaux described above, it is clear that
order of the numbers within each row is irrelevant. So dacblouringc corresponds to
a A -tabloid, wherer = |P| is the number of colours actually useddinWe have the
isomorphism

Vip = M

It is a standard resuliL1, 2.4.7]that, for any partition®. of k, the irreducible constituents
of the (ESymk-moduIe/\/l;‘ areSpecht module$#, wherep is a partition thattominatesi.
This means that

W+t = at+lo+-+4 (=12..k).

When/ = A, the condition withi = 1 implies thatu; >k — r. Writing 1y = k — ¢,
(0<e<r), it follows that the remaining conditions are satisfied whes- (u,, iz, .. .)
is any partition of¢. Thus, provided is large enough, the partitionsof k that dominate
Jk.r are in bijective correspondence with the partitiansuch that &< |z| <r. The inverse
bijection is such that, given such thaiz| = ¢, the corresponding partition &fis

*=(k—0m1,7m0,...,1) (k=20).

With this notation, the foregoing results can be summarized as follows.
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Lemma 1. Forall k > 2|P|, Vi p contains irreducible submodules isomorphic to the Specht

moduleS* if and only ifu = ¥, wherer is such thaD< || <|P|, and these are the only
irreducible submodules af; p.

3. Dimensions and multiplicities of the Specht submodules

Given a bijectivei-tableaut on {1, 2, .. ., k} ande € Sym{ ], we have another bijective
J-tableaw ¢, and the associatefl, € M*. Definee, € M* as follows:

er= Y Signy fi, = Y. Y sign(iyp.

7€C;, 7€C; peR,
For example, let = (2, 1) andr = é 2. ThenR; = {id, «}, whereo switches the cells in

the top row, and”, = {id, f§}, wheref switches the cells in the first column. So

12 21 32 23
et:ft_ftﬁzg +3 _l _l .

It is easy to check that our definition ef is equivalent to the more usual ofiel, 2.3.2]
where it is called golytabloid

e =t} where K, =) signp)p e CSym,
peCy

andC, is the subgroup of Sygngiven by{ryt=1 | y € C;}.

A J-tableaut is said to bestandardif the values assigned hyincrease along each row
and down each column ¢£]. In particular, a standard tableau is bijective. The fundamental
result on the structure of the Specht modu#éss as follows[11, 2.5.2]

Lemma 2. The set o#, such that t is a standard-tableau on{1, 2, ..., k} is a basis of a
submodule of\* isomorphic taS*.

It follows from Lemmaz2 that the dimensiod () of a Specht moduls™ is equal to
the number of standard bijectio[vs"] — {1, 2,..., k}. A simple formula for this number
can be derived from the well-knowmook formula[11, 3.10.2] Given a partitioni and a
cell (i, j) € [u], there corresponds a ‘hook’ consisting of the célls) with y > j and the
cells(x, j) with x >i. The number of such cells is ti®ok-length

hij(W = (= )+ Wy — i) + 1,
Whereu’/ is the number of cells in thigh column ofu (that is, thgth part of the conjugate

partition i'). The hook formula for the dimension St is

!

d(w = A

,  Where h(p) = l_[ hij ().
i,
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Lemma 3. If || = ¢, and7* is as in Sectior®, then
d(m) .
d(n*) = T [] k—t—m+i.
1<i<e

Proof. By the hook formula, it is enough to prove that
k!
h(7*) = h(n) (—) . whereG = [] (k—t—m+i)
G .
1<i<t

Since the diagram for* is that form with an extra rowp (n*) = h(n)H, whereH is the
product of the hook-lengths corresponding to cells in the top rowf ofVe have to prove
thatGH = k!.

The hook-length corresponding to céll, j) is

k—€t—j+D+n; A<j<k—0),

and sdH is the product of these numbers. An elementary rg8ufi. 3]asserts that, for any
partitiony and anym > vy, n > v}, the numbers

vi+n4+1—j (A<j<n) and n+i—v, A<i<m)

are a rearrangement of 4, ..., m + n. Applying this result withv = 7/, m = ¢, and
n = k — ¢ it follows that the numbers

(k—E—j—i—l)—i—nfi A<j<k—0 and k—¢+i—m (1<i<0)

are a rearrangement of 2, . . ., k. The product of the first set i4 and the product of the
second set i, SOGH = k! as claimed. [J

In terms of the strictly decreasing partitiorof %K(é + 1) associated with by the rule
o =m +4£—1i (1<i<t),the preceding result can be written in the form

d(7) = [d(m)/t) (k — 1) (k — 02) ... (k — 7).

This is clearly a polynomial itk of degreeZ, and the fact that it takes integer values for all
integersk is worth noting.

Lemma 4. The number of submodulesgf(b) isomorphic taS™ is independent of k and
is given by the formula

e(m) = <|z| ) d(m).

Proof. It follows from Theorem 3 that the required number is equal to the number of
semistandara*-tableaux onV U {0}, of type (k — b, 1°). In other words, it is the number
of ways of assigning the numbersD 2, . .., b to [7¥] in such a way that (i) 0 occuks— b
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times and each # 0 occurs once, and (ii) the numbers increase weakly in each row and
strongly in each column.

In order to satisfy condition (i), the— b 0’s must be assigned to the fikst b cells of the
top rowrg. Let¢ = |x|, and suppose we have chosen a subsésizel from {1, 2, ..., b}.
Then we can put the elements lointo rowsry, r», ..., of [zf], forming a standara-
tableau on., and the rest (in numerical order) in the last ¢ cells ofrg. Hence the required
number is(ﬁ) times the number of standandtableau orl, and the second term is clearly
the same as the number of standasthbleau o1, 2, ..., ¢}, thatis,d(n). O

We shall refer tae(n) as themultiplicity of %

4. The link with graph colourings

We now focus on the situation when the base grBpk a complete graplk, with

vertex-setV = {1, 2, ..., b}. It follows from the general theory outlined at the beginning
of Section2 that, in principle, the general case can be reduced to this one (for more details,
see[10]).

We shall writeVy (b) for Vi (Kp). Since there is only one colour-partitionjﬁf,, the trivial
one in which each part is a single vert&¥,(b) is isomorphic to a singlé1*

Ve(b) ~ M*™b  where A, = (k—b,1°).

Our firsttask is to construct the submodule¥pfp) that correspond to the Specht modules.
From Lemmal, we know that these are of the foﬁk, wherer is any partition such that
0<|n|<b.

Given an injectionF : V — [n*], defineF* : [n¥] — V U {0} such thatF* is the
inverse ofF on ImF and F* is 0 on all cells not in InF. In the usual terminology11,
2.9.1] F* is an*-tableau otype(k — b, 1°). For example, lek = 10 and suppose is the
partition (2, 2, 1) of 5. If b = 6, we could choose injections : {1, 2, 3,4,5, 6} — [75]
to give the followingr*-tableauxr™*, of type (4, 1°):

0 0 4 0 0 O

g wEr o
N O
g B~ DNO
o Wk

Such a tableau is said to lsemistandardl1, 2.9.5]if the entries increase strictly down
each column and weakly along each row[of]. The first example displayed above is
semistandard, but the second is not. Observe that in a semistandard tableau all he
zeros occur in the first — b cells in the top row, and that the restriction Bf to [n] is a
standardr-tableau on a subset ¥f

The link with k-colourings ofK;, can now be made. Given an injectiéh: V — [n],
a permutationn € Sym{z¥], and a bijectivert-tableaut on {1, 2, ..., k}, the composite
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functiontwF is such a colouring. So, if we defin@F ande; F in the obvious way:

fiF =) tpF. eF =) signy)fuF

PER k 7€C 1k

these are linear combinations of colourings with coefficigrit@nd thus elements df, ().
Comparison witH11, 2.10.1]gives the fundamental result on the Specht submodules of
Vi (b).

Theorem 5. For each injectionF : V — [nf], such thatF* is semistandard of type
(k — b, 1), the set

{e;F | t is a standard* —tableau on(1, 2, ..., k}}

is a basis for a submodulg’ of V (b), isomorphic to the Specht modu& . The set of
all suchi/” is the complete set of non-identicateducible submodules af(b) that are

isomorphic tas™. O

For a givenr, we denote the direct sum of these submodiffesf Vi (b) by W*. That is
W' = Pu" | F* is a semistandard* —tableau of typek — b, 1)}.
Then we have

Ve(b) = @IV | 0< |m| <b).

5. The chromatic polynomials of bracelets

In this section we shall explain how the decomposition/ptd) into its irreducible
submodules leads to explicit formulae for the chromatic polynomials of certain families of
graphs. The generalization 1 (B) is possibld10] but it will not be discussed here.

We continue to denote the vertex-setfby V = {1, 2, ..., b}. GivenaseL C V x V
and an integer > 3, we construct theraceletB,, (b, L) as follows. Taken disjoint copies
of K, and link them so that, for each pdir, w) € L, the vertexv in one copy ofK, is
joined to the vertexv in the next copy, with the convention that+ 1 = 1. We obtain a
ring of n copies ofK,, linked by edges in the manner prescribed.

A pair (a, ) of k-colourings ofK}, is compatible with Lif:

(v,w)e L = av) # p(w).

This means that if one copy &f; is coloured according t®, a second copy o€, according

to f5, and they are linked accordingtothe resulting graph is properkycoloured byx and

f. The compatibility matrix7y, is the matrix whose rows and columns correspond to the
k-colourings ofK};, with entries

1 if(a, f)is compatible withZ;

T)ap = { 0 otherwise



N. Biggs / Journal of Combinatorial Theory, Series B 92 (2004) 359-377 367

Note that7; depends ork, specifically because the number of its rows (and columns) is
equal to the number d¢colourings ofK, the dimension oV (b). Indeed, we can regard
Tp as an operator ol (b) in the standard way: if thk-colouringf is identified with an
element ofV, (b), then

LB =) (Tpa= Y o
o %L ()

whereL(p) is the set ofx such that(e, f5) is compatible withL.
The connection between the chromatic polynon#éB,, (b, L); k) and Ty is given by
the following well-known simple resu[R].

Lemma 6. The number of k-colourings @&, (b, L) is equal to the trace of7y)".
The symmetric group Sypmacts on thek-colourings ofK;, by permuting the colours.
Givenw € Symy, let

1if wfp=aq,

(A(@))yp = { 0 otherwise

In other wordsA is the matrix representation afforded by th8ym,-moduleVk (). Recall
that the submodul®V™ of Vi (b) is the sum of Specht submodules

Wt =ulreure. .. eu,
wheren, = e(n) = (é\)d(”)' Letty, 1o, ..., t,, be the standara*-tableau on the set

(1, 2,...,k}, wheremy = mz(k) = d(n¥). According to Theorem 3, a basis faf’ is the
set

lenFjli=12 .. my).

Thus, by changing to the bagis, F;} for each/V", A(w) can be reduced to block-diagonal
form, with the blocks on the diagonal being matrices of sizex m.

Now, it can easily be checked that the action of $yreserves compatibility. In matrix
terms, we have

T A(w) = A(w) T, for all w € Sym,

which means thal; belongs to theommutant algebraf the representatioA. Fori =
1,2, ..., my denote the subspace)df" with basis

le, Filj=12...,ng}
by )i (Note that this is not & Sym,-submodule.) However,
WE=1e)?2 @ @)Y

and applying Schur’'s LemmA1, Sections 1.6 and 1.¥e conclude that, sincg com-
mutes withA (w) for all € Symy, it can be reduced to the form

.~ @ In,®N[
0< | <b
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Herel, is the identity matrix of sizen, and N} is a matrix of size:, representing the
action of 77, on any one of the subspac®%. Note that since,; = e(n) = (Ifrl) d(m), the
size of N does not depend dg although its entries do.

The explicit formula ford (7*) obtained in Section 4 shows that it can be written as a
polynomial ink

7|
d(m)
il ]1 (k — a;(m)),

wheres; (1) = 7; +|n| —i. Finally, applying the trace formula for the number of colourings
(Lemmaé), we have the key result.

me(k) = d(n*) =

Theorem 7. Suppose integers b and k are givevith £ > 2b. For each partitionz with
0<|n| <D letd(n) be the dimension of the Specht modsfe and letm (k) be the poly-
nomial displayed above. Then for any linking set L the number of k-colourings(bf L)
is equal to

Z mz(k) tr (NJ)"

T

whereNT is a matrix of size \zl) d(m). O

For example, the number of progecolourings ofB, (3, L) for any linking set. can be
written as

(VD" + (k — D tr(NP)"
+ % k(k =3 tr(N;)" + % k — Dk — 2 tr Ny
+ é k(k — 1)(k —5) tr(N{>)"
+ % k(k — 2)(k — 4) tr(N\ 2D
+ é (k— Dk — 2k — 3 tr(VEy,

The sizes of the matrice¥] are as follows.

r ol elena
size of N7|1 x 1[3x 33x 33x 3L x 2 x 21 x 1

Of course, the entries of the matric®¥§ depend ori, and they are functions &f It turns

out these functions are polynomials, and our next task is to explain how to compute them.
The point of the theory developed above is that we can do this by choosing & &xed
considering the action on the basis elements

etFy1,e o, ..., etanv
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wheren, is independent dk.

6. More about the basis elements

Consider a typical basis elemeantr'. By definition, it is a linear combination of terms
of the form f,, F, whereu = ty, y € C, andf, F is a formal sum of colourings

Z upk.

PER i

Lemma 8. Consider[rn] as a subset ofz*] in the obvious wayand letVy = F~1[x].
Then the colourings that occur in the sufpF are just those that agree ovz with uw F,
for somew € R, and each such colouring occuts — b)! times

Proof. The row stabilizeR .« is Sym(ro) X Ry, SO eaclp € R« can be written asg with
w € Ry ande € Sym(rp). Thus we can write

fuF = Z Z uwoakF.

weRy; geSymM(rg)

For a fixedw, each colouringiwa F agrees withuwF on Vy. Conversely, recall that
precisely the lash — || cells of g belong to ImF. Hence ifo fixes these cells pointwise,
oF = F. The remaining cells ofy are (k — |r|) — (b — |x|) = k — b in number, hence
there argk — b)! colouringsuwo F that agree withhw F on V. [

Let X be a subset of the vertex-8&andc an injection fromXto {1, 2, ..., k}. We define
{X | ¢} to be the set of thoske-colourings ofK}; that agree wittc on X. The element of
Vi (b) that is the formal sum of these colourings will be denoted by

X[l = > .
c'e{X|c}

In actual calculations (see below) it is often convenient to employ a more explicit form
of this notation. If the members of are listed in orderxy, xo, ..., andcy, co, ..., are
colours, we writdx1, x2, ... | c1, c2...] for the formal sum of the colourings that satisfy

'(x1) =c1, (x2) =c2,....
With this notation, the result of Lemn@&can be written as

foF = (k=0 > [Vr|tyoF]
WERy
and consequently
e.F = (k—b)! Z sign(y) Z [VF | tyoF].
7eC k WERy

Thuse, F is expressed as a linear combination of elements of the féim| uF]. The
factor (k — b)! is unimportant, because it is the same formall
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As an example we calculate explicit basis elements for some typical subspaocés
Vi (b), generalizing results formerly obtained by ad hoc methods. The complete calculation
for b = 3 may be found irf10].

When¢ = 0 there is only one partition, the empty partitionando® = (k). There is
only one standard*-tableau

tr=12--- k.

The column stabilizer is trivial, s§ = f;. There is only one relevatt : V — [0*], which
corresponds to the semistand@sti]-tableau of typek — b, 1°)

F*=00---01---b.

It follows thatWW’ = )* and)’ has a basis consisting of one element = f, F. Here
Vi =@, so by LemmaB, f; F = (k — b)! [# | t F]. Since[d | t F] is the formal sum of all
colourings, V"’ is the one-dimensional submodulegf(b) spanned by this element.
When¢ = 1 there is only one partition(1), and (1) = (k — 1, 1). There areék — 1

standardk — 1, 1)-tableaux, since the number in the bottom row can be any nunsheh
that 1< r <k:

1% o0 %

= )

r
where thex’s denote the elements 42, ..., k} \ {r} in increasing order. The column
stabilizer is{id, 5}, wheref switches the cells in the first column. Hence

er = fi _ftﬁ'

There ardinjectionsF; : {1,2,...,b} — [(k—1, 1)], corresponding to the semistandard
(k — 1, 1)-tableaux of typgk — b, 1°):

F’FZQO"'O**"'*
T

where thex’s denote the elements &f \ {} in increasing order. We have
VFj:{j}t tFj(j):rv tﬁFj(])zl

Hence, by Lemma,

)

JiFj =k =D)'[VF, | tFjl=(k—=D)![j|r]
fipFj = (k=D) [VF; | tpF;1= (k= b)![j | 1]
and
eFj = fiFj— fipF; = (k=)' Ir1—1[j11D.
Thus the subspa¢¥ has the basis
{GIrl=0111j=%2....0}

WD is the sum ofk — 1) suchb-dimensional subspaces, one for each{2, 3, ..., k}.
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When¢ = 2 there are two partitiong2) and(12). The calculations are similar to those
given above, but obviously more complicated. For the partit®)nit turns out that there
are% k(k — 3) standardk — 2, 2)-tableaux, one for each pdi, s) satisfying 1< r < s <k
except(2, 3). ThusW@ is the sum ok (k — 3) subspaced” . Each has a basis §fb(b— 1)
elements, and when> 2 the basis elements are

[l,]lr,s]_[l,]|1,S]_[l,]|r,1]+[l,]|1,2]
+ljlsorl=1,j s, =1/ 1 Lrl+1i,j121]

for each unordered pair of verticés j} (Whenr = 2 the tableau has a slightly different
form, and consequently the basis elements too are different.)

7. The matricesSy

The key result concerning the matrfy is its decomposition in terms of matricég’
(Sectionb). In this section, we introduce a set of matricgg that will simplify the calcu-
lation of N7, for all linking setsL.

We say thatM C V x V is amatchingif, given v, w € V, there is at most one pair
(v, v") in M, and at most one paiw’, w) in M. The matrixS,, is the matrix whose rows
and columns correspond to tkesolourings ofKj,, with entries

1 if (v,weM = aw) = f(w);

(Sm)ap = { 0 otherwise

Sy can be regarded as an operaton) in the same way ag; . In fact, we can describe
its action very simply. Given a matchidg C V x V let M1, M» denote the projections on
the factors, ang : My — M5 the bijection such thatl is the subset o/ x V consisting
of the pairs(v, u(v)) for all v € M1. With this notation,

SuB) =D Smpr = Y o= [M1]ful.

ae{Ma|fu}

A sieve argument gives the relation betwdgnandsS,, [5, Theorem 3]
Lemma 9. ForanyL C V x V,

o= Y (=DM sy

MCL

Itis easily verified thas,; commutes with the action of Synon the colourings. Hence,
repeating the argument used @1 in Section 5, it follows that there exist matriceg, of
sizee(n) such that

S~ B L ® P
0<|n| <b
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Furthermore, it follows from Lemm@that

NE= Y (=pM pp.
MCL

The entries ofPy, are given by the action ofy, on the module/V™, and according to the
theory developed in Section 5, it is enough to calculate the action on one subdpéte
other words, the entries d@f}; are the termg (F’, F) such that

Su(eF) =)  p(F'.F) eiF'.
F!

8. Explicit calculation of the terms

Throughout this section we suppose that we are diy&n= {1, 2, ..., b}, and a partition
7 such thatz| < 5. The matchingVl and the standard tableau [7%] — {1, 2, ..., k} will
also be fixed.

In order to calculate the terms F’, F) itis convenient to use the bijective representation
of semistandard tableaux, introduced in Lemma 5.|zet= £, let X be an¢-subset olV,
and letg be a standard-tableau or{1, 2, . .., ¢}. If we order the elements of according
to the natural order o¥, x1 < x2 < --- < x¢, then we have a standardtableaugx on X
defined by

gx(r,s) = Xg(r,s) (r,s) € [x].
The elements o¥ \ X are also ordered in the same way, say< wz < --- < wp_¢, and
we can defing" (X, g) = F : V — [n*] as follows:
—1,: . _ X .
Fv) = g () . !fv—x,eX,
O,k—b+j) fv=w;¢X.

Clearly the associatel* : [7¥] — V U{0} is a semistandardt -tableau of typek —b, 17).
For example, suppode= 9 andn = (3, 1). If we takeX = {2, 4, 7, 8} and

124
3

then, provided s large enough, the semistandard tableau associatedwith¥ (X, g) is

000---013569
F* =248
7

Since(X, g) — F is a bijection for fixedg, we can take as basis elementg)dfthe
elements

e F(X, g).

o1
X8 =k Zb)
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WhenF = F(X, g) we haveVy = X and the restriction of to Vg is g;(l, so the results
in Section6 imply that

bxg = Y signy) Y [X | ywgitl,
(0]

b

where the sums are taken oyee Cx andw € Ry.
Sinceby , is a linear combination of terms of the forfi | tycug;(l], we require the
effect of Sy, on a typical elementX | ¢], which can be computed as follows:

SulX el =Su| D Bl = D suBp= ) > o

Be{X|c} BeiX|c} Be{X|c} ac{M1|fu}

By rearranging the double sum and applying another sieve argument, we can[Bbtain
Theorem 5h linear combination of elements of the fofin | ¢]. The explicit form of this
result is as follows.

Lemma 10. Aterm[Y | d] occurs inSy/[X | ¢] if and only if

(i) wHX N M) CY C My, and

(i) d(Y) C c(X), and wheneve(y, x) € M withy € Y andxinX, thend(y) = c(x).
If the conditiondi) and(ii) are satisfied the coefficient pf | d] is

(=DWI=IXOMEL G (X U Ma)),
whereg (s) is the'falling factorial’ (k — s)p_y = (k—s)(k—s —1)... (k—b+1).

Note that condition (ii) is equivalent to saying that there is an injedliony — X such
thatd = 0, and0(y) = u(y) wheneveru(y) € X. It follows that Sy/[X | tya)g;(l] is
a linear combination of terms’ | tycog;lG], where|Y | <|X]|. SinceSy, leaves invariant
each subspac®’, when we extend by linearity t6)/(bx o), all terms with|Y| < |X|
disappear (a fact which can also be proved dired); Theorem 3.10Q] This fact is the
justification for using the Specht basis elemérys;, rather than the elementX | c], as
was done previousls].

Whent = |r| there is a natural action of Syron the elements,, wheregis any bijective
n-tableauor{l, 2, ..., ¢}, defined by x e, = e,¢. Youngs natural representatioof Sym,
associated with is obtained by expressing, in terms of the standard bagisl, p. 74]

Gxeg=eso =Y R (0)e; (g hstandard.
7

In the proof of following lemma it will be convenient to defibe ; by the same explicit
formula as that given above féy, ., whenever the paifY, f) is such that is any bijective
(but not necessarily standarahtableau ory.

Lemma 11. Given|r|-subset¥’, X of V satisfying conditioKi) of Lemmaél0, let @ denote
the set of bijection§ — X such that)(y) = u(y) wheneven(y) € X. For any standard
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n-tableau g on(1, 2, ..., ¢}, the sum
D> sign) DY | rywgy o]
0c® 7 @

is equal to
2 2 R (@ Dby,
a h

where the sums are taken over the set of permutatiorss Sym, such thate(i) = j
whenevely;, x;) € M and the set of standare-tableaux h

Proof. We may suppose thatandX are ordered according to the natural orde¥of hen
we can associate with a bijection: ¥ — X a permutatiors € Sym,, such that

oi)=j <= 0 =ux;.

Under this correspondenéélgx and(c~1g)y define the same-tableau or. Also, taking
the sum over bijectiong € @ is equivalent to taking the sum over the Beif permutations
o € Sym, such thair(i) = j whenever(y;, x;) € M. Thus

D> Usigny) DY [ rywgy 1= Y sign) > 1Y | ryw(g o)y ],
0e® 7V & ogeX Y (@]

By definition, the second sum is equal }o, by ,-1,. Note thate g is not generally

a standard tableau, and consequently-1, is not a basis element. However, it can be
expressed as a linear combination of basis elements as follows. Referring to the definitions,
the action of Sym on the elementsy ,, defined by

T * by,g = by;;g,

is the same as the action on the elemeptS hus

-1 -1
byo1, =0 "xbyg =Y R (0 Dby,
h

as claimed. O

Theorem 12. Suppose the action ¢, on an elemenby , of the basis off € W'is
given by

Su(bx.g) =Y p(Y,h: X, g)byp.
Y.h

Then

pY. i X, g) = (=DMC(y. X)) R (67h),
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where
C(Y, X) = Ounlessu~1(X N M) € Y C My, in which case

C(Y, X) = (-1)X"M2lg(1x U My));

the sum is taken over adl € Sym, such thats (i) = j whenevely;, x;) € M,
R™ is Youngs natural representation @dym, associated with.

Proof. We have
Sw(bx.g) = Z sign(y) Z SulX | tyogyt]

—ZSIgw)Z D (=DYIEIXOMalg (1x U M) [Y | 1ywgy 0,

Y @ Y0

where the last sum is taken ovwéand@ such that the conditions of Lemni@ are satisfied.
Changing the order of summation, and writifigf, X) as in the statement of the theorem,
we obtain the expression

(—p'™ Z C(Y,X) Y > sign(y) Z [Y | g0
0e® 7V

Now it follows from Lemmall that

D D signg) Y OIY | oy to]

0c® 7V

=2 ) Riye™) by
g h

- Z Z R} (cHbyy O
h [

The theorem means that we can consiélfras a block matrix with submatricégy y,
whereY, X are|n|-subsets of/. This submatrix is zero unle¥sX, andM satisfy condition
(i) of Lemmal0, in which casd/y x has the form

+q(IXUM2) Y R™(e™H.

This is the ‘collapsed’ matrif3], obtained previously by very roundabout arguments.

9. Conclusion

Using the methods described above, the terms involved in the formuba By(b, L), k),
(Theorem?), can be calculated explicitly and completely for small valuel, @ind for all
L. The polynomials occurring as entries of the matfig can be computed once and for
all; essentially there is only one calculation for each valug\pf satisfying| | < |M| <b.
Given the catalogue of matricéy), the matricesV; can be obtained by the sieve formula
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(Lemma9), for any linking setL. The trace o N}')" is the solution of a linear recursion
with coefficients that are polynomials k(essentially this is Newton’s formula applied to
the characteristic polynomial).

This approach is followed ifb], where all the matrice®y; for » = 3 are computed.
The Specht bases are not used in that paper, but extensive computations, using the Specht
bases, can be found in Reinfeld’s theldif]; these results are also applicable to the case
when the base gragis not complete. Iff5] the matricesV; for the particular linking sets
L ={11,22 33} andL = {12, 13, 21, 23, 31, 32} are given, and explicit formulae for the
chromatic polynomials of the respective graghg3, L) obtained. These are ‘easy’ cases
of the formula given in Section 6, in that the eigenvalues of the matNgeare themselves
polynomials irk, and the trace ofN )" is simply the sum of theinth powers. For example,
in the casd. = {12, 13, 21, 23, 31, 32} the chromatic polynomial is

(k3 — 9%k? + 2% — 32)"
+(k—1) ((—2k2 + 16k — 128" + 2(k? — 5k + 7)")

+ % k(k —3) ((3k — 14)" 4 2)
+ % k—Dk—2) ((k—2"+2(-2k +7)")

+ék(k _ Dk —5) (2"

+ %k(k -2)(k—4) (2

+ % k—=Dk—2)(k —3) (—2)".

It may be worth remarking that although the case- 2 was done by ad hoc methods in
1972, the analogous results for= 3 were not obtained until over 25 years later, and then
(initially) by ad hoc methods as well. The situation now is that not only do we have a viable
method, but also a theory that explains it, and the prospect of further advances.

What can be said generally about larger valued,cdnd what happens ds — oo?
In the case whei, = {11, 22, ..., bb}, the result forb = 4 was given in3], and some
results for larger values df have been obtained by Chaf&y7]. For certain partitiong,
more general results can be obtained3frthe terms corresponding to the one-dimensional
representationsy = (¢) andn = (1%), were obtained explicitly, and for ab. More
generally, the arrangement of the terms according to incredsiag=| has the property
that the terms corresponding to the smallest valugsasé in fact the leading terms in the
chromatic polynomial. However lardeis, the partitions with & ¢ <r determine all the
terms of P(B,, (b, L), k) with degree frombndown to(b — r)n + 1. Such observations can
be used to obtain bounds on the absolute values of the roots of the chromatic polynomials.
Last, but not least, the theorem of Beraha efidlcan be deployed to analyze the limiting
behaviour of the roots as— oo [4].
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