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The fascination of symmetry

Mirror symmetry

in Nature and in Art

2



Complex symmetry

in Nature and in Art
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The science of symmetry

Ramon Llull, c.1280 Johannes Kepler c.1600
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19th century algebra – symbols no longer stand for numbers,

and so they can obey different rules.

Hamilton’s Quaternions 1843:

Hamilton’s Icosian Calculus 1856: ι2 = 1, κ3 = 1, λ5 = 1, λ = ικ.
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Cayley’s groups 1854:
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Symmetrical networks

In the 19th century, symmetry was studied by many including

Klein, Dehn, Burnside, . . .

Also (inadvertently) Heawood: seven mutually adjacent

hexagons on a torus 1890:
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In 1920, two electrical engineers noticed that in some electrical

networks all the edges are ’equivalent’. In 1932 one of them,

RONALD FOSTER, made a list.
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H.S.M. COXETER (Cambridge 1926-36, Toronto 1936-2003)

He combined geometrical ideas with algebraic operations and

made the study of symmetry part of mainstream mathematics.
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R2 = B2 = G2 = 1, and since the combination of reflections in

lines meeting at angle θ is a rotation through 2θ.

(RB)6 = (BG)3 = (GR)2 = 1.

This group is infinite.
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Translational symmetries T1 and T2 can be expressed in terms

of R,B,G.

Adding the relations T1(R,B,G) = 1 and T2(R,B,G) = 1

defines a finite group.
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Heawood’s map
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Dual of Llull’s graph
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Heawood’s map and graph

In 1948 BILL TUTTE moved from Cambridge to Toronto. In

1947 he had written about symmetrical graphs, including this

one. These diagrams are from a long paper written by Coxeter

(1950), in which Tutte’s influence was prominent.
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J.H. CONWAY (Cambridge 1956-1986, Princeton 1986- )

Conway and the Junior World Encylopedia
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The dodecahedron according to Conway’s Junior World Encyclopedia
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Tutte (1947): In a finite symmetric graph with degree 3, there

is a number s such that given any two s-arcs there is a unique

automorphism which transforms one into the other. And

s cannot exceed 5.

Conway’s method (1960s)

a and b shunt the arc onto its two successors, σ reverses it.
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a, b, σ satisfy some relations, for example

σaσ must be equal to either a−1 or b−1.

19



For example, when s = 2 we find the relations

σ2 = 1, σaσ = a−1, σbσ = b−1, ab−1a = b, abσba2 = b2.

These define an infinite group. For a finite group, we need

more relations, like

an = 1,

which corresponds to a cycle of length n in the graph.
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In order to find out if such a group is indeed finite we can try:

coset enumeration.

An algorithm, invented by Todd and Coxeter (1936). The

objective is to find the number of cosets of a known subgroup

in a group defined by generators and relations. It may take a

long time.

In the 1960s it was programmed by MJT Guy at the Cambridge

Computing Laboratory.
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Applied to some of the Conway presentations, with suitable

choices, it worked!

Results of coset enumerations, Conway and Guy c.1965
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The graph with 102 vertices and a group of order 2448

Note the 17-fold rotational symmetry
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This turned out to be fruitful area of research, for several

reasons.
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