



# Technical Memorandum

**TO:** Nate Meikle – BCP Development, Inc.

**FROM:** Riley Bradshaw, P.E. – Keller Associates, Inc. Marvin Fielding, P.E. – Keller Associates, Inc.

DATE: September 3, 2021

SUBJECT: Ammon Development Water Study



# 1.0 INTRODUCTION

BCP Development proposes to develop an area of land within the City of Ammon's Area of Impact, bounded by 21<sup>st</sup> South on the south, 52<sup>nd</sup> East on the west, 1<sup>st</sup> Street on the north, and the western boundary of the Quail Ridge subdivision on the east (see Figure 1, also in Appendix A). The area in question consists of approximately 689 acres and includes a variety of land use types ranging from low density to medium high density. Figure 1 also shows two potential school locations as well as a commercial area.

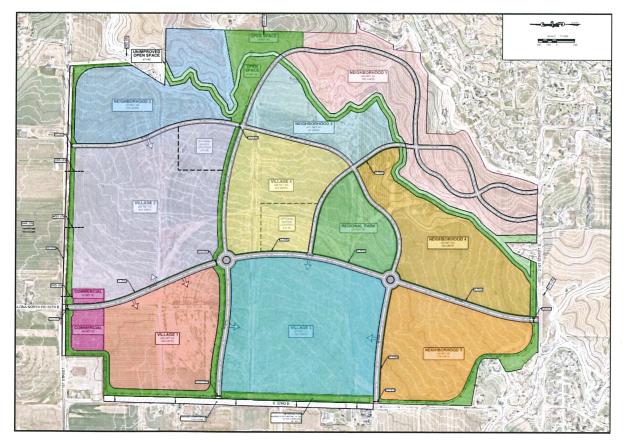



FIGURE 1 – Developer's Concept Layout dated 07-15-2021

The proposed development lies within a range of elevations that fall between those served by two of the City of Ammon's existing drinking water pressure zones (Zone 1 and Zone 2). As a result, at least one new pressure zone must be created to serve this development.

This technical memo documents this development's impacts to the City of Ammon's drinking water system and provides recommended system improvements to address those impacts. Drinking water system improvements were selected in order to comply with the City standards described in the 2018 Ammon Water Facilities Planning Study (WFPS) and with the Idaho Drinking Water Rules (IDAPA 58.01.08).

# 2.0 DRINKING WATER SYSTEM

# 2.1 DEMAND

To evaluate the development's drinking water needs as they pertain to state Drinking Water Rules, a maximum day demand (MDD) and peak hour demand (PHD) for the development were developed based on the land uses and number of residential units shown in the concept layout. Assumptions used to estimate a potable water demand per unit (household) were consistent with those used for other development requests since the implementation of the City's pressurized irrigation requirement. Per the City's request, the assumption for average household density was updated to 2.96 persons/household (average 2015-2019 household density, US Census Bureau QuickFacts). This results in a MDD of 0.37 gallons per minute (gpm)/household and PHD of 0.49 gpm/household (applicable for large area analysis only).

Commercial demands were estimated using water meter records for a similarly sized commercial area on 17<sup>th</sup> Street in Ammon, comprised of a variety of business types. Demands for the two school areas were estimated assuming that the school areas shown in the concept layout would accommodate the needs of all k-8<sup>th</sup> grade students generated by the development. It was assumed that all high school students would attend a high school outside of the development. State code guidelines for wastewater generation at schools were used to estimate a demand of 29 gallons per day (gpd)/student for k-5 and 35 gpd/student for grades 6-8.

Table 1 shows the MDD and PHD values estimated for the development. A Winter Day Demand (WDD) of 780 gpm for the entire development was also calculated for modeling purposes and represents a more typical demand outside of heavy demand times. Calculations related to the values presented in this section are found in Appendix B.

### **TABLE 1 - Development Drinking Water Demands**

|                            | MDD (gpm*) | PHD (gpm*) |
|----------------------------|------------|------------|
| 2021 Existing Ammon System | 11,310     | 16,250     |
| Development Residential    | 1,170      | 1,530      |
| Development Commercial     | 1.1        | 1.5        |
| Development School         | 40         | 50         |
| Development Total          | 1,210      | 1,580      |
| Ammon Total w/ Development | 12,520     | 17,840     |

\* gpm = gallons per minute, an average of demand over the max day or peak hour

Current existing demands for the City of Ammon were taken from other modeling efforts performed for the City earlier this year (Brogan Creek Tech Memo dated 03-25-2021 and addenda).

# 2.2 SUPPLY ANALYSIS

State Drinking Water Rules require that water system sources (almost exclusively groundwater in Eastern Idaho) provide PHD with any given pump out of service. This requirement can be reduced to meeting only MDD where water storage is available to make up the difference (see Storage Analysis). Ammon's typical mode of operation is to provide MDD with this "equalization" storage as this can reduce pumping costs and impacts to water rights.

Although Ammon's system has several pressure zones, all of its wells are currently located in pressure Zone 1 (valley floor). If the development were to be served through Zone 1 sources, it's impact to the system's "firm capacity" (the total groundwater supply with largest pump out of service) are shown in Table 2. If the development were served through new wells dedicated solely to this pressure zone those wells would need to provide the full 1,210 MDD of new system demand.

### TABLE 2 – Supply Capacity Impacts

|                         | Existing System | With Development |  |  |
|-------------------------|-----------------|------------------|--|--|
| MDD (gpm)               | 11,310          | 12,520           |  |  |
| Firm Capacity (gpm)     | 13,430          | 13,430           |  |  |
| Surplus/(Deficit) (gpm) | 2,110           | 905              |  |  |

The developer is unaware of any existing groundwater rights associated with this property. This development will need available groundwater rights of at least the MDD, assuming equalization storage is constructed to cover demands beyond MDD.

# 2.3 STORAGE ANALYSIS

Drinking water storage must provide for the firefighting, operational, and equalization storage needs of the zone(s) it serves. The City typically removes the need for stand-by/emergency storage by including backup power generation at well sites.

Fire flow storage is calculated as the total volume needed to supply the largest applicable fire flow (commercial/school fire event, see Delivery Analysis section). Equalization storage is the volume of water needed to meet any demands greater than the MDD for which well pumps are sized (such as PHD). Operational storage is the tank volume which empties between when the well pump turns off after filling the tank to when the pump is activated again. This reduces pump on/off cycles and has been estimated at 10% of total storage per the 2018 WFPS. Dead storage refers to the tank volume not accessible by booster pumps (minor, 1% assumed here). The total amount of storage needed for this development is shown in Table 3.

#### TABLE 3 – Storage Capacity Impacts

| Category          | Required (Gallons) |
|-------------------|--------------------|
| Dead              | 7,000              |
| Operational       | 65,000             |
| Fire Flow         | 450,000            |
| Equalization      | 131,000            |
| Standby/Emergency | 0                  |
| TOTAL             | 653,000            |

### 2.4 DELIVERY ANALYSIS

Delivery capacity refers to the system's ability to deliver flow rates at acceptable pressures. The Idaho Drinking Water Rules require that drinking water systems meet the criteria in Table 4.

#### TABLE 4 - System Pressure Requirements

| Flow Condition          | Required Pressure |
|-------------------------|-------------------|
| Typical Operating Range | 40 psi – 80 psi   |
| Fire Flow Event         | 20 psi minimum    |

Required firefighting flows for the City of Ammon depend on land use. Planning demands for new development were reviewed with the Ammon Fire Marshall and are shown in Table 5.

#### TABLE 5 - Fire Flow Requirements

| Property Type     | Required Fire Flow   |
|-------------------|----------------------|
| Residential       | 1500 gpm for 2 hours |
| Commercial/School | 2500 gpm for 3 hours |
| Industrial        | 4500 gpm for 4 hours |

A pump station delivering flow to the development must be able to supply both PHD. It must also supply MDD during a fire event. Both conditions must be met with any pump out of service (code redundancy requirement). In the case of this development, total pumping capacity required is governed by the commercial/school fire flow requirement and MDD for the total shown in Table 6.

#### TABLE 6 - Delivery Capacity Impacts

|                                   | Flow Rate (gpm) |
|-----------------------------------|-----------------|
| Fire Flow Demand                  | 2,500           |
| Max Day Demand                    | 1,210           |
| Minimum Pumping Capacity Required | 3,710           |

# 2.5 SYSTEM IMPROVEMENTS

The proposed development covers a range of elevations that are not currently served by Ammon's drinking water system. This will require the establishment of a new pressure zone. While there are several ways in which the supply, storage, and delivery requirements of this development could be met, the proposed improvements represent our recommendation for a solution that keeps improvements within the developer's control. Other solutions involving sharing of resources with other pressure zones may exist that would require additional buy-in from the City and/or third-party landowners.

Based on discussions with a local hydrogeologist, there is a reasonable chance that a well drilled in the development could produce 2,000 gpm. This means that the new pressure zone will require two separate 1,300 gpm minimum wells, a primary well meeting MDD requirements and an equally sized redundant well. One cost effective solution for this would be to have a main wellhouse with a line-shaft vertical turbine pump and the necessary valves, meters, sampling, etc. for state compliance and to install the other well as a submersible pump piped to the main wellhouse. The submersible well would not need to be housed in a building and could simply be fenced for security.

Due to the variability of local hydrogeology, we recommend that test wells be drilled at proposed well sites to verify suitability prior to finalization and to verify that well areas of influence do not negatively impact neighboring properties. Separation between wells should follow the recommendations of a hydrogeologist but should be no closer than 100 ft from one another. Wells drilled further up the bench in this area have dealt with water quality issues (temperature, pH, etc.); we recommend that well sites be kept on the lower "flat" portion of the proposed development.

A single 653,000-gallon minimum tank should be constructed to meet storage needs. A booster station capable of delivering PHD and MDD plus fire flow should also be constructed adjacent to the tank and set to target a hydraulic grade of 4925 ft in order to ensure minimum pressures are produced during PHD and fire events. While the wells and tank/booster station could be located at two separate sites, transmission piping and other costs will be reduced by placing everything at the same site if space allows. This is the assumption used for the cost evaluation.

Backup power generation should be provided for all facilities; if site spacing is such that backup power cannot be efficiently run to all well and booster pumps from the single permanent generator, then a portable generator and necessary hookups should be provided for the submersible well. Space for a future chlorination system should also be provided at the wellhouse.

WaterCAD hydraulic modeling software was used to evaluate the placement and capacity of improvements required to meet the pressure and flow requirements previously described. A proposed system layout is shown in Figure 2. Pipe diameters shown are nominal and were sized to facilitate pressure requirements and future expansion of the zone to the north and south. See Appendix C for detailed modeling results.

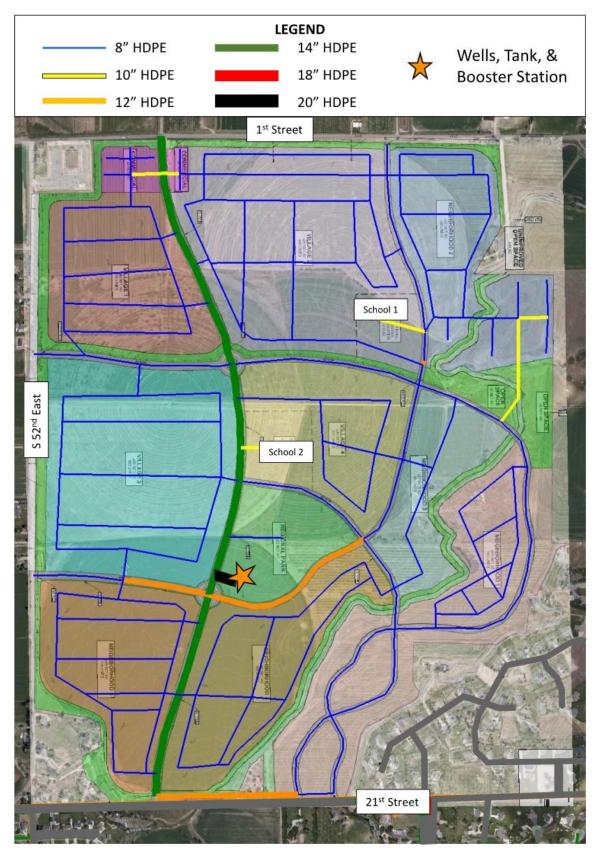



FIGURE 2 – Proposed Drinking Water Improvements

The system was modeled with DR 11 HDPE pipe and features a combination of 14" and 12" diameter water transmission lines for equivalent functionality to the recommendations found in the 2018 WFPS. 8" and 10" distribution lines shown were generically placed to provide even coverage over the development and do not correspond to actual minor street locations (unknown at time of evaluation). Planning and placement of actual drinking water distribution lines should follow roadway alignments. We recommend that the model be updated with actual water line locations in order to verify suitability of waterline and pump station placement before improvements are designed. Though not shown in Figure 2, we recommend that emergency supply from pressure zone 2 through a pressure reducing valve also be provided to mitigate the effects of a major catastrophe at the booster station.

It became apparent while modeling that the span of elevations encompassed by the development may be slightly too large to be contained within a single pressure zone without causing pressure issues (too high at the bottom or too low at the top). The City of Ammon has indicated that rather than split this development into two zones, individual pressure reducing valves (PRVs) should be installed on all homes whose pressures exceed the 80 psi maximum during low demand times (typically winter months). Modeling results in Appendix C show locations where pressures approach 80 psi; however, model results assume 5 psi variability and installation of individual PRVs should be determined by actual system pressures once constructed.

The modeling shows that the pumps in Table 7 satisfy the pressure and flow demands described previously. This exercise is only intended to provide estimates of pump size and number; these values should be confirmed through further analysis during design of the actual improvements. A booster station consisting of six pumps, two fire flow pumps, two main pumps and two smaller pumps, is proposed to meet the anticipated range of flows and to satisfy state redundancy requirements.

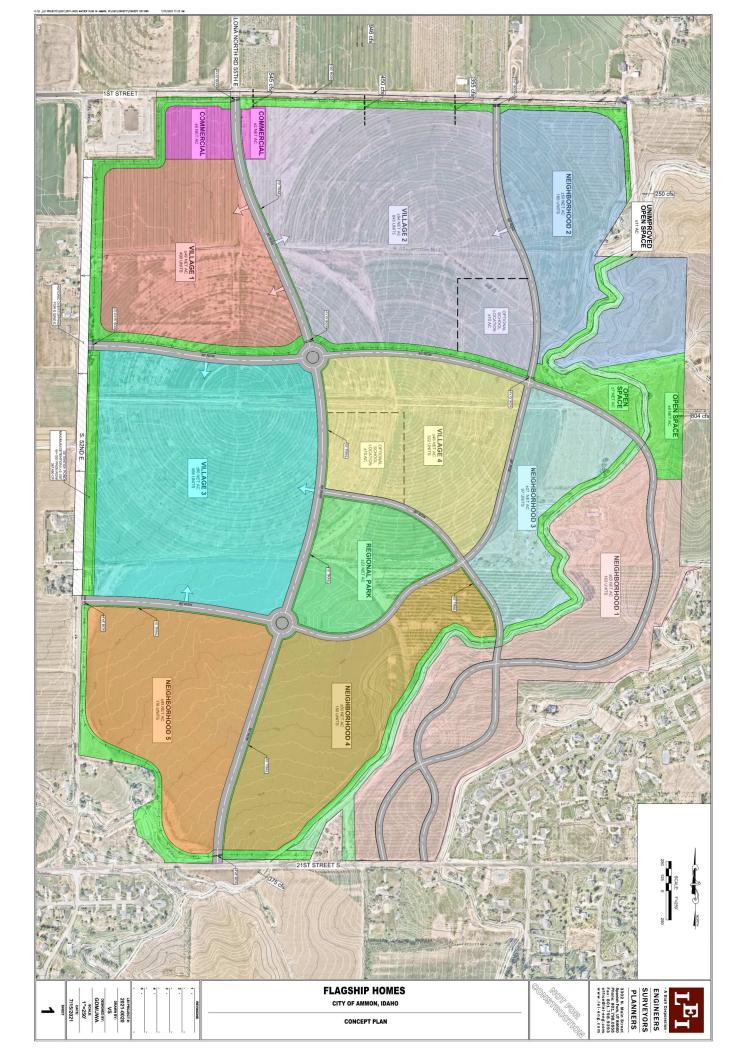
| Wells                                               |       |
|-----------------------------------------------------|-------|
| Number of Wells                                     | 2     |
| Minimum Design Flowrate Each (gpm)                  | 1,300 |
| Design Head (ft)                                    | 117   |
| Estimated Horsepower Each                           | 60    |
| Booster Station                                     |       |
| Design Head (ft)                                    | 200   |
| Target Hydraulic Grade (ft)                         | 4,925 |
| (2) 100 HP Fire Flow Pumps - Design Flowrate (gpm)  | 1,300 |
| (2) Main Pumps - Design Flowrate (gpm)              | 800   |
| (1) 40 HP Intermediate Pump - Design Flowrate (gpm) | 500   |
| (1) 30 HP Low-Flow Pump - Design Flowrate (gpm)     | 350   |

#### TABLE 7 – Model-Based Pump Selection

All facilities should feature variable frequency drives and meet all other City of Ammon requirements. The booster pumps presented assume full build-out conditions, it may be necessary to adjust or install temporary pumps to accommodate phased construction of the

development. The developer will coordinate supply solutions for phased build out separately with the City.

An opinion of cost for the wells, tank, and booster station improvements is provided in Table 8. Costs assume a buried tank with the booster station constructed above, similar to the Ammon Well 13 project currently under construction. Pipeline costs have not been included in these values as the development layout (which will determine the length of pipe required) has not been finalized. Market volatility continues to be high for pipe and other infrastructure components; the costs shown include a 30% contingency amount and are order of magnitude level only. Additional details are presented in Appendix D.


| Engineer's Opinion of Cost |             |  |  |  |  |
|----------------------------|-------------|--|--|--|--|
| Wells                      | \$1,748,000 |  |  |  |  |
| Tank and Site              | \$2,757,000 |  |  |  |  |
| Booster Pump Station       | \$1,460,000 |  |  |  |  |
| Professional Services      | \$1,213,000 |  |  |  |  |
| TOTAL                      | \$7,177,000 |  |  |  |  |

# **APPENDICES**

- Appendix A Developer's Concept Layout
- Appendix B Calculations
- Appendix C Modeling Results
- Appendix D Cost Estimates

APPENDIX A – DEVELOPER'S CONCEPT LAYOUT





**APPENDIX B - DRINKING WATER CALCULATIONS** 



### DEMANDS

| Base Demands (GPM)   |            |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
|----------------------|------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------|------------|------------|--------------|-------------|-------------|-------------|-----|
|                      | 117        | gpcd winte                                                                   | er day den                                                                                                         | nand (2018 | WFPS)      |            |              |             |             |             |     |
|                      |            | people/household (2015-2019 average density per US Census Bureau QuickFacts) |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      |            |                                                                              | Culinary Winter to Summer Factor (from Kuna)         Avg Winter Day to MDD Factor (previous modeling, see #219067) |            |            |            |              |             |             |             |     |
|                      |            | -                                                                            |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      |            | Avg Winte                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      |            | Total Hous                                                                   |                                                                                                                    |            |            | 0,         |              |             |             |             |     |
|                      |            | Subdivisio                                                                   | -                                                                                                                  | ion Added  |            |            |              |             |             |             |     |
| Residential          |            |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
| MDD                  | 0.37       | GPM/hous                                                                     | ehold                                                                                                              |            |            |            |              |             |             |             |     |
| PHD                  |            | GPM/hous                                                                     |                                                                                                                    | 51 gnm/ho  | usehold us | ed in 2019 | /2020 mod    | leling)     |             |             |     |
| MDD                  |            | GPM, Tota                                                                    |                                                                                                                    |            |            | 2013       | , _020 11100 | 6/10/       |             |             |     |
| PHD                  |            | GPM, Tota                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      | 1,550      |                                                                              | rnesident                                                                                                          |            |            |            |              |             |             |             |     |
| Commercial           |            |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      |            | gpd Avg W                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      | 1,558      | gpd max n                                                                    | nonth                                                                                                              |            |            |            |              |             |             |             |     |
| MDD                  | 1.1        | GPM Total                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |
| PHD                  | 1.5        | GPM Total                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |
| School               |            |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      | 25.1%      | School age                                                                   | e (5-17) % (                                                                                                       | of Populat | ion (US Ce | nsus Burea | u QuickFa    | cts)        |             |             |     |
|                      | 1,167      | k-5 studer                                                                   | ts                                                                                                                 |            |            |            |              |             |             |             |     |
|                      | 583        | 6-8 studer                                                                   | ts                                                                                                                 |            |            |            |              |             |             |             |     |
|                      | 778        | 9-12 stude                                                                   | nts                                                                                                                |            | Accumo     |            | tanyand      | Ir Lligh or | ly no Hig   | h School    |     |
|                      | 33,546     | Elementar                                                                    | y School G                                                                                                         | GPD        |            |            |              | -           | lly, no Hig |             | ,   |
|                      | 20,419     | Jr High GP                                                                   | D                                                                                                                  |            |            |            |              |             | \$ 58.01.03 |             |     |
|                      | 0          | High Schoo                                                                   | ol GPD                                                                                                             |            | consum     | ption ass  | umed to      | go from v   | vastewate   | er to potak | ble |
| MDD                  | 38.60      | GPM, Scho                                                                    | ols Total                                                                                                          |            | water u    | sage.      |              |             |             |             |     |
| PHD                  | 50.59      | GPM, Scho                                                                    | ols Total                                                                                                          |            | Element    | ary (cafe  | teria, no    | showers)    | = 29 gal/c  | day/stude   | nt  |
| TOTAL NEW DEMAND     |            |                                                                              |                                                                                                                    |            | 1411:-b /  |            |              | ) _ 25      | /day/-+-    | اممه        |     |
| MDD                  | 1,207      | GPM                                                                          |                                                                                                                    |            | Jr Hign (  | careteria  | , snowers    | s) = 35 ga  | /day/stuc   | ient        |     |
| PHD                  | 1,582      |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
| WDD                  | -          | GPM                                                                          |                                                                                                                    |            |            |            |              |             |             |             |     |
|                      |            |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
| TOTAL SYSTEM DEMAN   |            |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
| MDD                  | 12,520     |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
| PHD                  | 17,835     | GPM                                                                          |                                                                                                                    |            |            |            |              |             |             |             |     |
| Fire Flow Demands (G | <u>PM)</u> |                                                                              |                                                                                                                    |            |            |            |              |             |             |             |     |
| Residential          | 1500       | for 2 hrs                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |
| Commercial/K-12      |            | for 3 hrs                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |
| College/Industrial   | 4500       | for 2 hrs                                                                    |                                                                                                                    |            |            |            |              |             |             |             |     |

### Commercial Demand Details

|                 |                          | Jan 2016      |                                                       |
|-----------------|--------------------------|---------------|-------------------------------------------------------|
|                 |                          | Metered Usage | This area of Ammon has mixed commercial/business      |
| Address         | Business                 | (Gal/Month)   | usage and is approximately 8 acres in total to match  |
| L615 Market Way | Taqueria El Rodeo        | 1029          | the commerical area of this subdivision. Intersection |
| L639 Market Way | Posh Hair and Nail Salon | 3449          | of Ammon Road and 17th Street.                        |
| 3379 E 17th St  | Subway Restaurant        | 5471          |                                                       |
| L675 Market Way | Domino's Pizza           | 9790          |                                                       |
|                 | Petal Passion Floral     | 312           |                                                       |
| L655 Market Way |                          |               |                                                       |
| L665 Market Way | Ripp'd Nutrition         | 899           |                                                       |
| 3415 E 17th St  | Ace Hardware             | 2338          |                                                       |
| 3475 E 17th St. | Walgreens                | 8829          |                                                       |
| 3456 E 17th St. | Business Park            | 91            |                                                       |
|                 | TOTAL:                   | 32208 gal/    | month                                                 |
|                 |                          | 1,039 gpd     |                                                       |
|                 |                          | 0.72 avg      | gpm                                                   |
|                 |                          | E-17th-St     |                                                       |
|                 |                          |               |                                                       |

| Area               | Base MDD | Units | Total MDD | Nodes | Demand per Node |                             |
|--------------------|----------|-------|-----------|-------|-----------------|-----------------------------|
| Commercial         | -        | -     | 1.11      | 10    | ·               |                             |
| Village 1          | 0.37     | 490   | 182.07    | 11    | 16.55           |                             |
| Village 2          | 0.37     | 845   | 313.98    | 29    | 10.83           | - Not including school area |
| Neighborhood 2     | 0.37     | 180   | 66.88     | 24    | 2.79            |                             |
| Village 3          | 0.37     | 688   | 255.64    | 16    | 15.98           |                             |
| Village 4          | 0.37     | 322   | 119.65    | 6     | 19.94           | - Not including school area |
| Neighborhood 3     | 0.37     | 97    | 36.04     | 4     | 9.01            |                             |
| Neighborhood 1     | 0.37     | 163   | 60.57     | 15    | 4.04            |                             |
| Regional Park      | -        | 0     | -         | 1     | 0.00            |                             |
| Neighborhood 5     | 0.37     | 176   | 65.40     | 21    | 3.11            |                             |
| Neighborhood 4     | 0.37     | 180   | 66.88     | 22    | 3.04            |                             |
| School - Village 2 |          |       | 19.30     |       | 19.30           |                             |
| School - Village 4 |          |       | 19.30     |       | 19.30           |                             |

## SUPPLY ANALYSIS

| Existing System   |            |                 |      |           |         |
|-------------------|------------|-----------------|------|-----------|---------|
|                   | Production |                 |      | Emergency | Year    |
| Well ID           | (gpm)      | Motor hp        | VFD  | Power?    | Drilled |
| Well 2            | 325        | 25              | No   | No        | 1952    |
| Well 3 (inactive) |            | 50              | No   | No        | 1957    |
| Well 5            | 1000       | 100             | No   | No        | 1967    |
| Well 6 (inactive) |            | 75              | Yes  | Yes       | 1973    |
| Well 7            | 1850       | 200             | No   | No        | 1968    |
| Well 8            | 4200       | 400             | Yes  | Yes       | 1996    |
| Well 9            | 1850       | 200             | Yes  | Yes       | 2001    |
| Well 10           | 3000       | 400             | Yes  | Yes       | 2008    |
| Well 11           | 3000       | 500             | Yes  | Yes       | 2008    |
| Well 13           | 2400       | 200             | Yes  | Yes       | 2020    |
| Total             | 17625      |                 |      |           |         |
| Firm Capacity     | 13425      |                 |      |           |         |
| System Wide       |            |                 |      |           |         |
|                   | 2020 Pop   | 2021 + Develop  | ment |           |         |
| MDD               | 11,313     | 12,520          | gpm  |           |         |
| Firm Capacity     | 13,425     | 13,425          | gpm  |           |         |
| Surplus/(Deficit) | 2,112      | 905             | gpm  |           |         |
| Zone Specific     |            |                 |      |           |         |
|                   | 2020 Pop   | 2021 + Developi | ment |           |         |
| MDD               | 0          | 1,210           | gpm  |           |         |
| Firm Capacity     | 0          | 0               | gpm  |           |         |
| Surplus/(Deficit) | 0          | (1,210)         | gpm  |           |         |

## **Well Assumptions**

|     |                 |            | Static H2O    | H20  |    |
|-----|-----------------|------------|---------------|------|----|
|     |                 | Elev       | Depth         | Elev |    |
|     | Well 11         | 4740       | 52            | 4688 | ft |
|     | Well 9          | 4819       | 124           | 4695 | ft |
|     |                 |            |               |      |    |
|     |                 | Ne         | w Well Elev   | 4755 | ft |
|     | Lift            | to Surface | e from 4688'  | 67   | ft |
|     |                 | Lift to Ta | ank (buried)  | 0    | ft |
|     |                 | Ν          | /linor Losses | 10   | ft |
| Dra | awdown, Decline | 40         | ft            |      |    |
|     |                 |            | TDH           | 117  | ft |

|     |         | New Well | S   |         |           |
|-----|---------|----------|-----|---------|-----------|
|     |         | Q        | Н   | hp calc | hp Actual |
|     | Prime   | 1300     | 117 | 53      | 60        |
| Rec | lundant | 1300     | 117 | 53      | 60        |

#### DELIVERY ANALYSIS

|            |                     | WDD         | 780        | gpm           |           |      |
|------------|---------------------|-------------|------------|---------------|-----------|------|
|            |                     | MDD         |            | gpm           |           |      |
|            |                     | MDD+FF      | 3710       |               |           |      |
|            |                     | PHD         |            | gpm           |           |      |
|            |                     | Option 2    |            |               |           |      |
|            |                     | Booster     |            |               |           |      |
|            |                     | Q           | Н          | hp calc       | hp Actual |      |
|            |                     | 800         | 200        | 56            | 60        |      |
|            | 800<br>1300         |             | 200        | 56            | 60        |      |
|            |                     |             | 200        | 91            | 100       |      |
|            |                     | 1300        |            | 91            | 100       |      |
|            |                     |             | Flow Ra    | inge Serve    | d (GPM)   |      |
| (2         | 2) 100 HP F         | ire Pumps   | 750        | to            | 1300      | each |
| (2         | 2) 60 HP Ma         | ain pumps   | 400        | 850           | 800       | each |
| Comb       | o of 30 HP          | and 50 HP   | 200        | to            | 850       |      |
| 40 HP      | Intermed            | iate Pump   | 250        | to 500        |           |      |
| 3          | 30 HP Low Flow Pump |             |            | to            | 350       |      |
| *Assumes   | safe opera          | ation of pu | mps in mic | ddle third o  | of curve, |      |
| with Desig | gn Point be         | eing upper  | end of tha | t third (i.e. | lower     |      |
| end equal  | s design po         | oint divide | d by 2).   |               |           |      |
|            |                     |             |            |               |           |      |

Per state code, must be able to produce the larger of Peak Hour Demand or Max Day Demand Plus Fire Flow with any pump out of service.

Target hydraulic grade for pumps was determined through hydraulic modeling, see Appendix C.

Alternate option for pump sizing below:

|                | Option 1                 |         |            |           |      |
|----------------|--------------------------|---------|------------|-----------|------|
|                | Booster                  |         |            |           |      |
|                | Q                        | Н       | hp calc    | hp Actual |      |
|                | 1000                     | 200     | 70         | 75        |      |
|                | 1000                     | 200     | 70         | 75        |      |
|                | 1000                     |         | 70         | 75        |      |
|                | 1000                     | 200     | 70         | 75        |      |
|                |                          |         |            |           |      |
|                |                          | Flow Ra | inge Serve | d (GPM)   |      |
| (4) 75 HP N    | (4) 75 HP Main pumps     |         | to         | 1000      | each |
| Combo of 30 HF | Combo of 30 HP and 50 HP |         |            | 1000      |      |
| 50 HP Intermed | liate Pump               | 300     | to         | 600       |      |
| 30 HP Low I    | low Pump                 | 200     | to         | 400       |      |

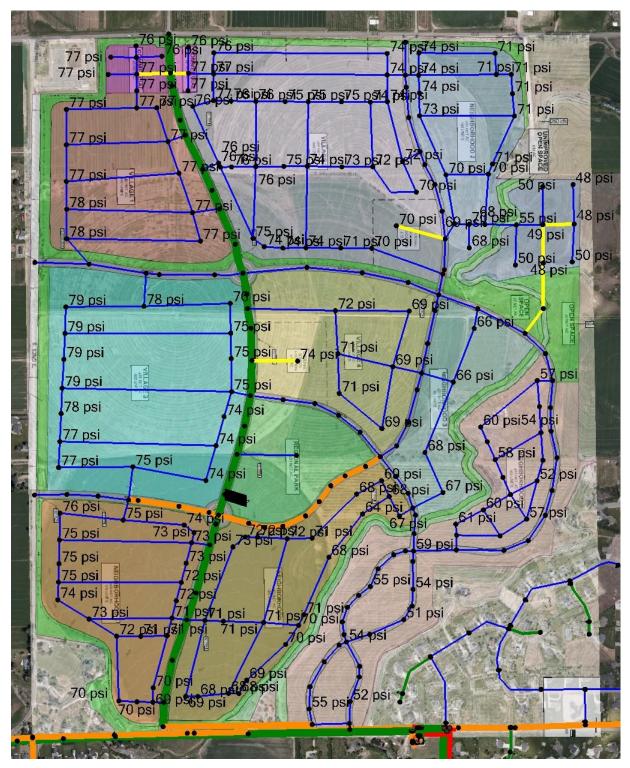
## STORAGE ANALYSIS

# Fire Storage

| Larges      | t Fire Flow = | 2500      | gpm |
|-------------|---------------|-----------|-----|
|             | for:          | 3         | hrs |
| Required Fi | re Storage    | 450000    | gal |
|             |               | 0.4500000 | MG  |

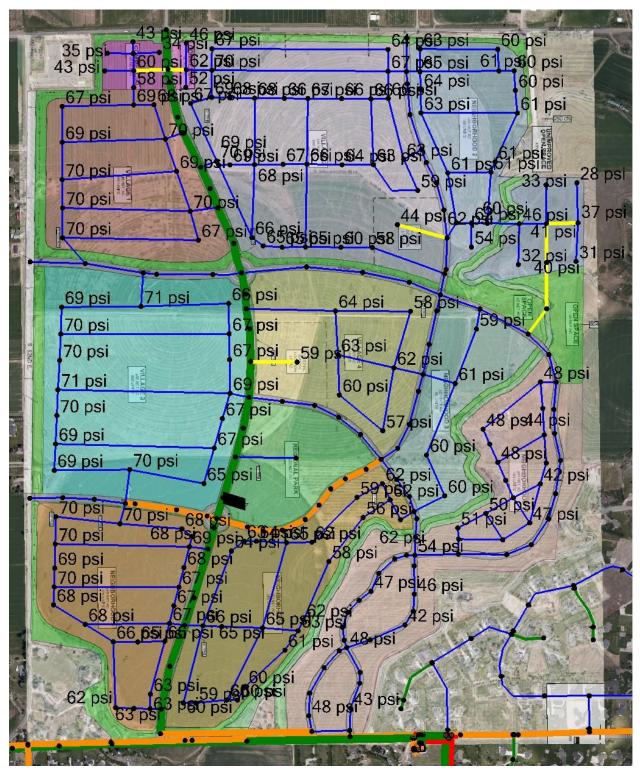
# **Operational and Dead Storage**

| Operational Storage Req'd: |    |  |  |  |  |
|----------------------------|----|--|--|--|--|
| Dead Storage Req'd:        | 1% |  |  |  |  |


# Equalization Storage if Well Capacity = MDD

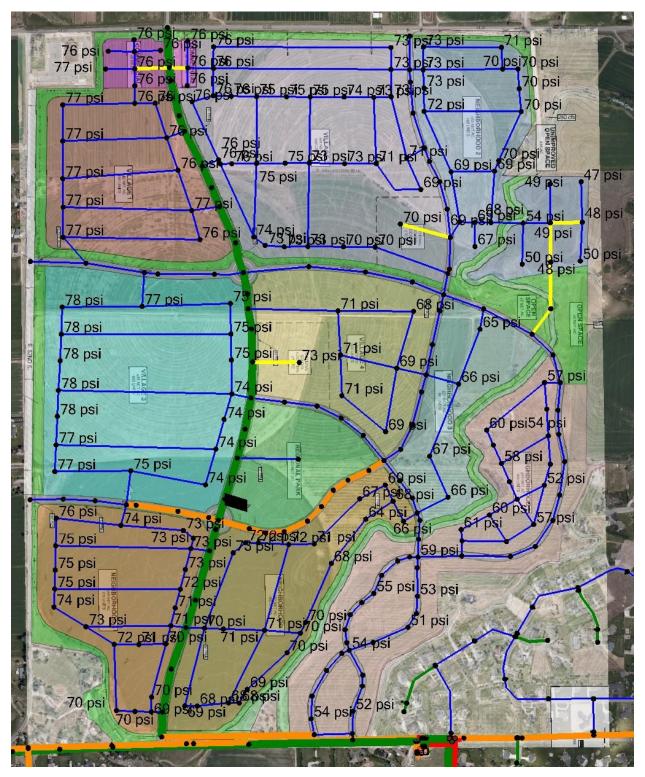
|                | Cumulative   |            |            | Smooth          |            |          |            |            |       |      |
|----------------|--------------|------------|------------|-----------------|------------|----------|------------|------------|-------|------|
| Development    |              | EQ Storage | Hour       | Unit            |            |          |            |            |       |      |
| •              | (gal)        | (gal)      |            | Demand          |            |          |            |            |       |      |
| 1068           | -8324        | -          | 0:00       |                 |            |          |            |            |       |      |
| 1016           | -19773       |            |            |                 |            |          |            |            |       |      |
| 982            | -33270       |            |            |                 |            |          |            |            |       |      |
| 958            | -48213       |            |            |                 |            |          |            |            |       |      |
| 919            | -65495       |            |            |                 |            |          |            |            |       |      |
| 856            | -86532       |            |            |                 |            |          |            |            |       |      |
| 900            | -104967      |            |            |                 |            |          |            |            |       |      |
| 1166           | -107425      |            |            |                 |            |          |            |            |       |      |
| 1435           | -93759       |            |            |                 |            |          |            |            |       |      |
| 1568           | -72123       |            |            |                 |            |          |            |            |       |      |
| 1627           | -46903       |            |            |                 |            |          |            |            |       |      |
| 1553           | -26133       |            |            |                 |            |          |            |            |       |      |
| 1454           | -11327       |            |            |                 |            |          |            |            |       |      |
| 1370           | -1530        |            |            |                 |            |          |            |            |       |      |
| 1303           | 4230         |            |            |                 |            |          |            |            |       |      |
| 1262           | 7509         |            |            |                 |            |          |            |            |       |      |
| 1283           | 12062        |            |            |                 |            |          |            |            |       |      |
| 1280           | 16421        |            |            |                 |            |          |            |            |       |      |
| 1281           | 20860        |            |            |                 |            |          |            |            |       |      |
| 1270           | 24642        |            |            |                 |            |          |            |            |       |      |
| 1214           | 25066        |            |            |                 |            |          |            |            |       |      |
| 1175           | 23118        |            |            |                 |            |          |            |            |       |      |
| 1142           | 19232        |            |            |                 |            |          |            |            |       |      |
| 1161           | 16502        |            |            |                 |            |          |            |            |       |      |
| 1068           |              |            | 23:59      | -               |            |          |            |            |       |      |
| 1218           |              |            | AVERAGE    |                 |            |          |            |            |       |      |
|                | 0.03         | 0.13       |            | EQ Storage      | (MG)       |          |            |            |       |      |
|                | 0.00         |            | EQ Deficit | -               | (          |          |            |            |       |      |
|                |              |            |            | nal Stora       | οσο Νοο    | dod (MG  | =)         |            |       |      |
|                |              | 0.033      |            |                 | ige Nee    |          | <i>.</i> , |            |       |      |
| Population:    | 9297         |            |            |                 | Non-Iri    | rigation | Diurnal C  | urve       |       |      |
| MDD:           | 1,207        |            | . 180      | 0               |            |          |            |            |       |      |
| NDD.           | 1,207        | 5911       | 160        | 0               |            |          |            |            |       |      |
| Equalization s | torage is th | ۹          | 140        | <sub>0</sub> EC | ) Storage- | 4        |            | lourly Dem | and   |      |
| cumulative ar  | -            |            | Σ 120      | 0               |            |          |            |            |       | _    |
| over a day red |              |            | 5 100      | 0               | /          | M        | DD         |            |       |      |
| system beyon   |              |            | 100 (GPM)  |                 | $\sim$     |          |            |            |       |      |
| capacity servi |              |            | <u> </u>   |                 |            |          |            |            |       |      |
|                | ing the tank | •          | 표<br>40    |                 |            |          |            |            |       |      |
|                |              |            | 20         |                 |            |          |            |            |       |      |
|                |              |            |            | 0               |            |          |            |            |       |      |
|                |              |            |            | 0:00 3:0        | 6:00       | 9:00     | 12:00 15:  | 00 18:00   | 21:00 | 0:00 |
|                |              |            |            |                 |            | Tin      | ne of Day  |            |       |      |
|                |              |            |            |                 |            |          |            |            |       |      |
|                |              |            |            |                 |            |          |            |            |       |      |

**APPENDIX C - DRINKING WATER MODELING RESULTS** 

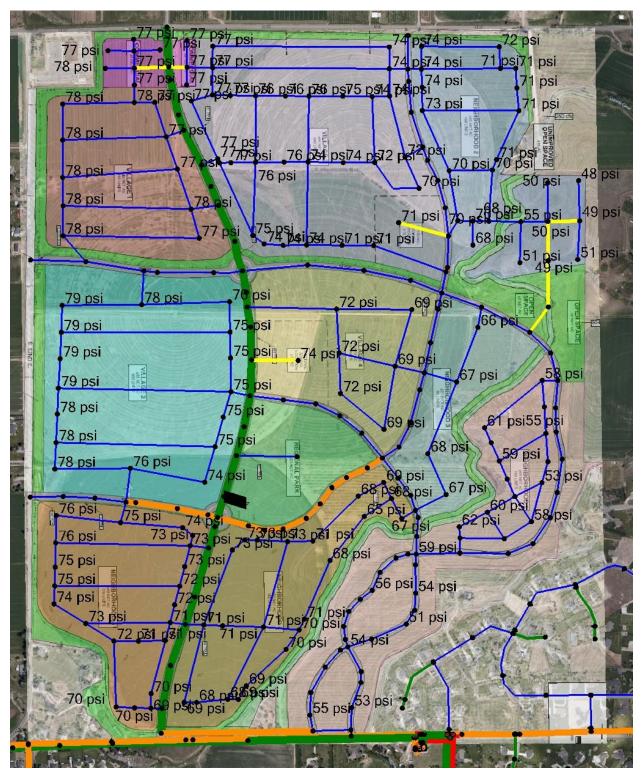



#### MAXIMUM DAY DEMAND




\*For all model runs a 5 psi buffer from specified pressure limits was used to ensure satisfactory performance. All scenarios feature a booster station supplying 4,925 ft target discharge hydraulic head. All results produced in Bentley's OpenFlows WaterCAD CONNECT Edition hydraulic modeling software.

#### MAXIMUM DAY DEMAND WITH FIRE FLOWS




Pressures shown are the residual pressure at each node under its assigned fire flow requirement. All nodes met or exceeded MDD plus fire flow requirements without dropping any node in the zone below 20 psi.

#### PEAK HOUR DEMAND



#### WINTER DAY DEMAND



\*Any nodes that report pressures above 75 psi (80 psi max minus 5 psi factor of safety modeling buffer) may exceed state standards for max pressure depending on actual system performance.

**APPENDIX D - OPINION OF COST** 



#### Capital Improvements Project BCP Development

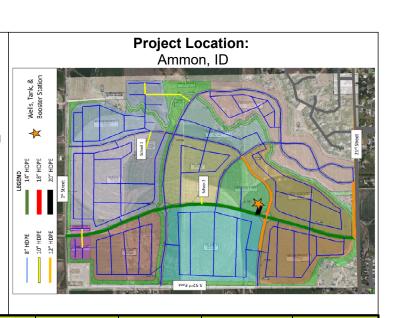
#### **Project Identifier:**

BCP Development

Objectives:

 - Create a new pressure zone by installing wells, a tank, and a booster station.

Potential Issues:


- Current supply chain and labor issues

#### Assumes:

Wells, tank, and booster station are built at the same site.
 Tank is buried cylindrical AWWA Type 3 prestressed concrete.

- Booster station sits above tank as at Well 13 facility.

 Does not include transmission/distribution line costs (including emergency PRVs from Zone 2 or canal crossings) as subdivision layout has not yet been finalized.



| General Line Items                               | Unit             |    | Unit Price | Estimated Quantity | 2019 Cost |           |
|--------------------------------------------------|------------------|----|------------|--------------------|-----------|-----------|
|                                                  | Wells            |    |            |                    |           |           |
| Test Well                                        | EA               | \$ | 45,000     | 2                  | \$        | 90,000    |
| Well Drilling                                    | EA               | \$ | 200,000    | 2                  | \$        | 400,000   |
| Well Pump (Vertical Turbine) - 60 HP             | EA               | \$ | 100,000    | 1                  | \$        | 100,000   |
| Well Pump (Submersible) - 60 HP                  | EA               | \$ | 80,000     | 1                  | \$        | 80,000    |
| Mechanical Piping                                | LS               | \$ | 60,000     | 1                  | \$        | 60,000    |
| Main Well Building - CMU Construction            | SF               | \$ | 210        | 1500               | \$        | 315,000   |
| IndoorBackup Generator                           | LS               | \$ | 203,000    | 1                  | \$        | 203,000   |
| Booster                                          | Station Building |    |            |                    |           |           |
| Booster Station Building - CMU Construction      | SF               | \$ | 210        | 2030               | \$        | 426,300   |
| Fire Flow Pumps (Vertical Turbine) - 100 HP      | EA               | \$ | 96,000     | 2                  | \$        | 192,000   |
| Main Pumps (Vertical Turbine) - 60 HP            | EA               | \$ | 78,000     | 2                  | \$        | 156,000   |
| Intermediate Pump (Vertical Turbine) - 40 HP     | EA               | \$ | 69,600     | 1                  | \$        | 70,000    |
| Low-Flow Pump (Vertical Turbine) - 30 HP         | EA               | \$ | 48,000     | 1                  | \$        | 48,000    |
| Mechanical Piping                                | LS               | \$ | 150,000    | 1                  | \$        | 150,000   |
| т                                                | ank & Site       |    |            | -                  |           |           |
| Cast-in-Place Concrete Tank - 660,000 gallons    | LS               | \$ | 726,000    | 1                  | \$        | 726,000   |
| Yard Piping                                      | LS               | \$ | 290,000    | 1                  | \$        | 290,000   |
| Site Concrete and Asphalt                        | LS               | \$ | 83,000     | 1                  | \$        | 83,000    |
| Plumbing, Electrical, and HVAC                   | LS               | \$ | 750,000    | 1                  | \$        | 750,000   |
| Instrumentation and Controls (SCADA)             | LS               | \$ | 50,000     | 1                  | \$        | 50,000    |
| Site Grading                                     | LS               | \$ | 20,000     | 1                  | \$        | 20,000    |
| Landscaping & Fencing - Basic                    | LS               | \$ | 50,000     | 1                  | \$        | 50,000    |
| Construction Subtotal                            |                  |    |            |                    | \$        | 4,259,300 |
| Mobilization                                     | %                | -  | 10%        |                    | \$        | 426,000   |
| Contingency - % of construction costs            | %                | -  | 30%        |                    | э<br>\$   | 1,278,000 |
| Total Construction Costs                         | 70               | +  | 5070       |                    | φ<br>\$   | 5,963,300 |
|                                                  | sional Services  | 1  |            |                    | Ψ         | 0,000,000 |
| Additional Services (Permitting, Geotech, Legal) | LS               | \$ | 20,000     | 1                  | \$        | 20,000    |
| Engineering and CMS                              | LS               | \$ | 1,193,000  | 1                  | \$        | 1,193,000 |
| Total Project Cost (rounded)                     |                  |    | \$7,1      | 77,000             |           |           |

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein.