
 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

In Conjunction with Ugli Scripts

Get AD Users from REST API

and
Force Change Password At Logon

Revision Number 1.0
Date August 5th , 2018

Prepared By Stephen “Sully” Sullivan
 ssullivan@ugliscripts.com

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

Table of Contents

Disclaimer ...3
Problem Statement ...3
Project Objective ..4
Solution Summary...4
Basic Requirements ..5
Configuration ..5
Exception Handling and Logging .. 11

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

Disclaimer

These instructions and associated PowerShell script are provided “as is”. Every effort was made
to adhere to PowerShell best practices. Please keep in mind, this is a “Script” and not an
“Application”. As such, logging is limited to script actions and assumes underlying PowerShell,
Windows Authentication and associated modules/methods are configured and functioning
correctly.

Lastly, this script and document only covers Email related remediation and therefore should not
be treated as an exhaustive solution. Endpoint, Proxy, Firewall and a number of other tools can
and should be used.

Problem Statement

Primary:

Proofpoint Targeted Attack Protection (TAP) tracks and reports Domain User(s) who
have previously “clicked” and were “allowed” to continue to a URL that has since been
deemed malicious. This is usually the result of URLs that have been “weaponized” post-
delivery. While “Click” alerts do not equal infection, Many organization force uses to
change their password as a protective measure.

It is important to note that all future “clicks” on malicious URLs will be blocked and the
message no longer poses a threat. As a matter of hygiene and to prevent users from
reporting messages already marked malicious, it is a good idea to remove these
messages from the inbox with Threat Response Auto-Pull (TRAP)

Secondary (optional-highest level of protection):

 Proofpoint TAP tracks and Reports on Attachments with embedded URLs.
Because these URLs exist in Attachment, the URL links cannot be rewritten. These URLs
are also susceptible to “weaponization” post-delivery. Because the URLs are not
rewritten, Proofpoint cannot report if the Domain User as accessed the URL. Due to the
lack of visibility, some Organization may choose to force Domain recipients to change
their password as well.

Because the malicious URLs have not been rewritten, these messages still pose a
threat and need to be removed from the Domain Recipient’s Inbox. Threat Response
Auto-Pull (TRAP) is the fastest way to respond to these threats.

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

Project Objective

To leverage Targeted Attack Protection (TAP), Threat Response Auto-pull (TRAP) and Windows
PowerShell to automate the removal of email threats for Domain Recipient mailboxes and force
Domain Users who have been potentially exposed to malicious content to change their
password at next logon.

Solution Summary

Targeted Attack Protection (TAP) provides alerting and tracking of User Mailbox threats. TAP
support authenticated API access to alert, campaign and forensic detail.

Proofpoint Threat Response (PTR) Auto-Pull (TRAP) leverages the TAP APIs to manage alerts
and provides many options for remediation. In addition to extensive built-in functionality (e.g.
TRAP), PTR also provides a REST API.

For this use case we will only be discussing Auto-Pull and the PTR API.

Auto-Pull will be used to move malicious Emails from Recipients’ mailboxes to a quarantine in a
secured mailbox. PTR quarantines the original email, any forwarded emails and all email of
Distribution List members.

Additional details regarding TRAP installation and configuration can be found in the Threat
Response portal, which is accessible directly from the PTR console, or via the link below:
 https://ptr-docs.proofpoint.com/ptr-guides/ptr-about/

In addition to Auto-Pull, PTR can be configured to automatically add users to a “List”. Members
of a list can be retrieved via a secure REST API web GET request to the PTR server. Members
can also be deleted with a secure web DELETE request. Additional detail regarding the PTR API
can be access via the PTR Portal from a licensed PTR Console.

Windows Task Scheduler is used to execute a PowerShell script every n minutes. This script
uses a web GET request to retrieve all members of the configured list, validates the account
against AD users and verifies the AD User meets requirements. Validated AD Users will be
forced to change their password at next logon. A web DELETE request removes the user from
the configured list.

Script log are stored in a configured path on the PowerShell hosting the Scheduled task.
Updates are also shown in the PTR Console.

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

Basic Requirements

• Account with ‘Administrator’ access to Proofpoint Targeted Attack Protection (TAP)
• Licensed version of Proofpoint Threat Response Auto-Pull (TRAP) installed

o https://ptr-docs.proofpoint.com/trap-guides/trap-installation/
• An Active-Directory Account with a mailbox and with one of the Exchange Roles:

o “Full Access” permission
o Application Impersonation role

• An Active-Directory Account with the following permission/capabilities
o Domain User to Connect and Query AD/LDAP
o Modify AD User Properties

§ Passwordneverexpires
§ ChangePasswordAtLogon (a.k.a. Pwdlastset)
§ CannotChangePassword

o Run a PowerShell script in Windows Task Scheduler
o Write Access to the Script ‘Log’ path (e.g. C:\Scripts\)

• Windows Domain computer with PowerShell and PC Active-Directory Module
• The provided PowerShell Script

Configuration

TRAP installation and configuration is well documented, so I will fore go any repetition and
assume TRAP is up and running. I recommend going through the TRAP set up first. It will get
you acclimated to the PTR console and introduce some concepts we will use (e.g. Match
Conditions).

Step 1: Configure a ‘User List’ in Threat Response

When creating the ‘User List’, make a note of the List number (aka. Id) in the URL. We
will use this number for our web GET and DELETE requests. In the example the List ID is
‘4’ (figure 1.1).

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

(figure 1.1)

Step 2: Generate a Threat-Response API key

Logon to the Proofpoint Threat Response console. Access PTR settings. Under
Customization and API Keys generate a new key and make a note of the Token (figure 2.1)

(figure 2.1)

Step 3: Configure environment variables in the PowerShell Script

Logon to the Domain system that will host the Script as the user account that will run the
Script in Windows Task Schedule. Open the provided Script in Windows PowerShell ISE.
Update the variables as directed in the comments (figure 3.1)

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

(figure 3.1)

Step 4: Test the Script in Windows PowerShell ISE

 At his point you should be able to run the PowerShell script without receiving an error.
Because you are running the Script for PS ISE, the log is created in the same directory as the
Script. Open the log and verify it is working (figure 4.1).

* Because the Matching Rule is disable the log should report ‘0’ members

(figure 4.1)

Step 5: Create a ‘Scheduled Task’ to run the PS Script

Open ‘Windows Task Scheduler’ and select ‘Create Task’ (not ‘Create Basic Task’) under
actions.

• General –

o Configure task to run as the ‘PTR User’
o Select ‘Run with highest privileges’

• Triggers –
o Configure as shown (figure 5.1)
o The default minimum is ‘5 Minutes’. Click on the ‘5’ and change to ‘1’

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

(figure 5.1)

• Action –

Update the parameters below to reflect Script location. Use ‘Start in’ to determine
where log file will be written.

o Program/Script:

‘PowerShell.exe
o Add Args:

‘-ExecutionPolicy Bypass C:\Scripts\PTR_ChangePasswordAtLogon.ps1 -RunType $true’
o Start in:

‘C:\Scripts\

• Settings –
Update ‘Stop the task if it runs longer than:’ to ‘1 hour’

Step 6: Good time to Check the log and update ‘$vrb_log’

Open the PTR Log. It should be in the ‘Start in:’ folder you specified during task creation.
When $vrb_log is set to ‘$TRUE’ every run of the script is logged (figure 6.1)

I recommend changng the $vrb_log variable to false in the script to limit logs to only when 1
or more members is found in the PTR List (figure 6.2)

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

(figure 6.1)

(figure 6.2)

Step 7: Create a ‘Match Rule’ to add Users to the List

Go to the TAP Source created during the TRAP set up. Create a new ‘Match Rule’ to match
the Primary and Secondary objectives (figure 7.1).

• Primary - Force user who “click” on Phish, Malware and Imposter links to change

password at next login.
o Alert Type: ‘Permitted Clicks’

• Secondary – Force users who have received attachments threats and unprotected URLs
to change password at next logon.

o Alert Type: ‘Delivered Attachment Threats’
o Alert Type: ‘Unprotected URL Threats’

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

(figure 7.1)

Step 8: Validate functionality

You should now be able to manually add Users to the PTR List to validate functionality. Inside
the PTR Console, within approximately ~1 minute you will see the User has been removed
from the List. This means the User’s AD property of ‘ChangePasswordAtLogon’ has been set
to $TRUE (figure 8.1).

Check the PS Script logs for additional detail (figure 8.2)

(figure 8.1)

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

(figure 8.2)

Exception Handling and Logging

There are three general exceptions to can be handled by this script. Below are details on each

1. A name added to the User List in Threat response doesn’t exist in Active Directory

Because PTR correlate and does not validate AD Users, there is always a chance and admin or
alert could result in a non-AD Account name being added to the User List.

Default: @list_update = $TRUE
To prevent repeated errors, non-AD Users are removed from the list.

Log Sample:
2018-07-07T16:32:29.9564252-04:00:[ERROR] www.aserimovbil.com does not exist in Active Directory
2018-07-07T16:32:29.9878167-04:00:[UPDATE] www.aserimovbil.com with id:15 DELETED from list #4

 Supplemental Documentation	

Copyright © 2018 Ugli Scripting - All Rights Reserved.

2. The AD User account is set to ‘User Cannot Change Password’

(and)
3. The AD User password is set to ‘Never Expire’

Default: @ad_update = $TRUE
To prevent repeated errors and force ‘ChangePasswordAtLogon’ both AD Properties will be
updated to $FALSE.

Log Sample:
2018-07-07T16:32:30.0657694-04:00:[INFO] mtorme AD property PasswordNeverExpires UPDATED to FALSE
2018-07-07T16:32:30.0813935-04:00:[UPDATE] mtorme with id:216 DELETED from list #4
2018-07-07T16:32:30.0813935-04:00:[UPDATE] mtorme AD property ChangePasswordNextLogon UPDATED to True

